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Verification of Reynolds stress parameterizations from simulations
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We determine the timescales associated with turbulent decay and isotropization in closure models using anisotropically
forced and freely decaying turbulence simulations and study the applicability of these models. We compare the results
from anisotropically forced three-dimensional numerical simulations with the predictions of the closure models and obtain
the turbulent timescales mentioned above as functions of the Reynolds number. In a second set of simulations, turning the
forcing off enables us to study the validity of the closures in freely decaying turbulence. Both types of experiments suggest
that the timescale of turbulent decay converges to a constant value at higher Reynolds numbers. Furthermore, the relative
importance of isotropization is found to be about 2.5 times larger at higher Reynolds numbers than in the more viscous
regime.

c© 2012 WILEY-VCH Verlag GmbH&Co.KGaA, Weinheim

1 Introduction

The dynamics of many astrophysical large-scale flows such
as solar and stellar differential rotation are strongly con-
trolled by velocity correlations at smaller scales. These cor-
relations are referred to as components of the Reynolds
stress tensor. It is well known that in rotating stratified con-
vection the Reynolds stress tensor is anisotropic (Kippen-
hahn 1963), which then leads to the generation of differen-
tial rotation (Rüdiger et al. 1980, 1989). The Reynolds stress
is defined as the average of products of components of ve-
locity fluctuations, i.e., Rij = uiuj , where u = U − U

is the fluctuation of the velocity U about its mean U . Here
and in the following, overbars denote mean quantities, and
for the purpose of this paper we shall restrict ourselves to
volume averages.
Of particular interest are the equations governing the

evolution of Rij . In the astrophysical context, such model
equations have been derived by Ogilvie (2003) and Garaud
& Ogilvie (2005); see also Käpylä & Brandenburg (2008),
Snellman et al. (2009), and Garaud et al. (2010). Such equa-
tions contain all the linear effects such as shear and rota-
tion exactly. They usually also contain a driving term, Fij ,
through which energy is injected into the system, as well
as viscous and turbulent damping terms. Finally, there often
is a term that describes, in a somewhat ad-hoc fashion, the
return to isotropy (Rotta 1951); see also Zilitinkevich et al.
(2011). The latter is important if the off-diagonal compo-
nents happen to be different from zero due to some statis-
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tical perturbation. At least at the level of a thought experi-
ment, one might ask how the system returns to isotropy after
the effects that produced the anisotropy, e.g., rotation and
stratification via the Λ-effect, have been turned off. Math-
ematically, the turbulent damping corresponds to terms in-
volving triple correlations of the velocity while the term de-
scribing the return to isotropy comes from the interaction
between components of velocity and those of gradients of
the pressure with the velocity (Canuto 2009). Thus, in the
absence of large-scale shear flows, rotation, gravity, or mag-
netic fields, we have
Ṙij = Fij − τ−1Rij − τ−1

iso

(
Rij − 1

3δijR
)
, (1)

where the dot denotes a time derivative,R = Rii is the trace
of Rij , while τ and τiso are the relevant timescales describ-
ing turbulent decay and the return to isotropy.
Two very similar ways of characterizing these

timescales have been proposed, both of which assume pro-
portionality to the eddy turnover time, τ0 = (urmskf)

−1,
where urms is the rms velocity and kf is the wavenumber
of the energy-carrying eddies. In the standard minimal τ -
approximation (hereafter MTA) (Blackman & Field 2002,
2003) the return to isotropy is not accounted for, and τ is
usually assumed constant in time. The value of τ can be ex-
pressed in terms of τ0 by defining a Strouhal number, St,
via
τ = St τ0. (2)
If the isotropization term is included in MTA, τiso is, like
τ , also considered constant. In an approach used by Ogilvie
(2003), the rms velocity is written as urms = R1/2, and di-
mensionless fit parameters are introduced to quantify τ and
τiso:
τ−1 = c1kfR

1/2, τ−1
iso = c2kfR

1/2. (3)
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Besides the non-vanishing isotropization term, the main dif-
ference between these models is the nature of the eddy
turnover time: in MTA it is usually assumed constant, while
in the Ogilvie approach it depends on the local and instan-
taneous value of R. The latter model can be thought of as
an extension of the former to the case where urms varies.
There seems to be some diversity regarding the recom-

mended choice of the coefficients c1 and c2. For the ratio
c1/c2, Garaud & Ogilvie (2005) found the value 0.67, while
in the additional presence of magnetic fields, Ogilvie (2003)
found 0.87, and Liljeström et al. (2009) found 0.86. The
work mentioned above has attempted to compute these co-
efficients as fit parameters in models where additional ef-
fects such as shear and rotation are present. Such effects
may however distort the results for c1 and c2, which char-
acterize effects that are present even without the aforemen-
tioned processes.
A goal of this paper is to determine the two non-

dimensional coefficients c1 and c2 using direct numerical
simulations (DNS). We impose an anisotropic forcing term
such that certain off-diagonal terms of its correlation matrix
are non-vanishing. We use two independent methods to es-
timate the parameters c1 and c2: firstly, by comparing the
steady state values forR andRij to the strength of the forc-
ing, and secondly by observing the behavior of the system
once the forcing is turned off, that is freely decaying turbu-
lence. The predictions of the MTA and the Ogilvie approach
regarding the behavior of the system in the latter case differ
from one other, thus allowing us to assess the assumptions
behind the two closures.

2 The model

We consider here a fully compressible gas with an isother-
mal equation of state for which the pressure p is propor-
tional to the density ρ with p = ρc2

s , and where cs = const
is the isothermal sound speed. The computational domain
is assumed Cartesian, x = (x, y, z), with triply periodic
boundary conditions. In some of our decay calculations,
we start from a run where the Coriolis force is included,
which is characterized by the angular velocity vector Ω =
Ω0(− sin θ, 0, cos θ) with θ = 45◦. The equation of motion
and the continuity equation can then be written as
DU

Dt
= −c2

s∇ ln ρ− 2Ω×U + f +
1

ρ
∇ · (2νρS), (4)

D ln ρ

Dt
= −∇ ·U , (5)

where D/Dt = ∂/∂t + U · ∇ is the advective deriva-
tive, Sij = 1

2 (Ui,j + Uj,i) − 1
3δij∇ · U is the traceless

rate of strain matrix, commas denote partial differentiation,
t is the time, and ν is the kinematic viscosity. The forcing
term is an adaptation of a previously used (Brandenburg
2001) isotropic nonhelical forcing expression, f iso, which
is monochromatic with wavenumber k, whose modulus lies
in a narrow band around an average wavenumber kf , and

the forcing is δ-correlated in time such that kf(t) changes
abruptly from one time step to the next. The isotropic forc-
ing function is written as f = Nfk eik(t)·x, where N is a
normalization factor, and fk = ê × k (with random unit
vector ê) to ensure that the forcing is solenoidal. Both ê

and k are random and non-parallel to each other. Next, we
introduce a finite xy correlation by writing the forcing term
as

f = f iso + σ(x̂f iso
y + ŷf iso

x ), (6)

where x̂ and ŷ are unit vectors in the x and y directions, re-
spectively, and σ is a non-dimensional parameter measuring
the degree of anisotropy. Note that

fxfy = (1 + σ2)f iso
x f iso

y + σ[(f iso
x )2 + (f iso

y )2] , (7)

and since f iso
x f iso

y vanishes on the average, fxfy has a pos-
itive definite mean. This then implies that in the Reynolds
equations (1) the forcing tensor

Fij = ρ(uifj + ujfi) (8)

is also anisotropic with Fxy �= 0 on the average.
To compute the effective timescales we consider steady

state conditions in which case Eq. (1) implies

τ−1 = 〈F 〉/〈R〉, (9)

with F = Fii being the trace of Fij , and

τ−1 + τ−1
iso = 〈Fxy〉/〈Rxy〉, (10)

where angle brackets now denote time averages.
Relevant control parameters are the Reynolds and Cori-

olis numbers defined as

Re =
urms

νkf
, Co =

2Ω

urmskf
. (11)

Here, Re is varied between 3 and 200. In some of the de-
cay calculations that are initialized with rotation, we use
Co ≈ 1. In all other cases we have Co = 0. For all cal-
culations we use the PENCIL CODE1, which is a high-order
(sixth order in space and third order in time) public domain
code for solving partial differential equations, including the
hydrodynamic equations given above.

3 Results

We have produced three-dimensional DNS models with
anisotropic forcing varying both the Reynolds number and
also the effective wavenumber of the forcing, kf . Firstly,
we determine τ−1 and τ−1

iso by comparing the steady state
values for R and Rij to the strength of the forcing in
Sect. 3.1. In these experiments the numerical resolution
is 2563 meshpoints. Secondly, we determine the inverse
relaxation timescales from freely decaying turbulence in
Sect. 3.2. Here, the numerical resolution is 1283 mesh-
points.

1 http://pencil-code.googlecode.com/
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Fig. 1 Dependence of the inverse relaxation timescales (normal-
ized by the dynamical value τ−1

0
) on Re. Solid and dashed lines

are for τ−1 and τ−1

iso
, respectively.

3.1 Anisotropically forced turbulence

The inverse relaxation timescales τ−1 and τ−1
iso measured

from anisotropically forced turbulence in a steady state with
varying Reynolds number and effective forcing wavenum-
ber are shown in Fig. 1. Error bars are computed by dividing
the time series into three equally long parts and computing
averages over them. The largest deviation of these from the
average over the full time series is taken to represent the
error. The results show a clear decline of τ−1 and τ−1

iso to-
ward larger values Re. At the same time, τ−1

iso is about 2.5
times larger than τ−1, implying that c1/c2 ≈ 0.4, which is
somewhat smaller than the values quoted in the literature;
see Sect. 1.

3.2 Decaying turbulence

In this section we obtain another estimate for the timescales
τ and τiso by studying freely decaying turbulence. We also
compare the validity of the assumptions behind MTA and
the Ogilvie approach, since the closures predict decay be-
haviors that are different in the two cases. By letting the
turbulence first achieve a saturated state and then turning
off the forcing in our DNS we get a time series that can be
compared with the predictions of the closure models. From
Eq. (1) we can easily derive the time evolution equation for
the trace of the Reynolds tensor by summing over the diag-
onal components:
Ṙ = F − τ−1R, (12)
where the summation causes the contribution from the
isotropization term to vanish. Let the forcing be set to zero
at t = t0 and let R(t0) = R(0). If τ−1 is assumed con-
stant in MTA, this approach predicts exponential decay. By
integrating Eq. (12) in this case we have
R = R(0)e−(t−t0)/τ . (13)
The Ogilvie approach with a time-dependent rms velocity,
however, predicts an inverse square-type decay:

R =

[
1√
R(0)

+
1

2
c1kf (t− t0)

]
−2

. (14)

Table 1 The model parameters c1, c2, τ−1, and τ−1

iso
obtained

from the DNS of freely decaying turbulence. The superscripts ‘b’
and ‘l’ refer to the beginning and the late parts of the time series.

Run kf/k1 Re τ−1/τ−1

0
cb

1 cl

1 τ−1

iso
/τ−1

0
cb

2 cl

2

L1 3 53 0.11 0.12 0.16 0.08 0.14 −

L2 3 55 0.11 0.12 0.16 − − −

L3 3 61 0.12 0.14 0.16 − − −

L4 3 79 0.12 0.14 0.17 0.04 0.07 −

L5 1.5 147 0.08 0.09 0.15 − − −

L6 10 14 0.19 0.23 0.27 0.06 0.08 −

L7 10 32 0.13 0.15 0.18 − − −

L8 3 113 0.11 0.13 0.16 0.08 0.08 −

L9 3 191 0.10 0.11 0.15 0.06 0.10 −

F1 3 24 0.19 0.21 0.25 0.13 0.15 −

F2 3 53 0.13 0.13 0.19 0.19 0.23 0.05
F3 3 92 0.13 0.14 0.18 0.27 0.27 0.07
F4 1.5 55 0.13 0.15 0.25 0.32 0.32 −

F5 1.5 115 0.12 0.13 0.22 0.31 0.31 0.12
F6 1.5 192 0.12 0.13 0.20 0.10 0.11 0.04
F7 10 5 0.44 0.48 0.65 0.09 0.23 −

F8 10 13 0.23 0.27 0.32 0.13 0.15 −

F9 10 24 0.16 0.18 0.24 0.17 0.17 −

By plotting Eqs. (13) and (14) with the time series from
DNS the behavior of the closures can be tested and the
model parameters c1 and τ estimated. We have performed
two sets of runs, the results of which are summarized in
Table 1. In Set F, we use the forcing scheme described in
Sect. 2, while the runs in Set L were made using anisotropic,
nonhelical forcing in combination with rotation (Ω �= 0) to
produce off-diagonal Reynolds stress components through
the Λ-effect; see Käpylä & Brandenburg (2008) for a de-
tailed description. The values listed in the table were ob-
tained by fitting Eqs. (13) and (14) to the DNS results. Two
examples of such a fit can be seen in Fig. 2. The solid lines
represent the DNS data, the dashed red lines the decay be-
havior predicted by the MTA. The yellow and blue dotted
lines are the corresponding prediction of the Ogilvie closure
with two different values for c1, denoted with cb

1 and cl
1 for

the determination of which the beginning and late parts of
the DNS time series was used, respectively. The two alter-
native fits for the latter model have been introduced because
of the changing nature of the process. As we can see, the
decay generally follows the exponential pattern at first, but
in the later stages power-law behavior similar to the predic-
tion of the Ogilvie model takes place. However, eventually
the DNS results move away from both predictions.
This kind of changing behavior is observed in all of the

decay models, and the temporal span of the validity of var-
ious predictions vary between the runs. This can be seen in
Fig. 2, in which the upper panel shows the fit to the DNS
data from Run F7, and the lower panel shows a correspond-
ing fit to the data from Run F9: while the exponential pre-
diction of MTA seems to apply for approximately the same
duration in both panels, the Ogilvie approach has clearly an

c© 2012 WILEY-VCH Verlag GmbH&Co.KGaA, Weinheim www.an-journal.org
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Fig. 2 (online colour at: www.an-journal.org) The time evolu-
tion of R in freely decaying turbulence. Dotted and dashed lines
show the decay predictions of the Ogilvie model and MTA, respec-
tively, with suitable values for c1 and τ , and the solid line is the
DNS time series. The upper panel shows the results from Run F7
and the lower panel results from Run F9.

extended range of applicability. Table 1 lists the different fit
parameters cb

1 , cl
1, and τ−1/τ−1

0 obtained from the decay
models. The values for cb

1 are generally very close to the
values of τ−1/τ−1

0 , while the cl
1 tend to be somewhat larger.

Actually, if one puts c1 = τ−1/τ−1
0 , the resulting curve has

the MTA prediction as a tangent at t0.
Parameters τiso and c2 can be estimated by studying

the decay of the off-diagonal components of the Reynolds
stress. The time evolution equation for Rij in the forced
non-diagonal case reads
Ṙij = Fij − (τ−1 + τ−1

iso )Rij . (15)

Now, letRij(t0) = R
(0)
ij . Assuming τiso constant in the case

of MTA we have again exponential decay:

Rij = R
(0)
ij e−(t−t0)(τ−1+τ−1

iso
). (16)

To get the corresponding result for the Ogilvie model one
needs to use Eq. (14) to solve for

√
R and integrate over

time. The final result reads

Rij = R
(0)
ij

[
1 +

√
R(0)

2
c1kf(t− t0)

]
−2(c1+c2)/c1

. (17)

Fig. 3 (online colour at: www.an-journal.org) The time evolu-
tion ofRxy in freely decaying turbulence. Dotted and dashed lines
show the decay prediction of the Ogilvie model and MTA, respec-
tively, with suitable values for c2 and τ , and the solid line is the
DNS time series. The runs displayed are the same as in Fig. 2.

The DNS results are comparedwith the predictions from
the closure models in Fig. 3. Again we show two alternative
versions for the behavior of the Ogilvie model with differ-
ent values for c2, cb

2 and cl
2, with the same reasoning as with

c1. According to Eqs. (16) and (17), the decay of Rxy de-
pends on the relaxation parameters τ and c1 as well as the
isotropization parameters τiso and c2. Using the estimates
for the relaxation terms obtained from the decay of R we
can determine the isotropization terms by treating them as
the only free parameters of the models and finding a reason-
able fit, like before. In the case of c2 we have used the initial
value cb

1 for this purpose.
The results for the isotropization terms are summarized

in Table 1. A problem in many runs is that the fluctuations of
the off-diagonal components of the Reynolds stresses can be
larger than their average value, causing their sign to change
frequently. In the decay phase the time series of these runs
tend to contain strong oscillations right from the beginning.
The oscillations are similar to what can be seen in Fig. 3,
and they make finding an unambiguous fit very challeng-
ing. In some cases a suitable fit would have required nega-
tive values for the parameter c2. For these cases, no value

www.an-journal.org c© 2012 WILEY-VCH Verlag GmbH&Co.KGaA, Weinheim
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Fig. 4 Inverse relaxation timescales (normalized by the dynami-
cal value τ−1

0
) as functions of Re obtained from the decay models.

Dotted and dashed lines are for τ−1 and τ−1

iso
, respectively. The

diamonds represent runs with kf/k1 = 1.5, triangles kf/k1 = 3

and asterisks kf/k1 = 10.

is given in Table 1. This problem manifests itself mostly
in Set L. Thus, the most reliable results come from Set F,
where the Rxy get non-zero mean values more consistently,
and fluctuations are not too large. We see that τ−1

iso /τ−1
0

and cb
2 obtain very similar values, while cl

2 is mostly very
small or zero. Equation (17) implies that with c2 = 0 the de-
cay of the off-diagonal components of the Reynolds stresses
should behave like the decay of R described by Eq. (14), so
the vanishing of cl

2 may indicate the isotropization switch-
ing off. But then again, it is seen in Fig. 3 that even with van-
ishing c2 the prediction becomes gradually worse as time
progresses, and in the lower panel the period of validity is
restricted to a brief intersection. Large fluctuations are an-
other source of ambiguity near the end of the time series.
Figure 4 contains the same results as Fig. 1, but ob-

tained for the decay models. Due to the ambiguity of the
results from the Set L, only results from Set F are shown
for τ−1

iso . In both figures the overall trend is similar: τ−1 is
large with small Reynolds numbers, and decreases as Re in-
creases. Unlike in Fig. 1, in Fig. 4 τ−1

iso generally increases
with increasing Re, and eventually becomes greater than
τ−1. It would seem that the results for τ−1 approach some
constant value at high Reynolds numbers, but more simu-
lations with higher Reynolds numbers would be needed to
verify this. Increasing τ−1 with decreasing Re may explain,
why the nature of the decline of R changes in the decay
models. Using urms = R1/2 in the decay phase, the effec-
tive Reynolds numbers falls accordingly. This would mean
that τ−1 changes during the simulation, leading to a differ-
ent behavior.

4 Conclusions

In this study we have investigated anisotropically forced hy-
drodynamic turbulence, and determined the timescales re-

lated to the diffusion and isotropization processes from our
DNS models. The obtained results were compared to two
different closure model predictions, namely the minimal τ -
approximation and the Ogilvie approach.
Our results from the statistically steady forced turbu-

lence models show that the values of τ−1, describing the
diffusion process, and τ−1

iso , describing the isotropization
process, depend on Re for small and intermediate values,
but show signs of convergence for larger values. In partic-
ular, it turns out that τ−1

iso is 2.5 times larger than τ−1, and
that their inverse ratio is around 0.4, which is somewhat less
than the results published earlier in the literature.
Our models of freely decaying turbulence show that,

while the decay is exponential at first, as predicted by the
MTA with a constant τ , it deviates from this pattern in
the later stages, following a power-law behavior much like
the one predicted by the Ogilvie approach. Finally also the
Ogilvie prediction breaks down far away from the switch-
off point of the forcing.
Our investigation has now put a firmer basis on closure

models for the Reynolds stress. Although in many astro-
physical systems, such as the convection zones of rotating
stars, anisotropy is usually crucial, any model can only be
useful if it handles correctly the isotropic case, too. More
importantly, but less straightforwardly, the return to isotropy
is a concept whose importance is easily overlooked in the
full-fledged models with many other terms. The present
work has shown that this term is indeed quite important and
and the characteristic rate of this effect is 2.5 times larger
than that of turbulent decay.
Obvious extensions of our approach to testing such

models include cases with magnetic field. Of considerable
interest would be a more thorough investigation of the so-
called negative effective magnetic pressure effect (Klee-
orin & Rogachevskii 1994; Brandenburg et al. 2010) that
is known to lead to an instability in a strongly stratified at-
mosphere (Rogachevskii & Kleeorin 2007; Brandenburg et
al. 2011). The negative effective magnetic pressure effect as
such is isotropic and our approach might therefore be capa-
ble of yielding crucial insights. Another particularly press-
ing issue is a more thorough understanding of the effects
of larger magnetic Reynolds numbers when small-scale dy-
namo action becomes possible.
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