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When scale separation in space or time is poor, the mean-field α effect and turbulent diffusivity have to be replaced by
integral kernels by which the dependence of the mean electromotive force on the mean magnetic field becomes nonlocal.
Earlier work in computing these kernels using the test-field method is now generalized to the case in which both spatial
and temporal scale separations are poor. The approximate form of the kernel for isotropic stationary turbulence is such that
it can be treated in a straightforward manner by solving a partial differential equation for the mean electromotive force.
The resulting mean-field equations are solved for oscillatory α–shear dynamos as well as α2 dynamos with α linearly
depending on position, which makes this dynamo oscillatory, too. In both cases, the critical values of the dynamo number
is lowered due to spatio-temporal nonlocality.
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1 Introduction

Mean-field dynamo theory describes the evolution of the av-
eraged magnetic field. This theory is relevant for the under-
standing of the origin of ordered magnetic fields in the Sun
and other late-type stars. Compared to the original induction
equation, the averaged equation contains extra terms which
capture the effects of systematic correlations between veloc-
ity and magnetic field fluctuations. Some of these terms (for
example the α effect) can be responsible for the generation
of mean magnetic fields.
Mean-field dynamo theory provides an important tool

for a number of astrophysical applications. However, it also
suffers from several shortcomings, some of which can be
the result of simplifications that are not well justified and
often not even necessary. In this paper we focus on the
issue of poor scale separation in space and time. Broadly
speaking, if there is poor scale separation, multiplications
with mean-field coefficients must be replaced by convolu-
tions with corresponding integral kernels. Obviously, as far
as temporal scale separation is concerned, this effect can-
not be very important for the Sun, because the cycle time
is much longer than the convective turnover time. However,
with respect to spatial scale separation this is no longer true,
because at the bottom of the solar convection zone, the pres-
sure scale height and with it the typical size of the convec-
tion cells is 50 Mm. Hence it is comparable to the depth of
the convection zone of 200 Mm which is also the scale of
the mean magnetic field. Although the concept of writing
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holm University and the Royal Institute of Technology, Stockholm.

the mean electromotive force as a spatio-temporal convo-
lution with the mean magnetic field was well known (e.g.,
Rädler 1976), there was the problem that, until recently, not
much was known about the form of the integral kernels that
are to be used. In the past there have been several attempts
to compute the integral kernels from turbulence simulations
(e.g., Miesch et al. 2000; Brandenburg & Sokoloff 2002),
but the situation has changed drastically with the advent of
the test-field method (Schrinner et al. 2005, 2007) which
allowed an accurate determination of the integral kernels
in space (Brandenburg et al. 2008) and time (Hubbard &
Brandenburg 2009). As a result, we now know that in sev-
eral cases including isotropic turbulence the kernels of most
of the components of the α and η tensors are Lorentzians
in spectral space and exponentials in real space (Branden-
burg et al. 2008). It turns out that in these simple cases, the
resulting integro-differential equation for the magnetic field
can be reformulated into a set of two coupled differential
equations of parabolic type, one for the magnetic field and
one for the electromotive force.

In hindsight, we can say that even the lack of temporal
scale separation can sometimes be relevant, because nowa-
days we are not only comparing with the Sun and other as-
trophysical bodies, but also with direct numerical simula-
tions (DNS). There we may well find situations in which
the dynamo e-folding times and perhaps also the cycle pe-
riods become comparable to the turnover time of the tur-
bulence. With DNS there is more freedom in constructing
cases that may be hard to find in real astrophysical bodies,
but for which the same mean-field theory should equally
well be applicable. Furthermore,DNS allow us to determine
turbulent transport coefficients to high accuracy, facilitating
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therefore detailed comparison with analytic mean-field the-
ory. A striking example for the relevance of lacking tem-
poral scale separation was presented by Hubbard & Bran-
denburg (2009): The growth rate of a Roberts flow dynamo
turned out to be significantly different from the value de-
rived from mean-field coefficients which were determined
by the test-field method, but under the assumption of per-
fect scale separation in time.

2 Formalism

To set the scene, let us begin with the mean-field dynamo
equation for the mean magnetic fieldB,
∂B

∂t
= ∇×

(
U ×B + E − ημ0J

)
, (1)

where U is the mean velocity, E is the mean electromotive
force, and J = ∇×B/μ0 is the mean current density, with
μ0 being the vacuum permeability, and η the microscopic
(molecular) magnetic diffusivity. Under certain conditions,
E can be expanded in terms of the mean magnetic field and
its derivatives as
E i = αijBj + ηijkBj,k + . . . , (2)
where the comma denotes partial differentiation and the
dots refer to higher spatial derivatives of B, temporal
derivatives ofB, as well as terms independent ofB.
In many cases of practical interest, only the lowest (in-

cluding the zeroth) order spatial derivatives are retained, be-
cause they are sufficient for capturing qualitatively new ef-
fects such as large-scale dynamo action. This has led to a
large number of mean-field dynamo models that were ap-
plied to the Sun, other stars, accretion discs, and even galax-
ies. In such models, the length scales of the resulting mean
field become often quite small, especially in the nonlin-
ear regime; see, e.g., Chatterjee et al. (2011a, Figs. 9–11
therein). In this context, ‘small’ means that the scale of the
mean field becomes comparable to and even smaller than
the scale of the energy-carrying eddies. In stratified turbu-
lence, as present in the Sun, the scale of these eddies is of-
ten assumed to be proportional to the local pressure scale
height, which is about 50 Mm at the bottom of the solar con-
vection zone. However, in mean-field models the magnetic
fields show frequently variations on scales much smaller
than this. Chatterjee et al. (2011a), discussed the small-scale
fields at the bottom of the convection zone in their simula-
tions of a mean-field dynamo model as an artifact of the ne-
glect of nonlocality in space, but no solution to this problem
was feasible at the time.
Looking at Eq. (2), it is clear that higher spatial deriva-

tives need to be retained when the mean field is no longer
slowly varying in space. Unfortunately, such a series expan-
sion becomes easily quite cumbersome, and it is then better
to replace the r.h.s. of Eq. (2) by a convolution of the mean
magnetic field B with some integral kernel. As alluded to
above, a representation of E in terms of a convolution of
B with a kernel determined by the statistical properties of

the turbulence has long been known to be the more basic
one (e.g., Rädler 1976). By allowing the convolution to be
also over time, we can automatically include all temporal
derivatives as well, i.e., we can instead of Eq. (2) write

E i(x, t) =

∫ t

−∞

∫
Gij(x, x′, t, t′)Bj(x

′, t′) d3x′ dt′, (3)

where we have again ignored terms that are independent of
B.
For simplicity, we shall restrict ourselves now to statis-

tically homogeneous and steady turbulence, in which case
Gij is translation invariant in space and time and depends
thus only on the arguments x− x′ and t− t′. In cases with
boundaries, this is not possible, but the formalism presented
below can easily be adapted to such cases as well; see Chat-
terjee et al. (2011b).
Continuing now with the translation invariant case, the

convolution becomes a multiplication in Fourier space, i.e.,

Êi(k, ω) = Ĝij(k, ω)B̂j(k, ω), (4)

where hats indicate Fourier transformation in space and
time, e.g.,

Êi(k, ω) =

∫
E i(x, t) e−i(k·x−ωt) d3xdt. (5)

In view of the traditional distinction of contributions to E

from the α effect and turbulent diffusivity, it is convenient
to write the Fourier transform of the kernel in the form

Ĝij(k, ω) =
α

(0)
ij + η

(0)
ijk ikk

D̂(k, ω)
, (6)

where α
(0)
ij and η

(0)
ijk are assumed to be tensors that are inde-

pendent of k and ω. The goal of this paper is to verify the
approximate validity of Eq. (6) and to consider the conse-
quences of such a structure for mean-field dynamo models.
In the following we consider triply periodic domains

and define mean fields as planar averages over the x and
y directions, so that B is only a function of z and t. In that
case, k = (0, 0, k) has only one component. Recent work
of Hubbard & Brandenburg (2009) has already revealed that
for vanishing k, D̂(k, ω) is proportional to 1− iωτ , where τ
is a fit parameter that is approximately equal to the turnover
time, i.e., τurmskf ≈ 1. Here, urms is the rms velocity of the
turbulence and kf is the wavenumber of its energy-carrying
eddies. On the other hand, for ω = 0, D̂(k, ω) is approx-
imately proportional to 1 + (ak/kf)

2, where a is a dimen-
sionless parameter, for which values between 0.2 and 1 have
been found over a range of different simulations (Branden-
burg et al. 2008, 2009; Madarassy & Brandenburg 2010).
Consequently, we propose in the present paper that D̂(k, ω)
can be approximated by

D̂(k, ω) = 1− iωτ + �2k2, (7)

with another parameter � having the dimension of a length.
Such a form, even if it is still an approximation that neglects
higher powers of k and ω, has already the advantage of al-
leviating problems of unrealistic variations of the magnetic
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field on short length and time scales. Moreover, it leads to
an easily treatable partial differential equation for E in real
space, namely(

1 + τ
∂

∂t
− �2 ∂2

∂z2

)
E i = α

(0)
ij Bj + η

(0)
ijkBj,k . (8)

Note that in the limit τ → 0 and � → 0, the usual dynamo
equations are recovered. Thus, nonlocality is captured sim-
ply by specifying τ and �, while the tensors α

(0)
ij and η

(0)
ijk

can be regarded as the usual ones of α effect and turbulent
diffusivity for the limit k → 0, ω → 0. Therefore, the su-
perscripts (0) will from now on be dropped. The purpose
of this paper is to establish not only the validity of this ap-
proach, but also to assess the properties of mean-field dy-
namos when E is obtained as the solution of the evolution
equation (8).

3 The kernel function D̂(k, ω) from DNS

3.1 Turbulence in a periodic domain

In the following we present results for three-dimensional
isothermal turbulence that is being forced in a narrow range
of wavenumbers around a representative wavenumber kf .
We adopt a cubic domain of size L3, measure length in units
of the inverse minimal box wavenumber k1 = 2π/L and
choose kf/k1 ≈ 2.2. We vary the magnetic Reynolds num-
ber,

Rm = urms/ηkf , (9)

where urms is the rms velocity of the turbulence, keeping
the rms Mach number, urms/cs at around 0.1. In agreement
with the considerations above, time is expressed in units of
the turnover time, defined here as τ0 = (urmskf)

−1, and
the turbulent magnetic diffusivity is expressed in units of
ηt0 = urms/3kf (cf. Sur et al. 2008).

3.2 Test-fields in space and time

To establish the form of Eq. (7) we use the test-field method,
i.e., we solve, for a given turbulent velocity field, the equa-
tions governing the departure of the magnetic field from a
given mean field. In other words, we determine the mag-
netic fluctuations b caused by the interaction of the tur-
bulent velocity with the mean field. This mean field is re-
ferred to as the test field and is marked by the superscript T.
For each test field B

T, we find a corresponding fluctuation
bT = ∇× aT by solving the inhomogeneous equation for
the corresponding vector potential aT,

∂aT

∂t
= U × bT + u×B

T
+

(
u× bT

)′
+ η∇2aT, (10)

where
(
u× bT

)
′

= u× bT − u× bT is the fluctuating
part of u× bT, and compute the corresponding mean elec-
tromotive force, ET

= u× bT. We use test fields that are
harmonic functions in space and time with wavenumber k

Fig. 1 (online colour at: www.an-journal.org) D̂(k, ω) for
ωτ0 = 1.04 (Run A), 0.52 (Run B), and 0.26 (Run C). Filled and
open circles denote the real and imaginary parts of D̂(k, ω) as ob-
tained from the test-field method; the parabolas give a fit propor-
tional to 1+�2k2. Dashed lines: average of the three data points of
the imaginary part of D̂(k, ω) for each ωτ0. For the fit parameters
� and τ see Table 1.

and frequency ω and point either in the x or in the y direc-
tion, i.e.,

B
ickω

= ei cos kz cosωt, B
iskω

= ei sin kz cosωt, (11)

i = 1, 2, where e1 and e2 are unit vectors pointing in the x
and y directions, respectively. The third component is here
without interest, because∇ ·B = ∂Bz/∂z = 0, so Bz =
const, and is chosen to be zero initially.
Using the standard test-field method (Brandenburg et al.

2008; Hubbard & Brandenburg 2009), we obtain directly
the tensors α̂ij(k, ω) and η̂ijk(k, ω) from which we can de-
termine D̂ for different values of k and ω according to

D̂(k, ω) = α̂ij(0, 0)/α̂ij(k, ω), (12)

or

D̂(k, ω) = η̂ij(0, 0)/η̂ij(k, ω), (13)

employing the known values α̂ij(0, 0) or η̂ij(0, 0). Further-
more, since we consider isotropic turbulence, both tensors
are isotropic, i.e., α̂ij = α̂δij and η̂ijk = η̂tεijk , but α̂ = 0
for non-helical turbulence (Runs A–D of Table 1). For this
case D̂(k, ω) is shown in Fig. 1, where we plot its real and

Table 1 Summary of fit parameters. Runs A–D without, Run E
with helicity, the latter using Eq. (13) as well as Eq. (12).

Run Rm ωτ0 τ/τ0 �kf Equation

A 8 1.04 1.85 0.99 (13)
B 8 0.52 1.46 0.88 (13)
C 8 0.26 1.24 0.83 (13)
D 53 0.38 1.21 0.77 (13)
E 57 0.35 0.67 0.60 (13)
E 57 0.35 0.59 0.80 (12)
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imaginary parts for the scale separation ratio kf/k1 = 2.2,
Rm = 8, and three values of ωτ0. The real part of D̂(k, ω)
is a fit to a profile of the form 1 + �2k2, while the imag-
inary part of D̂(k, ω) is approximately independent of k.
This is consistent with �{D̂(k, ω)} = −ωτ , where τ is
obtained by taking the average value of ωτ for all three k
values. We find that τ/τ0 and �kf are of the order of unity.
In agreement with the ansatz (7) the parameter �kf varies
only weakly with ω, but τ/τ0 shows a stronger variance,
indicating the presence of higher powers of ω in D̂. Both
parameters vary somewhat withRm; see Table 1 for details.
The additional Run E differs from Run D only in includ-
ing helicity in the forcing and hence in the flow. For both
τ and � the resulting values obtained by using Eq. (12) and
Eq. (13) are similar. Comparing the results for Runs D and
E suggests that in Eq. (7) the values of τ are reduced by a
factor of 2 when there is helicity in the turbulence, while �
remains approximately unchanged.
Thus, in conclusion, we have, for a turbulent flow such

as that considered here, verified the integral kernel in Eq. (6)
with D̂(k, ω) roughly given by Eq. (7). We concede, how-
ever, that the modeling of the ω dependence of Ĝij is worth
to be improved taking into account higher orders in ω. In
the remainder of this paper we examine properties of the
resulting mean-field equations.

4 Application to mean-field dynamo models

4.1 Nonlocality in dynamo waves

Some limited insight into the effects of nonlocality for dy-
namo waves has already been provided in the paper by
Brandenburg et al. (2008), who considered nonlocality in
space, but not in time. Based on their test-field results, they
found a kernel compatible with a Lorentzian in k space.
Generally speaking, such a kernel makes the resulting mean
electromotive force smoother by acting preferentially on the
largest scale in the domain. In the present paper we repeat a
similar experiment, but with the difference that we include
here also nonlocality in time.
Nonlocality in time can lead to somewhat unexpected

behavior of oscillatory dynamos of α–shear type in that it
enhances their growth rate and, more importantly, it lowers
the critical value for dynamo action. This is different from
the α2 dynamo case, where the presence of an extra time
derivative of E always leads to a lower growth rate (Bran-
denburg et al. 2008). This can be seen by comparing the
two dispersion relations for α2 and α–shear dynamos with
constant α and shear. By making an ansatz of the form
B = B̂ exp [i(kz − ωt) + λt] , (14)
with real coefficients k (wavenumber), ω (frequency), and
λ (growth rate), we can easily obtain the dispersion rela-
tion for the system of Eqs. (1) and (8) in implicit form. In
the case of an α2 dynamo with η = 0 we obtain (see Ap-
pendix A.1)
λ = ξ−1

(
±|αk| − ηtk

2
)
, ω = 0, (15)

Fig. 2 Critical dynamo number for an α–shear dynamo as a
function of τηtk

2 for different values of �k. Microscopic magnetic
diffusivity, η, is here neglected.

where we have introduced the correction factor

ξ = 1 + τλ + �2k2. (16)

Obviously, the threshold for dynamo action is not influenced
by � or τ .
In the case of a pure α–shear dynamo, with the αBx

term neglected in favor of SBx and again η = 0, it is con-
venient to seek marginally excited oscillatory solutions with
λ = 0, which gives

ω2 = 1
2τ−2ξ2

[
−1 +

√
1 + (2τηtk2/ξ2)2

]
, (17)

with ξ = 1 + �2k2, and the critical dynamo number

Dcrit ≡
(
αS/η2

t k
3
)
crit

= 2ω(1− ω2τ/ηtk
2)/ηtk

2, (18)

see Appendix A.2. In Fig. 2 we show Dcrit as a function
of τηtk

2 for different parameters �k. For small values of τ
and �k, the usual value of Dcrit = 2 is recovered (see, e.g.,
Brandenburg & Subramanian 2005). In contrast to the α2

dynamo, the threshold does here depend on τ and � and is
always lowered.

4.2 Nonlocality and boundaries

We have mentioned in the beginning that the effect of spa-
tial nonlocality should consist in a spatial smoothing of
the mean electromotive force. However, the solutions pre-
sented so far are all entirely harmonic. To see the anticipated
smoothing effect, we can either consider nonlinear solutions
(as done in Brandenburg et al. 2008), or we can consider
solutions with boundaries, which break the monochromatic
nature of the solutions.
In the following we solve Eqs. (1) and (8) numeri-

cally in terms of the mean magnetic vector potential A, so
B = ∇ × A. We use here the PENCIL CODE1, which is
a high-order public domain code (sixth order in space and
third order in time) for solving partial differential equations,

1 http://pencil-code.googlecode.com/
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including a range of different mean-field equations. The fi-
nal set of equations, here for vanishing mean flow and only
z dependent mean fields is

∂A

∂t
= E + η

∂2A

∂z2
, (19)

∂E

∂t
= αB − ηtJ −

E

τ
+ ηE

∂2E

∂z2
, (20)

of which only the x and y components are relevant. We have
introduced here the additional parameter ηE = �2/τ having
the dimension of diffusivity.
For a simple dynamo with boundaries we choose the α2

dynamo with a linear α profile,

α(z) = α0z/Lz, (21)

with 0 ≤ z ≤ Lz, where Lz = π/2k1 is the size of the do-
main, and k1 is the lowest wavenumber for a quarter-cosine
wave obeying the boundary conditions

Ax,z = Ay,z = Ex,z = Ey,z = 0 on z = 0, (22)

and

Ax = Ay = Ex = Ey = 0 on z = Lz. (23)

These conditions correspond to a perfect conductor condi-
tion on z = Lz and select solutionsB antisymmetric about
z = 0 (the ’equator’). For the sake of simplicity we retain
here the assumption of isotropy, although it is strictly not
tenable under inhomogeneous conditions.
We recall that α2 dynamos with the linearly varying α

profile (21) are always oscillatory showing dynamo waves.
This was first noticed in direct numerical simulations (Mi-
tra et al. 2010), but was then also confirmed for mean-field
models (Brandenburg et al. 2009) and is consistent with the
parametric survey of solutions given by Rüdiger & Holler-
bach (2004).
We have computed marginally excited dynamo solu-

tions for different values of τηtk
2
1 and ηE/ηt. For compari-

son, with the value kf/k1 = 2.2 considered in Sect. 3.1, we
have, using ηt = ηt0 and assuming τ/τ0 = �kf = 1,

τηtk
2
1 = (3k2

f /k2
1)
−1 ≈ 0.06,

ηE

ηt
=

3�2k2
f

τ/τ0
≈ 3. (24)

The critical values of the dynamo numberCα = α/ηtk1 and
the resulting normalized cycle frequenciesω/ηtk

2
1 are given

in Table 2. For five particular cases, denoted by the labels
(a)–(e), the corresponding butterfly diagrams are shown in
Fig. 3.
Similar to the α–shear dynamos discussed in Sect. 4.1

(see Fig. 2), we find that the critical dynamo number Ccrit
α ,

is lowered in all cases with τ �= 0; see Table 2. Further-
more, and perhaps somewhat surprisingly, we find that, as
ηE/ηt is increased, the dynamo wave weakens significantly
before reaching the equator; see panels (b)–(e). On the other
hand, increasing τηtk

2
1 from 10−3 to 1 does not affect the

weakening of the dynamo wave near the equator, but rather
enhances its speed. Whether similar results also apply to
α–shear dynamos with boundaries is however not obvious.

Table 2 Dependence of Ccrit
α and normalized cycle frequency

ω/ηtk
2
1 on τηtk

2
1 and ηE/ηt for marginally excited solutions of

α2 dynamos with linear α profile (21).

Run τηtk
2
1 ηE/ηt Ccrit

α ω/ηtk
2
1

(a) 0.001 0.001 5.16 1.64
0.1 0.001 4.65 0.74

(b) 1 0.001 2.76 0.88
1 0.1 2.77 0.87

(c) 1 0.3 2.84 0.86
1 0.7 3.68 0.78

(d) 1 1 5.30 0.64
(e) 0.06 3 8.12 0.58

Also, while the anticipated smoothing effect might explain
the weakening of the dynamo wave near the equator, it does
not seem to operate in the same way in the proximity of the
boundary at z = Lz . Instead, we see that the dynamo wave
is there nowmore a standing than a travelling one compared
with the case ηE → 0.

5 Conclusions

The present work has established that the Fourier transform
of the integral kernel for the representation of the mean elec-
tromotive force in the isotropic case is well approximated
by

Ĝ(k, ω) ∝
1

1− iωτ + �2k2
, (25)

which, in turn, can be captured by solving a partial differ-
ential equation for the mean electromotive force with a first
order time derivative and a Laplacian that plays the role of a
diffusion term. Our work has illustrated the great ease with
which nonlocality in space and time can be implemented in
a dynamo model. Indeed, the chosen, simplest possible ker-
nel leads to a rather plausible representation of the partial
differential equation governing the evolution of the elec-
tromotive force. Furthermore, the application to spherical
and other coordinate systems is quite straightforward and
already fully functional in the PENCIL CODE.
It turns out that, while nonlocality normally hampers

dynamo action, it can actually make the dynamo more ea-
sily excitable provided it is oscillatory. This has here been
shown here for standard dynamo waves in the presence of
shear, but also in the case of an α2 dynamo where the oscil-
latory behavior is a consequence of the spatial inhomogene-
ity of α.
Another issue that has not been addressed here is the

question of nonlinearity. Our present approach is easily ex-
tendable to the case where α and ηt are nonlinear functions
of B, as in the case of usual algebraic quenching. Even
the case of dynamic α quenching (Kleeorin & Ruzmaikin
1982) could easily be included. Here, yet another differen-
tial equation is being solved, namely one for a magnetic
contribution to α. One might imagine that the effects of
this additional equation are already captured by the evolu-
tion equation for E . However, it should be remembered that
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Fig. 3 (online colour at: www.an-journal.org) Butterfly or zt
diagram of By for mean-field models with different combina-
tions of τηtk

2
1 and ηE/ηt. (a): τηtk

2
1 = ηE/ηt = 10−3; (b) – (d):

τηtk
2
1 = 1, ηE/ηt = 10−3, 0.3, 1; (e): τηtk

2
1 = 0.06, ηE/ηt = 3;

Tcyc: cycle period.

the dynamic α quenching also contains effects of magnetic
helicity fluxes and is capable of reproducing the resistively
slow saturation in the absence of such fluxes.
We regard the approach of solving a partial differential

equation for E as a natural one, which supersedes the usual
dynamo equations where τ → 0 and � → 0 is assumed.
In many typical situations, neither of the two assumptions
are well satisfied. We also recall that the approach of in-

cluding the time derivative of E addresses the problem of
causality, i.e., the propagation speed of disturbances ofB is
automatically limited to the value of the rms velocity of the
turbulence, as demonstrated in Brandenburg et al. (2004).
Furthermore, the presence of the diffusion operator in the
evolution equation for E is natural and advantageous be-
cause it ensures numerical stability and, more importantly,
it prevents, in a physical way, the emergence of artificially
sharp structures on scales comparable to or below that of the
turbulence. Is should be noted, however, that, while the time
derivative of E emerges as a natural consequence from the
τ approach (Blackman & Field 2002, 2003), there does not
seem to be a likewise natural motivation for the presence of
the diffusion term in the equation for E .
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Rädler, K.-H.: 1976, in: V. Bumba, J. Kleczek (eds.), Basic Mech-

anisms of Solar Activity, p. 323
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A Dispersion relations for nonlocal dynamos

A.1 α2 dynamos

We begin by writing the governing Eqs. (1)–(8) in component form
for homogeneous turbulence, i.e. constant mean-field coefficients,
hence
∂Bx

∂t
= −

∂Ey

∂z
+ η

∂2Bx

∂z2
, (A1)

∂By

∂t
= +

∂Ex

∂z
+ η

∂2By

∂z2
, (A2)

Ex + τ
∂Ex

∂t
− �2

∂2
Ex

∂z2
= αBx + ηt

∂By

∂z
, (A3)

Ey + τ
∂Ey

∂t
− �2

∂2
Ey

∂z2
= αBy − ηt

∂Bx

∂z
. (A4)

The dispersion relation is easily obtained by employing the ansatz
(14) with ω = 0 in these equations and writing them in matrix
form,Mq = 0, where q = (Bx, By, Ex, Ey)T is the state vector
and

M =

⎛
⎜⎝

λ + ηk2 0 0 +ik
0 λ + ηk2

−ik 0
−α −ikηt 1 + λτ + �2k2 0

+ikηt −α 0 1 + λτ + �2k2

⎞
⎟⎠

is the matrixM for the α2 dynamo. Nontrivial solutions have van-
ishing determinant, which yields[(

λ + ηk2
) (

1 + λτ + �2k2
)

+ ηtk
2
]2

= α2k2. (A5)

Taking the square root and adopting η = 0 leads to the implicit
solution (15).

A.2 α-shear dynamos

In the case of a pure α–shear dynamo with a mean flow of the form
U = (0, Sx, 0), and with the neglect of the term αBx, we have

∂Bx

∂t
= −

∂Ey

∂z
+ η

∂2Bx

∂z2
, (A6)

∂By

∂t
= SBx +

∂Ex

∂z
+ η

∂2By

∂z2
, (A7)

Ex + τ
∂Ex

∂t
− �2

∂2
Ex

∂z2
= +ηt

∂By

∂z
, (A8)

Ey + τ
∂Ey

∂t
− �2

∂2
Ey

∂z2
= αBy − ηt

∂Bx

∂z
. (A9)

In the marginally excited oscillatory case, the matrixM is for η =
0:⎛
⎜⎝
−iω 0 0 ik
−S −iω −ik 0
0 −ikηt ξ − iωτ 0

ikηt −α 0 ξ − iωτ

⎞
⎟⎠

⎛
⎜⎝

Bx

By

Ex

Ey

⎞
⎟⎠ = 0, (A10)

ξ = 1 + �2k2. The dispersion relation becomes[
−iω(ξ − iωτ ) + ηtk

2
]2

+ ikαS(ξ − iωτ ) = 0. (A11)

Solving separately for real and imaginary parts, we obtain

−ω2ξ2 + (−ω2τ + ηtk
2)2 + η2

t k4 + kαSωτ = 0 (A12)

and

2ω(ω2τ − ηtk
2) + kαS = 0. (A13)

Eliminating kαS yields then Eq. (17) while Eq. (18) follows di-
rectly from (A13).
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