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Properties of the negative effective magnetic pressure instability
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As was demonstrated in earlier studies, turbulence can result in a negative contribution to the effective mean magnetic
pressure, which, in turn, can cause a large-scale instability. In this study, hydromagnetic mean-field modelling is performed
for an isothermally stratified layer in the presence of a horizontal magnetic field. The negative effective magnetic pressure
instability (NEMPI) is comprehensively investigated. It is shown that, if the effect of turbulence on the mean magnetic
tension force vanishes, which is consistent with results from direct numerical simulations of forced turbulence, the fastest
growing eigenmodes of NEMPI are two-dimensional. The growth rate is found to depend on a parameter β� characterizing
the turbulent contribution of the effective mean magnetic pressure for moderately strong mean magnetic fields. A fit
formula is proposed that gives the growth rate as a function of turbulent kinematic viscosity, turbulent magnetic diffusivity,
the density scale height, and the parameter β�. The strength of the imposed magnetic field does not explicitly enter provided
the location of the vertical boundaries are chosen such that the maximum of the eigenmode of NEMPI fits into the domain.
The formation of sunspots and solar active regions is discussed as possible applications of NEMPI.
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1 Introduction

The concept of turbulent viscosity is often used in astro-
physical and other applications in recognition of the fact
that the microscopic viscosity is far too small to be relevant
on the length scales under consideration. Turbulent viscos-
ity is the simplest parameterization of the Reynolds stress
tensor, uiuj , where u = U − U is the velocity fluctuation
about a suitably defined average, denoted here by an over-
bar. Turbulent viscosity is by far not the only contribution
to the Reynolds stress tensor. In addition to hydrodynamic
contributions such as the Λ effect (Rüdiger 1980, 1989),
which is relevant to explaining stellar differential rotation
(Rüdiger & Hollerbach 2004), and the anisotropic kinetic
alpha effect (Frisch et al. 1987), which provides an impor-
tant test case in mean-field hydrodynamics (Brandenburg &
von Rekowski 2001; Courvoisier et al. 2010), there are mag-
netic contributions as well. One can think of them as a mag-
netic feedback on the hydrodynamic stress tensor (Rädler
1974; Rüdiger 1974) or, especially when magnetic fluctua-
tions are also considered, as a mean-field contribution to the
turbulent Lorentz force.

Work by Roberts & Soward (1975) and Rüdiger et al.
(1986, 2012) using a quasi-linear approach suggests that
the total magnetic tension force (which includes the effects
of fluctuations) is reduced in the presence of a mean mag-
netic field and might formally even change sign for larger
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magnetic Reynolds numbers, but this would then be be-
yond the validity of their approximation. Using the spec-
tral τ approach, Kleeorin et al. (1989, 1990) do indeed find
this reversal of the sign of the total magnetic tension force.
In addition, they find a reversal of the sign of the effective
magnetic pressure term; see also Kleeorin & Rogachevskii
(1994) and Kleeorin et al. (1993, 1996). Rogachevskii &
Kleeorin (2007) argue that, in a stratified medium, this can
lead to the formation of large-scale magnetic flux structures
and perhaps even sunspots – or at least active regions.

Recently, direct numerical simulations (DNS) of both
unstratified and stratified forced turbulence (Brandenburg et
al. 2010, 2012; hereafter referred to as BKR and BKKR,
respectively) have substantiated this idea and have demon-
strated that the effective magnetic pressure can indeed
change sign. Similar results have now also been obtained
for turbulent convection (Käpylä et al. 2012). In addition,
these papers give results of mean-field calculations illus-
trating that there is a negative effective magnetic pressure
instability (hereafter referred to as NEMPI) when there is
sufficient density stratification.

NEMPI is a convective type instability related to the in-
terchange instability in plasmas (Tserkovnikov 1960; New-
comb 1961; Priest 1982) and the magnetic buoyancy insta-
bility in the astrophysical context (Parker 1966). The free
energy in interchange and magnetic buoyancy instabilities
is drawn from the gravitational field, while in NEMPI it is
provided by the small-scale turbulence.

The mechanism of NEMPI works even under isother-
mal conditions when entropy evolution is ignored and an
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isothermal equation of state is used. This has been shown
using corresponding mean-field calculations (BKKR). With
this reduction to the most elementary aspects of the insta-
bility, it has recently been possible to verify the existence
of NEMPI also in DNS (Brandenburg et al. 2011, hereafter
referred to as BKKMR). This has been a major step for-
ward, because now there is no doubt that one is pursuing
a real effect and not just one that works only in the world
of mean-field models. Essential to the paper of BKKMR
has been a finding from an earlier version of the present
one that only two-dimensional mean-field structures are ex-
cited. This property allowed meaningful averaging along the
direction of the imposed field, making the identification of
flux concentrations thus much clearer. The absence of three-
dimensional mean-field structures was surprising because
three-dimensional mean-field calculations have shown that
the mean magnetic field develops structures along the di-
rection of the imposed field (BKR). However, while the
mean-field calculations have illustrated the nature of the in-
stability, no systematic survey of solutions has yet been at-
tempted. The purpose of this paper is therefore to clarify
some still puzzling aspects concerning NEMPI. Note also
that the large-scale flux concentrations observed in DNS
of BKKMR have an amplitude of only 15 % of the local
equipartition field. This implies that the flux concentrations
we observe in DNS are often not strong enough to be no-
ticeable without averaging.

In addition to the structures found in BKKMR, other
types of structures have recently been reported in Large-
Eddy Simulations (LES), which might also be an indication
of NEMPI. We have here in mind the radiation magneto-
convection simulations of Kitiashvili et al. (2010), in which
one sees the formation of whirlpool-like magnetic struc-
tures. Relevant to NEMPI is also the work of Tao et al.
(1998), who considered magneto-convection in the optically
thick approximation and find a horizontal segregation into
magnetized and non-magnetized regions. The size of the in-
dividual regions is such that they encompass several turbu-
lent eddies. This phenomenon might therefore well be as-
sociated with an effect that could also be modelled in terms
of mean-field theory. However, before we can make such an
association, we need to find out more about the properties
of NEMPI. In particular, we need to know what is the op-
timal magnetic field strength, what are the requirements or
restrictions on the turbulent velocity, and, finally, how much
density stratification is needed to make NEMPI work.

To connect the aforementioned requirements to DNS,
we need to have a meaningful parameterization of the tur-
bulence effects. The work done so far has been focussing
on measuring a reduction of the turbulent pressure and ef-
fective mean magnetic pressure as a function of the local
mean magnetic field strength. The shape of the resulting de-
pendence of the effective mean magnetic pressure on the
mean magnetic field has been matched to a specific fit for-
mula that can be characterized by two fit parameters that, in
turn, can be linked to the minimum effective mean magnetic

pressure and critical field strength above which the effect is
suppressed. However, there have been indications that this
parameterization is not unique and that different combina-
tions of the two fit parameters can result in similar values of
minimum effective pressure and the critical field strength.
The question therefore arises whether this apparent degen-
eracy affects the properties of NEMPI.

We mentioned already the fact that NEMPI is capable
of exciting three-dimensional structures that show varia-
tion along the direction of the mean magnetic field. This
would give rise to the worry that the two-dimensional re-
sults presented so far may not reflect the properties of the
fastest growing mode and may therefore not be relevant to
describing NEMPI. However, as will be discussed in this
paper, this is not the case, because the degree to which
three-dimensional modes are excited depends on the sign
and magnitude of one of the turbulence parameters, namely
the term characterizing turbulence effects on the magnetic
tension force, and that simulations indicate that this sign is
not favorable for exciting three-dimensional modes (BKKR,
Käpylä et al. 2012). Before we begin addressing the vari-
ous points, we discuss first the mean-field model and basic
setup.

2 Mean-field model

In view of further verifications of NEMPI with DNS, it is
necessary to be able to reduce the essential physics to a
minimum. We will therefore not make any attempt to con-
sider other aspects that would make the model more realistic
with respect to the Sun. Given that NEMPI works even un-
der isothermal conditions (BKKR), we adopt an isothermal
equation of state where the mean pressure p is linear in the
mean density ρ, with p = ρc2

s and cs being the constant
isothermal sound speed. We solve the evolution equations
for mean velocity U , mean density ρ, and mean vector po-
tential A, in the form
∂U

∂t
= −U ·∇U − c2

s∇ ln ρ + g + FM + FK, (1)

∂ρ

∂t
= −U ·∇ρ− ρ∇ ·U , (2)

∂A

∂t
= U ×B − (ηt + η)J , (3)

where FM is given by
ρ FM = − 1

2
∇[(1− qp)B2] + B ·∇

[
(1− qs)B

]
, (4)

and
FK = (νt + ν)

(
∇2U + 1

3
∇∇ ·U + 2S∇ ln ρ

)
(5)

is the total (turbulent plus microscopic) viscous force. Here,
Sij = 1

2
(U i,j + U j,i) −

1
3
δij∇ · U is the traceless rate of

strain tensor of the mean flow. As in earlier work (BKR,
BKKR), we approximate qp and qs by simple profiles that
are only functions of the ratio β ≡ |B|/Beq. However, in
the earlier work this functional form was described by
qσ(β) = qσ0[1− (2/π) arctan(β2/β2

σ)], (6)
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where Beq is the equipartition field strengths and σ stands
for subscripts p and s, respectively. We refer to this as the
arctan fit. In the present paper we use an algebraic fit of the
form

qσ(β) = qσ0[1− (2/π) arctan(β2/β2
σ)], (7)

qσ(β) =
qσ0

1 + β2/β2
σ

. (8)

The functions qp and qs quantify the impact of the mean
magnetic field on the effective pressure and tension forces,
respectively.

As initial condition, we assume a hydrostatic stratifica-
tion with ρ(z) = ρ0 exp(−z/Hρ), where Hρ = c2

s/g is the
scale height in our domain of size Lx×Ly×Lz; the exact
dimensions vary between 4 and 10 density scale heights in
each direction. We add a small perturbation to the velocity
field. We allow for the presence of an imposed field in the y
direction, B0 = (0, B0, 0). The total field is then written as

B = B0 + ∇×A, (9)

so the departure from the imposed field is expressed in terms
of the mean magnetic vector potential A. Furthermore, we
assume

Beq(z) = Beq0 exp(−z/2Hρ), (10)

with a normalization coefficient Beq0. This formula is com-
patible with Beq = ρ1/2urms in BKKMR, where the turbu-
lent rms velocity, urms, was approximately constant.

On the upper and lower boundaries we adopt stress-free
boundary conditions for velocity, i.e. Ux,z = Uy,z = Uz =
0, and a perfect conductor boundary condition for the mag-
netic field, i.e. Ax = Ay = Az,z = 0. Here, commas denote
partial differentiation. No boundary condition for the den-
sity is required. All computations have been carried out with
the PENCIL CODE1.

Our model is characterized by the following set of input
parameters. There are three parameters characterizing the
hydrostatic equilibrium stratification, namely g, cs and ρ0.
The remaining parameters are the normalized imposed field
strength, B0/Beq0, turbulent viscosity and magnetic diffu-
sivity, as well as the parameters qσ0 and βσ .

3 Results

3.1 Two- and three-dimensional solutions

Earlier work has suggested that the eigenmodes of NEMPI
can be three-dimensional (BKR). This could render two-
dimensional calculations inadequate if the first excited
mode were indeed three-dimensional. However, it turns out
that the wavelength of the eigenmode in the direction of
the field increases as qs decreases. In BKR, where three-
dimensional (y-dependent) solutions to NEMPI were first
reported, qs was chosen to be around 10, and the fastest
growing mode was indeed three-dimensional. In Fig. 1 we

1 http://www.pencil-code.googlecode.com

Fig. 2 Dependence of ky on qs0 (upper panel), together with the
corresponding growth rate λ (lower panel).

Table 1 Comparison of normalized growth rates, λH2
ρ/ηt, for

different values of qs, for a three (3D) and two-dimensional (2D)
simulation (Ly → ∞).

λH2
ρ/ηt Ly/Hρ qs = 0 qs = 20

3D 2 11 158
2D ∞ 11 11

show that the effective wavenumber of the variation of the
field in the y direction decreases with decreasing values of
qs. This is shown quantitatively in Fig. 2, where we plot
the dependence of the typical value of the field-aligned
wavenumber, ky , on the value of qs0. Here, ky is evaluated
in a layer near the surface.

We find that the typical value of ky grows with increas-
ing values of qs0. In addition, we find that the growth rate
of the instability, λ, increases with qs0 approximately lin-
early once qs0 exceeds a value of around two. The fact that
ky → 0 as qs0 → 0 is significant, because BKKR and also
Käpylä et al. (2012) found from simulations that qs0 ≈ 0.
In that case, the characteristic length scale along the direc-
tion of the field becomes infinite and the calculation essen-
tially two-dimensional. Conversely, when studying NEMPI
in two dimensions, changing the value of qs0 has no ef-
fect on structure formation and the growth rate; see Table 1.
However, it is now clear that this is an artifact of restricting
the solutions to be two-dimensional.

3.2 Approximate degeneracy in the qp fit formula

We mentioned in the introduction that recent attempts to de-
termine qp0 from simulations faced the difficulty that the fit
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Fig. 1 (online colour at: www.an-journal.org) Visualization of By at the periphery of the computational domain near the end of the
kinematic growth phase. Note the change of the field pattern with increasing values of qs0 = 2, 5, 10, and 20 (from left to right).

Fig. 3 Top: comparison of original fit curves with different qp0

values (10, 20, 50, 100, 300) and a fixed minimum, showing sim-
ilar zero crossing values for a large qp0 range. Bottom: same as
above, but now using an algebraic fit, giving larger spacing be-
tween the curves.

formula (7) possesses an approximate degeneracy in that we
can obtain a similarly looking dependence of the effective
mean magnetic pressure,

Peff(β) = 1
2
[1− qp(β)] β2, (11)

over a wide range of values of qp0 by adjusting the value
of βp correspondingly. This can be seen in Fig. 3, where
we show Peff(β) using either the arctan fit (upper panel) or
the algebraic fit (lower panel) for parameters that result in
the same value of Pmin for a range of values of qp0. Note
that the position where Peff becomes positive, i.e. the crit-
ical value defined by Peff(βcrit) = 0, is rather similar in
all cases. This approximate degeneracy is particularly obvi-
ous for the arctan fit, and less so for the algebraic fit. How-
ever, in both cases the form of Peff near β → 0 changes
significantly. Therefore, the approximate degeneracy would
be lifted if one could determine qp0 from the behavior of qp

near β = 0. However, near β = 0 the DNS have large errors.

It is therefore better to measure the normalized minimum ef-
fective magnetic pressure, Pmin = 1

2
min[(qp − 1)β2], and

its position, βmin. For the algebraic fit we then obtain the fit
parameters

βp = β2
min

/√
−2Pmin, β� = βp +

√
−2Pmin, (12)

where we have introduced the parameter β2
� = qp0β

2
p in a

modified representation

qp(β) =
β2

�

β2
p + β2

, (13)

which is preferable over Eq. (8) in circumstances where
β2

� = qp0β
2
p is approximately constant. This appears to be

the case in recent DNS (BKKR, Kemel et al. 2012), where
β� ≈ 0.2 and 0.3 in the absence and presence of small-scale
dynamo action, respectively.

We have computed mean-field models for different com-
binations of parameters using the algebraic fit. We find that
the resulting growth rate λ depends on the functional form
of Peff(β) near β = βmin, which manifests itself in a de-
pendence on both qp0 and βp; see Fig. 4. The lower panel
of this figure suggests that the dependence of the growth
rate on both parameters can be collapsed onto a single de-
pendence on β�. This underlines the usefulness of Eq. (13)
as a fit formula. As argued above, this dependence is best
constrained by the fit parameters βmin and Pmin.

3.3 Onset of NEMPI

With a given prescription of qp(β), assuming here qs = 0,
we can now compute two-dimensional mean-field models.
Our goal is to obtain a simple formula that can tell us how
large the growth rate of the instability is, and what the crit-
ical condition for the onset of the instability is. Not much
is known about the linear stability properties of NEMPI, so
we have to rely on numerical determinations of the growth
rates for different wavelengths for different parameters to
obtain an approximate representation of the dispersion re-
lation. Earlier work of Kemel et al. (2011) has suggested a
relation of the form

λ = Φ(g/c2
s , qp0, βp, ...)− νtk

2
ν − ηtk

2
η, (14)

where kν and kη are effective wavenumbers quantifying the
effects of turbulent viscosity and turbulent magnetic diffu-
sivity, Φ is a function of the inverse scale height, H−1

ρ =
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Fig. 4 Dependence of the normalized growth rate λ/λ0, with
λ0 = (νt + ηt)/H2

ρ , on qp0 for βp = 0.05 (upper panel), on
βp for qp0 = 40 (middle panel), and on β� = q

1/2

p0 βp (lower
panel) for βp = 0.05 (red), qp0 = 40 (circles), and βp = 0.1,
qp0 = 5 (blue). Solid lines represent approximate fits given by
9(qp0 − 1)0.7, (βp/0.0015)1.3 , and (β�/0.02)3/2 , respectively.

Fig. 5 Dependence of λ on νt + ηt, normalized appropriately in
terms of g and cs. The negative slope gives k2

d with kd ≈ 2.5/Hρ,
where Hρ = c2

s/g.

g/c2
s , and other parameters describing the functional form

of qp.

We now need to determine the various unknowns. We
begin by determining kν and kη by varying either only νt

or only ηt at a time. It turns out that kν = kη ≡ kd suf-
fices. In this way we obtain a linear fit for the growth rate
λ = const− (νt + ηt)k

2
d, giving us k2

d as the slope of this
graph; see Fig. 5. We find kd ≈ 2.5/Hρ, superseding earlier
results by Kemel et al. (2011) for a different Beq(z) profile.

Fig. 6 Dependence of Φ = λ + (νt + ηt)k
2
d on (kfHρ)−3/4

(upper panel), λ on B0/Beq0 (middle panel), as well as zB/Hρ

and zP/Hρ on B0/Beq0 (lower panel). Here, β�0 = 0.0083 is a
fit parameter and λd = (νt + ηt)k

2
d is used for normalization.

Accepting now the fit parameter kd as measured, we can
proceed to determining the dependence of Φ on Hρ (top
panel of Fig. 6). A convenient non-dimensional quantity is
kfHρ, where kf is the wavenumber of the energy-carrying
eddies of the turbulence, which is related to ηt = urms/3kf

with urms = Beq0/ρ
1/2

0 . Note that Φ ∝ (kfHρ)
−3/4. Com-

bining this with the β
3/2
� scaling of Fig. 4, we suggest

λ ≈
[
(β�/β�0)

3/2(kfHρ)
−3/4 − 1

]
(νt + ηt)k

2
d, (15)

with β�0 ≈ 0.008 being yet another fit parameter. Inter-
estingly, λ is independent of the imposed field strength,
B0/Beq0, provided the bulk of the eigenmode (z = zB)
fits well within the domain (middle panel of Fig. 6). This
has here been achieved by adjusting the positions of the
boundaries, ztop and zbot. Indeed, as B0/Beq0 is increased,
zB is found to decrease approximately like zB/Hρ ≈
−2 lnB0/Beq0 + const. It turns out that zB is about 2–3
scale heights below the location zP where Peff(z) attains
its minimum value. Contrarily, when zP > zbot > zB or
when ztop < zB NEMPI will depend on respectively βbot

or βtop, when zP < zbot there is no instability.
Some comments about the horizontal dimensions are

in order. In all cases with qs0 = 0, we find that in three-
dimensional calculations with finite y extent, the value of
Ly does not affect the growth rates. On the other hand, dou-
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bling the x extent yields two pairs of rolls. This has also
been confirmed for DNS; see Kemel et al. (2012).

4 Conclusions

The present work has clarified a number of puzzling as-
pects of NEMPI. Firstly, it is now clear that we can proceed
with two-dimensional mean-field simulations as long as we
know that qs0 = 0 (or negative). However, this may not
always be the case. The fact that three-dimensional struc-
tures can emerge from NEMPI was initially thought to be
an interesting aspect, because it could readily explain the
formation of bipolar regions (BKR). However, given that
simulations now indicate that qs ≈ 0 (or perhaps even neg-
ative), this proposal would thus not be an option, unless
some other as yet unexplored effect begins to play a role.
In principle, all turbulent transport processes are nonlocal
and must be described by a convolution with the mean field
rather than a multiplication (Brandenburg et al. 2008). In
Fourier space, the convolution corresponds to a multiplica-
tion with a wavenumber-dependent turbulent transport co-
efficient. Thus, the idea of explaining bipolar regions would
again become viable if this effect only existed at small and
intermediate length scales. Clarifying this would be a task
for future simulations, because none of the currently avail-
able techniques are yet equipped to address this possibility.

Next, we have seen that the degeneracy in the fit for-
mula used for qp(β) and Peff(β) is significant in that differ-
ent combinations of qp0 and βp result in similar values of
min(Peff) and βcrit, but the growth rates can still be quite
different. This means that it is not sufficient to measure only
min(Peff) and βcrit. Instead, to characterize the functional
form of Peff(β) more accurately, we need some other char-
acteristics to represent the dependence of this function near
β = 0. One such possibility is to use the field strength βmin

for which the minimum of the effective magnetic pressure
is reached.

Knowing the value of βmin has particular relevance
in determining the height where NEMPI occurs. For a
given value of the imposed field strength B0, the condition
B0/Beq(zP) = βmin determines the height zP , where the
effective magnetic pressure attains a minimum, and thus the
height zB , which tends to be 2–3 scale heights below zmin;
see the lower panel of Fig. 6. Therefore, the value of B0

does not directly affect the growth rate of NEMPI.
Finally, we have tried to establish an approximate dis-

persion relation to estimate the growth rate of NEMPI as
a function of turbulent viscosity, turbulent magnetic diffu-
sivity, mean field strength, and the strength of stratification.
This formula may serve as a first orientation and can hope-
fully be improved further with future simulations. This for-
mula can also be useful in connection with analytic esti-
mates concerning the regimes when NEMPI is expected in
DNS or under other more realistic circumstances.
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