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Abstract
Direct numerical simulations (DNSs) of isotropically forced homogeneous stationary
turbulence with an imposed passive scalar concentration gradient are compared with an
analytical closure model which provides evolution equations for the mean passive scalar flux
and variance. Triple correlations of fluctuations appearing in these equations are described in
terms of relaxation terms proportional to the quadratic correlations. Three methods are used to
extract the relaxation timescales τi from DNSs. Firstly, we insert the closure ansatz into our
equations, assume stationarity and solve for τi . Secondly, we use only the closure ansatz itself
and obtain τi from the ratio of quadratic and triple correlations. Thirdly, we remove the
imposed passive scalar gradient and fit an exponential law to the decaying solution. We vary
the Reynolds (Re) and Péclet numbers (while fixing their ratio at unity) and the degree of
scale separation and find for large Re a fair correspondence between the different methods.
The ratio of the turbulent relaxation time of the passive scalar flux to the turnover time of the
turbulent eddies is of the order of 3, which is in remarkable agreement with earlier work.
Finally, we make an effort to extract the relaxation timescales relevant for the viscous and
diffusive effects. We find two regimes that are valid for small and large Re, respectively, but
the dependence of the parameters on scale separation suggests that they are not
universal.

PACS numbers: 47.27.E-, 47.27.tb, 47.40.-x

(Some figures may appear in colour only in the online journal)

1. Introduction

Fluid flows in astrophysical bodies are most often highly
turbulent. Direct numerical simulations (DNSs) of such
high-Reynolds-number flows are currently impossible.
Consequently, greatly enhanced diffusivities or modified
diffusion operators are often applied in simulations [6].
Such models are still challenging in terms of the required
computational resources, so wide-ranging parameter studies
cannot be conducted.

An alternative approach is to separate the large-
and small scale quantities and derive equations for the
former in which correlations of small scale quantities are

parameterized. This is usually referred to as mean-field
theory, see e.g. [16, 20, 24, 25]. Various schemes have
been introduced to close the equations for the correlations
of small scale quantities. In astrophysics, the second-order
correlation approximation (SOCA) and the (minimal) τ

approximation (MTA; see, e.g., [1, 2]) are widely used
where the latter invokes a relaxation term to approximate
the higher-order correlations. The corresponding relaxation
time has been determined numerically, e.g., for the α effect
in mean-field electrodynamics [8, 9]. Another application
of the MTA idea has been introduced in [21] in the context
of mean-field hydrodynamics. In this ‘Ogilvie approach’
several non-dimensional coefficients are invoked to describe
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physically motivated parameterizations of the higher-order
correlations in the form of relaxation and isotropization
terms. This model has been applied to different physical
setups to calibrate the coefficients [12, 13, 17, 19].

The validity of the various approximations can, in
principle, be tested by comparing with DNSs in the
same parameter regime. In practice, this is often not easy
because of the limited parameter range accessible by such
simulations. The starting point for corresponding studies
has been isotropically forced homogeneous turbulence under
the influence of rotation [15] and/or shear [27]. A first
systematic attempt to validate the τ approach in the passive
scalar case was made in [5]. There, an ansatz for the mean
flux of the scalar containing the relaxation time as the
only unknown parameter was studied. Numerical experiments
of three different types were performed to determine this
relaxation time and yielded reasonably coinciding results,
which were also consistent with analytic estimates.

In a recent work [26], the model parameters related
to relaxation and isotropization that appear in the Ogilvie
approach have been studied.

With the present study we turn again to the passive
scalar case pursuing a threefold goal. We include a closure
model for the mean concentration variance in the analysis
in order to obtain hints on the viability of the analogous
Ogilvie approach for the mean temperature variance. Further,
we extend the parameter space to higher-scale separations, as
well as both higher and lower Reynolds numbers compared
to [5], and study the dependence of the closure parameters
on these characteristics. This allows us to obtain insight into
the level of universality of the ansatz parameters. In doing
so, we employ three independent methods for determining
the parameters, one of which has already been used in [5].
By making a comparison of their results, conclusions will be
drawn about the completeness of the closure ansatzes.

The plan of the paper is as follows. In section 2, we
provide its theoretical foundation by deriving the mean-field
models on the basis of MTA, clarify their relationship to
traditional mean-field results and establish the three methods
we employ for testing the ansatzes. Section 3 describes our
numerical setup and section 4 presents the results with a
focus on comparisons between the outcomes of the different
methods. In section 5, some comments and extensions are
given and we draw our conclusions in section 6.

2. Mean-field modelling

2.1. Ideal case

Let us consider the transport of a passive scalar under the
influence of a turbulent fluid motion. For simplicity we
assume a homogeneous, incompressible fluid and neglect at
first diffusion and viscous dissipation. Then the governing
equations for the concentration of the passive scalar, C , and
the fluid velocity U read

∂C

∂t
= −∇ · (UC) = −U · ∇C, (1)

∂U

∂t
= −U · ∇U −

1

ρ
∇P +F , ∇ ·U = 0, (2)

where P is the pressure, ρ is the constant density and F is a
forcing function with ∇ ·F = 0 (and with the unit ‘force per
mass’). Upon introduction of a Reynolds averaging procedure,
indicated by an overbar, C and U are decomposed into mean
and fluctuating parts, C = C + c, U =U +u. The fluctuating
fields, represented by lower-case letters, are then governed by

∂c

∂t
= −u · ∇C −U · ∇c − (u · ∇c)′, (3)

∂u

∂t
= −u · ∇U −U · ∇u− (u · ∇u)′ −

1

ρ
∇ p +f , (4)

where the prime indicates extraction of the fluctuating part,
e.g. (uc)′ = uc −uc. Simplifying further, we stipulate the
absence of a mean velocity U and assume that the forcing
has no mean part, i.e. F = f . In the present case, the goal of
mean-field modelling consists in deriving a closed equation
for the mean concentration C . From (1) and (3), together with
U = 0 we obtain directly

∂C

∂t
= −∇ ·F (5)

with the mean density of the passive scalar flux, F= cu.
So the task of closing (5) reduces to representing F by the
mean concentration C . In the standard mean-field approach,
(3) is solved for a prescribed fluctuating velocity u, usually
under some simplifying assumptions which inevitably limit
the applicability of the obtained results. The solution is
employed to express F in terms of C . Alternatively, one
can abstain from deriving such an explicit solution for the
fluctuating concentration c and instead strive to establish an
evolution equation for F which of course again has to be
closed in the sense that the only variables occurring are the
mean quantities C and F themselves. Such an equation is
obtained by multiplying (3) with u and (4) with c, summing
up and averaging, arriving at

∂F
∂t

= −u∇ · (uC) −u∇ · (uc) − cu · ∇u−
1

ρ
c∇ p + cf .

(6)
By virtue of the incompressibility of the fluid, the fluctuating
pressure p can be expressed by the velocity fluctuations:

∇
2 p = −ρ

(
∂ui

∂x j

∂u j

∂xi

)′

(7)

which, for an infinitely extended medium and vanishing p at
infinity, is readily solved by

p =
ρ

4π

∫ (
∂ui/∂x j∂u j/∂xi

)′
(x′)

|x−x′|
d3x ′. (8)

Now we can conclude that the second, third and fourth terms
on the rhs of (6) are quadratic in u and linear in c, hence
they represent third-order correlations. Following [13], we
introduce here the closure assumption (‘τ ansatz’):

−u∇ · (uc) − cu · ∇u−
1

ρ
c∇ p = −

F
τ6

(9)
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with a relaxation time τ6. Here the choice of the subscript 6
(and later 7) follows a convention introduced in [13]. Upon
further neglect of the correlation cf , we arrive at

∂Fi

∂t
= −ui u j

∂C

∂x j
−
Fi

τ6
= −Ri j

∂C

∂x j
−
Fi

τ6
, (10)

which governs the evolution of F. Here, Ri j = ui u j stands
for the Reynolds stress tensor. Since a passive scalar would
not act back onto the velocity, Ri j can here be considered
given and the closure is complete. Note that, in the presence of
rotation or shear, (4) contributes further quadratic correlations
to (6); see, e.g., [15, 18, 27].

Quite analogously, in [2] an evolution equation for the
quantity ∇·F instead of F was derived where the triple
correlation terms subsumed into the τ ansatz consequently
contained one further spatial derivative in comparison to the
terms in (9). Equation (10) is furthermore similar to the
penultimate row of (53) in [13] when replacing the mean
temperature perturbation 2 by C and neglecting the buoyancy
term. Note that for small τ6, that is, fast relaxation, Fi will
follow the inhomogeneity in (10) almost instantaneously,
hence

Fi ≈ −τ6Ri j
∂C

∂x j
, (11)

and we may interpret τ6Ri j as a turbulent diffusivity tensor.
We return to a discussion of its relationship to traditional
mean-field results in section 2.4.

To facilitate further comparisons to [4, 13], where
an additional evolution equation for the mean temperature
perturbation variance 22 is derived, we give here an
analogous equation for c2 =Q, although it is in our case not
necessary for completing the closure:

∂Q
∂t

= −2cu · ∇C − 2cu · ∇c. (12)

We note in passing that the quantity Q becomes important in
chemically reacting flows [4]. Setting

− 2cu · ∇c = −Q/τ7 (13)

with another relaxation time τ7, the closed equation reads

∂Q
∂t

= −2F · ∇C −
Q
τ7

(14)

and we have full analogy to the last row of (53) in [13].
Until now we have not constrained the properties of the

turbulence; in particular, we have not required its isotropy or
homogeneity. For example, inhomogeneous turbulence could
be thought of as giving rise to position-dependent relaxation
times τ6,7. However, we have to recall that the τ ansatz (9)
implies that the only direction available to construct a vector
is the one of F. Hence from a strict point of view, this
ansatz is only consistent with an isotropic or uni-axial u
turbulence4 the preferred direction of which coincides with
that of F. Consequently, as inhomogeneity always implies

4 A velocity field whose turbulent properties, expressed, e.g., by its
correlation tensor ui (x+ ξ, t + τ)u j (x, t), are invariant under rotations about
this axis, its ‘preferred direction’, but not under rotations about other axes.

anisotropy, turbulent properties of u must not change along
any other direction. The same restrictions should of course
hold for the concentration fluctuations c; yet this is in general
in conflict with the presence of a second preferred direction
in the correlation properties of this turbulence, namely the
direction of ∇C . Hence, (9) can be strictly justified only under
the very specific circumstance that F and ∇C are parallel
(or anti-parallel) and their direction coincides with a possible
preferred direction of u.

For that reason and for the sake of simplicity, we specify
now the mean as horizontal average, i.e. as average over all x
and y. Consequently, all mean quantities depend on z only and
only the z component of F is relevant. If we further restrict u
to have at best a z anisotropy, then there is indeed only a single
preferred direction, namely that of F and the ansatz (9) is
legitimate. The system of mean field equations then simplifies
to

∂C

∂t
= −

∂Fz

∂z
,

∂Fz

∂t
= −Rzz

∂C

∂z
−
Fz

τ6
,

(15)
∂Q
∂t

= − 2Fz
∂C

∂z
−
Q
τ7

,

where Rzz , τ6 and τ7 can in principle still depend on z
and t . However, with these quantities taken to be constant,
that is, assuming homogeneous and statistically stationary
fluctuations u, the combination of the first two equations
results in a 1D damped (for τ6 > 0) wave equation for C

∂ 2C

∂t2
+

1

τ6

∂C

∂t
=Rzz

∂ 2C

∂z2
, (16)

guaranteeing a finite propagation speed of perturbations of
C [5]. A corresponding wave equation for the propagation of
temperature perturbations was first proposed in [11].

Adopting a uniform gradient of C , ∇C = (0, 0, G), G =

const, a stationary regime of (15) should be given by

Fz = const = −τ6RzzG, Q= −2τ7FzG = 2τ6τ7RzzG2.

(17)
Let us now assume that in a DNS, equations (1) and (2) with
an appropriately defined forcing f and an imposed uniform
∇C are integrated in time until a statistically stationary regime
is established. Extracting now all mean quantities occurring
in (17) from the numerical solution and applying these
relations, it is possible to determine the crucial relaxation
times τ6,7 from such runs (method M1). On the other hand,
τ6,7 should of course also obey their defining relations (9)
and (13). The third-order correlations u∇ · (cu), cu · ∇u,
c∇ p and cu · ∇c are again accessible in the DNS results and
open up an independent path for determining the relaxation
times (method M2). At the same time, it can also be checked
to what extent the neglect of cf is justified.

Another approach to extracting τ6,7 is available from
decay experiments, for which, after having reached a
stationary state in the DNS, the imposed gradient of C is
switched off. Then, according to (10) and (14), F and Q
should decay uniformly in space and exponentially in time
with the increment τ−1

6 and τ−1
7 , respectively, which can

be identified with the decay rates measured in the DNS
(method M3).

3
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The goal of this paper is to systematically test the validity
of the presented closure assumptions for a range of Reynolds
and Péclet numbers as well as different levels of separation
between the spatial scales of mean and fluctuating fields. From
this we expect hints with respect to the validity of the model
of Garaud et al [13] for turbulent convection.

2.2. Non-ideal effects

Admitting now diffusion and viscous dissipation, we have
to add the terms κ∇

2C with the diffusivity κ on the rhs
of (1) and ν∇

2U with the kinematic viscosity ν on the rhs
of (2). Consequently, in the evolution equation (6) for F,
the additional terms νc∇2u and κu∇2c occur on its rhs.
Rewriting their sum as

ν∇
2Fi − 2ν∇ · c∇ · ui + (κ − ν)ui∇

2c (18)

or more symmetric, as done in [13], as

ν + κ

2
∇

2Fi − (ν + κ)∇ · c∇ · ui +
ν − κ

2
c∇2ui − ui∇

2c

(19)
does nevertheless not allow a representation entirely by the
mean flux. Even in the (very particular) case κ = ν the second
terms of (18) and (19) remain. As a skyhook, the second
and third terms in (19) are replaced by the τ -ansatz-like
expression, −F/τνκ , although they contain second-order
rather than third-order correlations. Analogously, on the rhs
of (12), diffusion requires a term

2κ c∇2c = κ∇
2Q− 2κ(∇c)2 (20)

and the second term is replaced by −Q/τκκ . Note that
diffusion of F and Q modelled by the Laplacian terms in
(18) and (20) is determined by the molecular (or microscopic)
diffusivities.

In astrophysical applications the deviation from ideal
conditions is usually small, and quantities expressing this
smallness are given by the Reynolds and Péclet numbers, Re
and Pe, which reflect the strength of advection relative to
diffusion:

Re = urms`/ν, Pe = urms`/κ, (21)

where ` is a characteristic length scale of the turbulence. We
will further make use of the Schmidt number Sc = ν/κ =

Pe/Re.

2.3. Scaling of the relaxation times

For the relaxation times τ6,7,νκ,κκ some reasonable scaling
assumptions are in order and we follow essentially the choices
of [13]: τ6,7, belonging to third-order correlation terms, are
expressed as (C6,7urmsk1)

−1, and τνκ,κκ , belonging to diffusive
second-order correlation terms, are written as(

Cνκ(ν + κ)k2
1/2

)−1
and (Cκκκk2

1)
−1, (22)

respectively. Here k1 = 2π/L is the smallest wavenumber
consistent with the size of the system, L . The first of these

expressions seems to be appropriate only for |ν − κ| � ν + κ ,
hence in general the scaling ansatz should read instead((

Cν+κ

ν + κ

2
+ Cν−κ(ν − κ)

)
k2

1

)−1
, (23)

The crucial question now is the following: are the constants
C6,7,νκ,κκ (or C6,7,ν+κ,ν−κ,κκ ) universal, at least for a given
type of turbulence, and in particular, are they independent of
the dimensionless numbers of the problem, i.e. Re and Pe,
and the degree of scale separation? A preliminary answer to
this question was given in [5], where the timescales were
found to show a slightly increasing trend with increasing scale
separation (see figure 4 therein).

Methods M1 and M3 for determining the relaxation times
described in section 2.1 have now to be modified in the
following way: in (17) we have to replace τ6 by τ6τνκ/(τ6 +
τνκ) ≡ τ6νκ and τ7 by τ7τκκ/(τ7 + τκκ) ≡ τ7κκ . Both methods
then deliver only these aggregates and we have to employ
the different scalings of the relaxation times to figure out
the individual constants C∗. In contrast, method M2 merely
has to be extended to include the additional second-order
correlations showing up in (19) and (20), that is, to use instead
of (9) and (13)

Fz

τ6νκ

= uz∇ · (uc) + cu · ∇uz +
1

ρ
c ∇z p

+ (ν + κ)∇c · ∇uz −
ν − κ

2

(
c∇2uz − uz∇

2c
)
, (24)

Q
τ7κκ

= 2
(

cu · ∇c + κ(∇c)2
)

. (25)

2.4. Comparison with traditional results

A standard mean-field approach to (1), employing SOCA,
that is, neglecting (u · ∇c)′ in (3), yields for U = 0
straightforwardly (arguments x dropped)

Fi (t) = −

∫
∞

0
ui (t)u j (t − τ)

∂C

∂x j
(t − τ) dτ (26)

from which, under the assumption of sufficient temporal scale
separation,

Fi (t) = −

∫
∞

0
ui (t)u j (t − τ) dτ

∂C

∂x j
(t) = −κi j

∂C

∂x j
(t)

(27)

can be derived. κi j =
∫

∞

0 ui (t)u j (t − τ) dτ = τcui (t)u j (t)
can be readily identified as turbulent diffusivity tensor with
the correlation time τc just defined by the last identity. This
clearly resembles the result (11) with τ6 being identified with
the correlation time τc, all the more so because for the validity
of both (27) and (11) the relevant time parameter has, in a
sense, to be small.

Relaxing the assumption of sufficient temporal scale
separation, that is, retaining (26), we observe the presence
of the so-called memory effect [14], that is, the influence of
∂C/∂x j at earlier times t − τ on the mean flux at time t
by virtue of a convolution. Performing a Fourier transform

4
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with respect to time, this convolution turns into a simple
multiplication and we can write

ˆFi (ω) = −κ̂i j (ω) Ĝ(ω) (28)

with a frequency-dependent turbulent diffusivity tensor
κ̂i j . This quantity is directly accessible to the test-field
method with time-dependent test fields as described
in [14]. Based on numerical simulations and without
resorting to SOCA, it has been found that for statistically
stationary homogeneous isotropic turbulence a satisfactory
approximation is accomplished already by

κ̂i j (ω) = δi j
κ0

1 − iωτκ

, (29)

where κ0 is the turbulent diffusivity for stationary fields and τκ

is roughly independent of ω. A slightly better fit is provided
by

κ̂i j (ω) = δi j (1 + K )κ0
1 − iωτκ

(1 − iωτκ)2 + K
(30)

with a constant K . Turning back to the physical space, the first
approximation (29) is equivalent to

F+ τκ

∂F
∂t

= −κ0∇C (31)

or
∂F
∂t

= −
κ0

τκ

∇C −
F
τκ

. (32)

Again, there is striking similarity to (10). Thus, by comparing
τ6 to numerical results for τκ , a further independent way of
checking (9) is provided. The second fit (30) yields [14]

(1 + K )F+ 2τκ

∂F
∂t

+ τ 2
κ

∂2F
∂t2

= −(1 + K )κ0∇

(
C + τκ

∂C

∂t

)
(33)

indicating the potential importance of higher temporal
derivatives of F and mixed temporal/spatial derivatives of
C . Note that (32) and (33) are only valid for perfect scale
separation in space.

The case of perfect temporal but imperfect spatial scale
separation was studied in [10]. Complementary to (28), now
a Fourier transform with respect to space has to be performed
and we are faced with a diffusivity tensor depending on the
wavevector k. In the isotropic case with horizontal average a
reasonable fit is [10]

κ̂i j (kz) = δi j
κ0

1 + `2k2
z

, (34)

which gives rise to

F− κFτ0∇
2F= −κ0∇C (35)

in physical space, resembling (10) with (18) or (19) for the
stationary regime. Here, κF is an additional diffusivity of F,
τ0 is the dynamical time and κFτ0 = `2. κF has been found
to be of the order of the SOCA estimate of the turbulent
diffusivity in the low-diffusivity limit, κt = τcu2

rms/3. Clearly,
this value can be very different from the molecular diffusivity.

For the general case of imperfect scale separation with
respect to both space and time, see [23], albeit that work

deals with the mean electromotive force E of MHD rather
than with the mean flux of passive scalar transport. In that
work, non-locality due to imperfect spatial scale separation
shows up again in the form of a diffusion term ηE∇

2E in
the evolution equation for E with a diffusivity ηE of the
order of the SOCA estimate of the turbulent diffusivity in the
high-conductivity limit, ηt = τcu2

rms/3.
When comparing both results with the diffusion term

for F identified in (18) or (19) where only the microscopic
diffusivities occur, we have to state that the τ approach
deviates in this respect significantly from what we expect
from the traditional one. To reconcile them, possible diffusion
terms ∝ ∇2F and ∝ ∇2Q had to be taken into account in the
parameterizing ansatzes. This was not considered until now.

2.5. Significance of method comparisons

Let us finally discuss what is really ‘tested’ by comparisons
of the results from the different methods M1–M3. For an
incompressible fluid with the specific conditions of our model
and under the assumption that no higher than the first-order
temporal derivative of F occurs, an ansatz analogous to (10),

∂Fz

∂t
= −K1G − K2Fz, (36)

is exhaustive, as

(i) c and hence Fz consist of two parts one of which is a
linear and homogeneous functional of G and the other is
independent of G and determined only up to an arbitrary
scale factor. Of course these are consequences of the
linearity of (3) (and do not depend on the neglect of cf
in (6)).

(ii) G and hence (for uniform initial conditions) Fz are
spatially constant, both in the statistically steady state and
during the free decay of Fz . (That is why the diffusive
term ∝ ∇2Fz is absent in (36).)

Note, however, that K1 =Rzz as in (10) is an assumption (or
a consequence of the assumption (24)) because a contribution
proportional to ∇C or ∂Fz/∂t could also be provided by the
triple correlations, the diffusive terms, or by cf .

Since the passive scalar C does not influence the
turbulent velocity, the coefficients K1,2 in (36) are completely
determined by u and hence true constants. Consequently,
any comparison of the methods M1, M2 and M3 tests the
influence of

(i) deviations of the simulated velocity turbulence from
homogeneity, isotropy and statistical stationarity and
furthermore

(ii) the weak compressibility of the fluid in our simulations.

Note that the first influence can, in principle, be made
arbitrarily small by increasing scale separation and extending
time ranges for averaging and likewise the second influence
by increasing the sound speed cs in the numerical model.

5
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A comparison of M1 and M3 tests, in addition, the
justification of

(i) the neglect of higher temporal derivatives, and Fz , and
(ii) the assumption K1 =Rzz that is employed in calculating

τ6νκ = 1/K2 from the steady state.

On the other hand, a comparison of M1 and M2 tests
again the assumption K1 =Rzz and specifically to what extent
the neglect of the correlation cf is legitimate.

With respect to Q, again assuming that only first-order
temporal derivatives occur, the ansatz

∂Q
∂t

= −K3FzG − K4Q− K5F2
z − K6G2 (37)

is exhaustive for the same reasons listed after (36) when a
uniform Q is assumed. Consequently, a comparison of M1
and M3 tests here, apart from the general assumptions about
the turbulence, the justification of

(i) the neglect of higher-order temporal derivatives, and
(ii) the assumption K5 = 0 that enters the determination

of τ7κκ = 1/K4 by M3, and also the assumption K3 −

K5 K1/K2 − K6 K2/K1 = 2 that enters M1. Note that
K5 6= 0 would make the decay of Q, in general,
non-exponential (a sum of two exponentials).

The second test of (ii) is also performed by the
comparison of M1 and M2.

3. Numerical setup

In order to take advantage of the capabilities of the Pencil
Code5, we solve instead of the incompressible system (1)
and (2) the corresponding equations for a compressible but
isothermal fluid

∂ U

∂t
= −U · ∇U − ∇H +f

+ 2ν
(
∇ ·S(U ) +S(U ) · ∇H/c2

s

)
, (38)

∂ H

∂t
= −U · ∇H − c2

s ∇ ·U , (39)

∂ C

∂t
= − ∇ · (CU ) + κ∇

2C, (40)

where we employ the pseudo-enthalpy H = c2
s ln ρ instead

of the density; cs is the constant speed of sound and
S(U ) is the trace-less rate-of-strain tensor Si j = (∂Ui/∂x j +
∂U j/∂xi )/2 − δi j∇ ·U/3. The interpretation of the results
of such simulations in terms of the incompressible model,
of course, requires keeping the Mach number urms/cs small,
typically < 0.1. Then it is particularly justified to replace the
correlation c∇ p/ρ, included in the τ ansatz, by c∇h.

The equations are solved by equidistant sixth-order finite
differences in space and an explicit third-order time stepping
scheme with step size control for stability. The computational
domain is a cube with dimension (2π)3 and grid resolutions

5 Freely available at http://pencil-code.googlecode.com/

ranging from 323 to 2563 according to the requirements raised
by the values of Re and Pe and the forcing wavenumber.
Boundary conditions are periodic throughout. The fluctuating
force f is specified such that it generates an approximately
homogeneous, isotropic and statistically stationary fluctuating
velocity u. Here, f is a frozen-in linearly polarized (i.e.
non-helical) random plane wave with a wavevector which
is consistent with the periodic boundary conditions and
whose modulus is close to a chosen average value kf.
The wave amplitude is kept fixed whereas the wavevector
is randomly changing between time steps and hence f
is approximately δ-correlated in time. For further details,
see [3].

4. Results

In general, the parameter space is spanned by the
dimensionless numbers s = kf/k1 (degree of scale
separation), Re and Pe, in whose definitions (21) we
specify the characteristic length ` for simplicity by 1/kf.
In the following, we will, however, restrict ourselves to
Re = Pe, that is, Sc = 1 and leave the more general cases to
future work. By this, we avoid, in particular, the complication
with the scaling ansatz (23) that occurs for ν 6= κ .

All proposed methods require the mean quantities ∇C ,
Q and F to be constant with respect to z. As the imposed
gradient G is uniform, we expect that only the deviation
of the turbulence from being perfectly homogeneous should
perturb this constancy by causing small-amplitude wiggles of
typically the scale of the forcing. However, it turns out that
perturbations with considerable amplitudes occur regularly
with dominating scales 2π/k1 or π/k1 corresponding to the
box size and its half. They can hardly be explained by an
unstable solution of (16), say for a persistently negative
τ6, because it would unlimitedly grow due to the lack of
any back-reaction onto the flow. Instead we might think
of an incoherent parametric excitation caused by occasional
excursions of τ6 into the negative similar to magnetic field
generation by an incoherent shear-current effect, see [7].
However, the supposed excitation seems to act efficiently
only if the imposed gradient G is present, whereas in the
decay experiments all spectral constituents (in z) of the mean
quantities decay, albeit with different rates. To enable the term
RzzG, occurring in the second of equations (15), to act on
C it is necessary to assume z-dependent fluctuations in Rzz .
Although there is no reason why in these fluctuations low z
wavenumbers are preferred (indeed the forcing wavenumber
should be), the diffusion terms in the equations for F and C
can provide for such a preference, at least in cases with low
or moderate Re. With respect to Q we note that excitation of
z-dependent modes could also be accomplished by the terms
∝ FzG and ∝ F2

z in (37) provided that such modes are already
present in Fz .

Summing up, strict obedience of the proposed methods’
prerequisites requires the extension of our definition of the
mean by a z average or, in other words, to define the mean as
volume average over the entire box.

For methods M1 and M2, all averaged quantities were
derived from the simulations by performing, in addition to the
volume averaging, a temporal averaging over an interval in

6
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(a) (b)

Figure 1. Decay of Fz (left) andQ (right) for s = 3, Re = Pe ≈ 1. Solid line: DNS, symbols: fits with ansatz (41).

Table 1. Results from methods M1, M2 and M3 for different values of s = kf/k1. ν = κ , Sc = 1. M3 results refer to the early decay
times.

M1 M2 M3

s Re τ6νκ τ7κκ τ6νκ τ7κκ τ6νκ τ7κκ

1.5 0.26 . . . 1148.55 0.13 . . . 2.42 0.13 . . . 4.28 0.13 . . . 2.71 0.13 . . . 4.26 0.13 . . . 2.96 0.15 . . . 5.21
3 0.09 . . . 557.19 0.03 . . . 2.64 0.03 . . . 4.75 0.03 . . . 2.70 0.03 . . . 5.09 0.06 . . . 2.81 0.05 . . . 4.96
5 0.04 . . . 331.17 0.01 . . . 2.77 0.01 . . . 5.21 0.01 . . . 2.79 0.01 . . . 6.06 0.03 . . . 2.77 0.02 . . . 5.67
8 0.02 . . . 205.52 0.003 . . . 2.86 0.005 . . . 6.06 0.005 . . . 2.88 0.005 . . . 7.73 0.01 . . . 2.85 0.01 . . . 7.70
10 0.02 . . . 163.24 0.002 . . . 2.87 0.003 . . . 6.56 0.003 . . . 2.93 0.003 . . . 8.93 0.006 . . . 2.99 0.006 . . . 4.50

which, in particular,Q was found to be statistically stationary.
We have observed that such a temporal average makes z
averaging unnecessary for achieving z independence of the
mean quantities. This is consistent with the supposition of
a parametric mode excitation as it should act randomly and
hence produce perturbations which are uncorrelated over
long enough times. We have, however, always employed the
volume average. Statistical errors were estimated by dividing
the time interval into three equally long parts and calculating
averages over each of them. These individual averages were
compared to the average over the whole interval, and the
largest deviation was taken for the error estimate.

In applying method M3 we were faced with the fact
that only in rare cases the temporal behaviour of the mean
quantities can be properly described by a single exponential.
However, a fit to an ansatz with two exponentials, that is,

A1 exp(−t/τ1) + A2 exp(−t/τ2), (41)

was in most cases suited for reproducing the simulation data
with high fidelity, see figure 1. Almost always, the initial part
of the decay process immediately after the switching off of the
imposed gradient was governed by the higher decay rate, that
is, the shorter of the two decay times τ1,2. Consequently, the
exponential with the longer decay time took over later on. For
this reason we denote the former as ‘early’ and the latter as
‘late’ decay time.

In the context of method M3 we have also made
an attempt to estimate the coefficients of the Laplacians
occurring in (19) and (20) by omitting the z average and
subjecting Fz(z) andQ(z) to a Fourier transform with respect
to z. Then the coefficient of the Laplacian is (τ−1

n − τ−1
0 )/n2k2

1
where τn , n = 0, 1, . . . , is the decay time of the nth z

Figure 2. Relaxation time τ6νκ , normalized by the dynamical time
τ0 = (urmsk f )

−1, as a function of Re = Pe from methods M1–M3.
Different symbols refer to different scale separations s = kf/k1 as
indicated in the legend. M3 results refer to the early decay times.

harmonic of Fz(z) and Q(z), respectively. Following the
reasoning given with (19) and (20) this coefficient should
for all n > 0 turn out to be (ν + κ)/2 and κ , respectively.
Unfortunately, corresponding results do not form a consistent
picture.

We performed a number of simulations, and extracted
τ6νκ and τ7κκ using methods M1, M2 and M3. The results
are summarized in table 1, where the simulations are grouped
into different sets by the values used for the scale separation
s. Within each set Re and Pe were varied by changing ν

(= κ). The timescales τ6νκ and τ7κκ listed in table 1 are also
illustrated in figures 2 and 3, respectively. We see that all
three methods give quite similar results, which grow with

7
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Figure 3. Relaxation time τ7κκ from methods M1–M3. For
explanations see figure 2.

Re for Re . 10 and turn stationary for Re & 10, where the
timescales converge to

τ6νκ/τ0 ≈ 2 . . . 3, and τ7κκ/τ0 ≈ 7 . . . 10. (42)

There are some exceptions, however. When s = 1.5, all the
methods M1–M3 yield 2. τ7κκ/τ0 . 5, somewhat smaller
values than obtained for larger scale separations. The results
from method M3 tend to be somewhat larger than the results
from the other methods for Re < 10, but for Re > 10 this
difference mostly disappears.

4.1. Universality of the closure ansatz

As explained in section 2.3, methods M1 and M3 yield only
the quantities τ6νκ and τ7κκ from which the constants C6,7,νκ,κκ

can be extracted as follows. Recalling the scalings introduced
in section 2.3 we have

1

τ6νκ

= C6urmsk1 + Cνκ(ν + κ)
k2

1

2
,

(43)

1

τ7κκ

= C7urmsk1 + Cκκκk2
1 .

Multiplying by the viscous time τvisc = (νk2
1)

−1 yields

1

τ̃6νκ

= C6 s Re + Cνκ ,
1

τ̃7κκ

= C7s Pe + Cκκ , (44)

where a tilde indicates normalization by τvisc. Hence, when
considering 1/τ̃6νκ and 1/τ̃7κκ as functions of Re (or Pe), the
wanted parameters C6,7,νκ,κκ should be obtainable by a linear
regression analysis. Figure 4 shows both functions (44) from
M1 for different values of s. A linear relation is clearly present
both for large and small values of Re, but with very different
fit parameters for the two ranges. Guided by these functional
dependences we hence propose as an alternative for (44)

1

τ̃6νκ

= C6 s Re + Cνκ +
1

C ′

6s Re + C ′
νκ

≡ F(Re), (45)

and analogously for 1/τ̃7κκ . This ansatz allows us to model
linear dependences on Re for both small and large arguments,

but with different coefficients:

F(Re) ≈ C6 s Re + Cνκ for Re → ∞, (46)

F(Re) ≈

(
C6 −

C ′

6

C ′
νκ

2

)
s Re + Cνκ +

1

C ′
νκ

for Re → 0,

(47)
where the slopes may well be different in sign. The constants
in (45) were determined by a standard fitting procedure and
are given in table 2. For both relaxation times, the fit is
surprisingly good with exceptions in τ̃7κκ for s = 8, 10 around
Re = 1, see figure 4. The slopes for high Re, that is, C6 and
C7, show a possible saturation with growing scale separation
s, but the other coefficients do not. Hence, the universality of
the ansatz (45) with respect to scale separation is questionable
for s 6 3, as has already been found in [5].

4.2. Comparison of methods

Let us next compare the relaxation timescales obtained with
the different methods in more detail.

4.2.1. Methods M1 and M3. Figure 5 shows the ratio of
the values of τ6νκ and τ7κκ determined by either of the two
methods as functions of Re and s where the M3 values were
identified with either the early or the late decay times. With
some exceptions for s = 1.5, 3, 5 the early decay times from
M3 differ from those from M1 only by up to ±40% where for
τ

early
6νκ both signs appear roughly equally frequently while for

τ
early
7κκ the negative deviations clearly prevail. In the latter, the

results show some erratic behavior for small Re and s = 8, 10
which might be caused by insufficient resolution. For the late
values of both τ6νκ and τ7κκ , the results of method M3 deviate
clearly from those of M1 with the exception of the lowest
scale separation s = 1.5 and s = 3 (the latter for high Re only).
In general, the deviations grow with falling Re and increasing
s, but the latter tendency shows some saturation for the high
values of s. Note that the determination of τ

M3,late
6νκ is generally

subject to some uncertainties because of strong fluctuations
showing up there.

Naturally, the question arises whether a relationship
exists between the late decay times and the viscous = diffusive
timescale for the scale of the domain, τdiff = τvisc = 1/κk2

1 =

1/νk2
1 , or the dynamical time τ0. Figure 6 shows τ

M3,late
6νκ and

τ
M3,late
7κκ , normalized by τvisc as functions of Re. As indicated

by the red lines, these dependences can be represented rather
well by functions ∝ 1/(1 + Re) with amplitudes τvisc and
τvisc/2, respectively. This means, in other words, that for
low Re the late decay times approach τvisc and τvisc/2,
respectively, whereas for high Re they approach s2τ0 and
s2τ0/2, respectively. Remarkably, this seems to hold rather
independently of the scale separation with some exceptions
for s = 1.5 and 10. This finding about the late values is
consistent with the occurrence of the term −K5F2

z in (37): that
term implies that the decay rate of Q after the fading out of a
possible constituent being a solution of the homogeneous part
of (37) (with G = 0) is twice the decay rate of Fz . However,
it remains unexplained why Fz shows also a decay behaviour
characterized by two exponentials as (36) gives no clue to that
(but see the note added in proof).
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Figure 4. Relaxation times τ̃6νκ (left) and τ̃7κκ (right), normalized to the viscous time τvisc as functions of Re = Pe, for different values of
the scale separation s, indicated at the curves. Dotted lines with symbols: the data from method M1; solid lines: linear fits according to (44),
separately for low and high Re. Red dashed lines approximation by (45) with parameters C6,7, C ′

6,7, Cνκ,κκ , C ′

νκ,κκ from a best fit, see table 2.

Table 2. Fit parameters of the scaling (45) for the results of M1 shown in figure 4.

s C6 Cνκ 104C ′

6 103C ′

νκ C7 Cκκ 104C ′

7 102C ′

κκ

1.5 0.73 −17.78 7.33 45.33 0.37 −4.29 20.94 11.58
3 1.35 −30.71 6.17 19.71 0.63 2.38 94.64 5.80
5 2.22 −89.19 1.73 6.85 1.00 −8.22 23.28 1.65
8 3.22 −32.12 4.88 4.86 1.46 −45.80 6.12 0.58
10 3.83 52.11 9.16 3.48 1.75 −84.36 2.63 0.36

4.2.2. Methods M1 and M2. As can be seen in figure 7, for
small scale separations s = 1.5, 3, 5 or for Re & 1 the values
of τ6νκ from both methods coincide fairly well. Deviations
lie within errors. For large s = 8, 10, however, we find the
deviations growing with falling Re. We have to conclude that
the neglect of cf and/or the deviation of K1 from Rzz (see
section 2.5) has its strongest effects for low Re and high s.
In contrast, the differences between the τ7κκ values from
methods M1 and M2 are clearly smaller, reaching a significant
magnitude (exceeding errors) only for small Re, s = 10 and
for 20. Re. 300 and s = 5, 8, 10. A possible reason for this
is again insufficient numerical resolution.

5. Comments and extensions

5.1. Alternative scaling

As an alternative to (43), one might consider

1

τ6νκ

= C6urmskf + Cνκ(ν + κ)
k2

f

2
,

1

τ7κκ

= C7urmskf + Cκκκk2
f .

(48)

Then, by multiplying with the dynamic time τ0 = (urmskf)
−1

we arrive at

1

τ̃6νκ

= C6 +
Cνκ

Re
,

1

τ̃7κκ

= C7 +
Cκκ

Pe
, (49)

where the normalization is now with respect to τ0. Figure 8
shows the same results as figure 4, but now with the altered
scaling. Again, a linear fit is viable on each curve, but

only separately for low and high Re. The corresponding fit
parameters can be found in table 3. Unfortunately, an overall
fit analogous to (45) does not work satisfactorily here. In
striking contrast to figure 4, the lines for different s now lie
very close together.

This is reflected by the fit parameters given in table 3: for
small Re the values of Cνκ and Cκκ show only less variance
while for high Re this holds true for the values of C6 and C7.
So with the alternative scaling the model can be brought closer
to universality with respect to s.

5.2. A τ approach for compressible hydrodynamics?

One could be tempted to treat the system (38)–(40) in the spirit
of the τ approach in quite an analogous manner to what was
shown in section 2.1. In the ideal case and withU = 0, H = 0,
we have for the fluctuating fields

∂u

∂t
= −

(
u · ∇u

)′
− ∇h +f , (50)

∂h

∂t
= − (u · ∇h)′ − c2

s ∇ ·u, (51)

and for the mean flux an analogue of (6), but with the
term −c∇ p/ρ replaced by −c∇h. To close the system, an
evolution equation for the quantity c∇h seems therefore to be
indicated. From (3) (modified for compressibility) and (51)

9
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Figure 5. The ratio of the values of τ6νκ (top) and τ7κκ (bottom) determined by methods M1 and M3. Left/right: early/late values.
Labels: scale separation s.

Figure 6. Broken lines, symbols: τ
M3,late
6νκ and τ

M3,late
7κκ normalized by τvisc from method M3. Red solid line: τvisc/(1 + Re) and

0.5τvisc/(1 + Re), respectively. Values in the legend: scale separation s.

Table 3. Fit parameters of the alternative scaling (49) for the results shown in figure 8.

Small Re Large Re

s C6 Cνκ C7 Cκκ C6 Cνκ C7 Cκκ

1.5 0.23 1.93 0.14 1.94 0.48 −3.64 0.24 −0.30
3 −0.065 2.23 −0.26 2.13 0.44 −1.62 0.21 0.29
5 −0.34 2.28 −0.77 2.05 0.44 −2.45 0.19 0.31
8 −1.63 2.72 −1.19 1.96 0.40 −1.07 0.17 0.05
10 −3.19 3.32 −0.84 1.90 0.39 −0.53 0.17 −0.46
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Figure 7. The ratio of the values of τ6νκ (left) and τ7κκ (right) determined by methods M1 and M2. Labels; scale separation s. For symbol
legend, see figure 6.

Figure 8. Relaxation times τ̃6νκ (left) and τ̃7κκ (right), normalized to the dynamical time τ0 as functions of Re−1
= Pe−1, for different

values of the scale separation s, indicated at the curves. Dotted lines with symbols: data from method M1; solid lines: linear fits according
to (49), separately for low and high Re.

we get

∂ c∇h

∂t
= − c2

s c∇∇ ·u− c∇(u · ∇h) − ∇h∇ · (uC)

− ∇h · ∇(uc), (52)

∂
(
c∇h

)
i

∂t
= −

∂h

∂xi

∂u j

∂x j
C − u j

∂h

∂xi

∂C

∂x j
− c2

s c
∂ 2u j

∂xi∂x j

− third-order terms, (53)

where the second-order correlation c ∂2u j/∂xi∂x j can only
partly be expressed byFi . Together with the third-order terms,
these remaining parts could be modelled by a τ ansatz as used
for the diffusion terms in section 2.2, but note that here the
‘diffusivity’ is c2

s and we have no argument to consider the
not properly modelled terms to be small.

6. Conclusions

The main conclusion to be drawn from this work is that the
timescales used to model closure terms in the equations for the
mean flux uc and the mean square concentration c2 are nearly
independent of Re for Re > 10 and also nearly independent
of the scale separation ratio for kf/k1 > 3. Expressed in terms
of dynamical times, the resulting non-dimensional time scales
can be referred to as Strouhal numbers whose values are about
3 for the uc closure term and about 7 for the c2 closure
term. The former value is in good agreement with earlier
work using the τ approximation [5]. While it appears that in
the statistically stationary regime the model can describe the
results of the DNS rather well, we find clear discrepancies in
the free decay experiments. There, two different decay rates
are detected from which at best one can be explained by the
original model. However, when extending the modelling of
the triple correlation terms in the equation for Fz to include,
apart from the relaxation term, also terms proportional to its
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Figure 9. τM3
6νκ/τ

M1
6νκ and τM3

62 /τM1
6νκ , according to (57). Curve labels: scale separation s.

Figure 10. τ62 (normalized by τ0) and k1 from method M3 according to (60). Curve labels: scale separation s.

first and second time derivatives, consistency with the decay
experiments can be achieved.

Equipped with this knowledge, we may now be better
justified in using the closure hypotheses discussed here for
the quantities uc and c2. On the other hand, as illustrated
by the results of the present study, it is quite clear that
these closure hypotheses lack thorough justification [22].
One should therefore in future strive to find systematic
discrepancies from the anticipated scalings. One example that
we alluded to in this paper is the inhomogeneous case in which
the τ approach may break down. Future work in that direction
seems now to be highly desirable, because in virtually all
astrophysical applications the turbulence is inhomogeneous or
at least anisotropic.
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Note added in proof. A basic difficulty of the considered
closure is its inability to model the free decay of Fz and Q
properly. These processes turned out to require a description
by two exponentials with different decay times, see section 4.
Including a second order time derivative in modelling the
terms on the rhs of (24)

∂Fz

∂t
= −

Fz

τ6νκ

− τ62
∂2Fz

∂t2
(54)

makes resolving this issue possible. With an exponential
ansatz for Fz ∝ exp λt , the characteristic equation is

λ2 +
1

τ62
λ +

1

τ6νκτ62
= 0 (55)

having the solution

λ1,2 = −
1

2τ62

(
1 ±

√
1 −

4τ62

τ6νκ

)
. (56)

Hence, using τ6νκ > 0, we have 0 < τ62 < τ6νκ/4 for the
observed non-oscillatory decay. The parameters τ6νκ and τ62

can be derived from the early and late decay times (see
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section 4.2.1) by

τ6νκ = τ
early
6νκ + τ late

6νκ , τ62 =
τ

early
6νκ τ late

6νκ

τ6νκ

, (57)

and the results are shown in figure 9. Clearly, the discrepancy
in τ6νκ between methods M1 and M3 persists.

It can be overcome by using in addition a first-order time
derivative when modelling the terms on the rhs of (24):

∂Fz

∂t
= −

Fz

τ6νκ

− k1
∂Fz

∂t
− τ62

∂2Fz

∂t2
. (58)

Now the characteristic equation is

λ2 +
1 + k1

τ62
λ +

1

τ6νκτ62
= 0 (59)

and it is no longer possible to derive all three wanted
parameters, τ6νκ , τ62 and k1, from the two measured decay
times. So we identify τ6νκ with the value obtained by method
M1, τM1

6νκ , and get

τ62 =
τ

early
6νκ τ late

6νκ

τM1
6νκ

, k1 =
τ

early
6νκ + τ late

6νκ

τM1
6νκ

− 1. (60)

Results are given in figure 10 where it can be seen that
the values for the high scale separations s = 5, 8, 10 are fairly
close to each other. Thus there is most likely an asymptotic for
s → ∞. Note finally the similarity of (58) to (33) (specified
for free decay, i.e. ∇C = 0).
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