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Abstract We combine a convectively driven dynamo in a spherical shell with a nearly
isothermal density-stratified cooling layer that mimics some aspects of a stellar corona to
study the emergence and ejections of magnetic field structures. This approach is an exten-
sion of earlier models, where forced turbulence simulations were employed to generate mag-
netic fields. A spherical wedge is used which consists of a convection zone and an extended
coronal region to ≈1.5 times the radius of the sphere. The wedge contains a quarter of the
azimuthal extent of the sphere and 150◦ in latitude. The magnetic field is self-consistently
generated by the turbulent motions due to convection beneath the surface. Magnetic fields
are found to emerge at the surface and are ejected to the coronal part of the domain. These
ejections occur at irregular intervals and are weaker than in earlier work. We tentatively as-
sociate these events with coronal mass ejections on the Sun, even though our model of the
solar atmosphere is rather simplistic.

Keywords Magnetic fields, corona · Coronal mass ejections, theory · Interior, convective
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1. Introduction

Recent observations of the Solar Dynamic Observatory (SDO: Pesnell, Thompson, and
Chamberlin, 2012) have provided us with a record of impressive solar eruptions. These erup-
tions are mostly associated with coronal mass ejections (CMEs). These are events through
which the Sun sheds hot plasma and magnetic fields from the corona into the interplane-
tary space. The energy causing such huge eruptions is stored in the magnetic field and can
be released via reconnection of field lines (Sturrock, 1980; Antiochos, De Vore, and Klim-
chuk, 1999). Some of the CMEs are directed towards the Earth, hitting its magnetosphere
and causing phenomena like aurorae. Furthermore, encounters with CMEs can cause sudden
outages of GPS signals due to ionospheric scintillation. The resulting radiation dose from
such events poses risks to astronauts. This is now also of concern to airlines, because the
radiation load during polar flights can reach annual limits, especially for pregnant women.
This leads to great interest of scientists in many fields of physics. However, there is an addi-
tional motivation which comes along with space weather effects. The solar dynamo, which
is broadly believed to be responsible for the generation of the solar magnetic field, needs
to be sustained by shedding magnetic helicity from the Sun’s interior (Blackman and Bran-
denburg, 2003). Mean-field and direct numerical simulations have shown that the magnetic
field generation is catastrophically quenched at high magnetic Reynolds numbers in closed
systems (Vainshtein and Cattaneo, 1992) that do not allow magnetic helicity fluxes out of the
domain (Blackman and Field, 2000a, 2000b; Brandenburg and Sandin, 2004), or between
different parts of it (Brandenburg, Candelaresi, and Chatterjee, 2009; Mitra et al., 2010;
Hubbard and Brandenburg, 2010). The magnetic Reynolds number, which quantifies the
relative importance of advective to diffusive terms in the induction equation, is known to be
very large in the Sun, therefore implying the possibility of catastrophic quenching in models
of the solar dynamo, unless efficient magnetic helicity fluxes occur, for example through
CMEs (Blackman and Brandenburg, 2003). Indeed, CMEs are well known to be closely
associated with magnetic helicity (Low, 2001). In particular observations (Plunkett et al.,
2000; Régnier, Amari, and Kersalé, 2002) and a recent study by Thompson, Kliem, and
Török (2011), where the observations are compared with numerical models, suggest that
CMEs have a twisted magnetic structure, implying that CMEs transport helicity outwards.

There has been significant progress in the study of CMEs in recent years. In addition to
improved observations from spacecraft, e.g. SDO or the Solar TErestical RElation Obser-
vatory (STEREO: Kaiser et al., 2008), there have also been major advances in the field of
numerical modeling of CME events (Roussev et al., 2002; Archontis et al., 2009). However,
the formation and the origin of eruptive events like CMEs is not yet completely understood.
Simulating CMEs and their formation is challenging. Leaving the difficulties of modeling
the interplanetary space aside, a CME, after being ejected into the chromosphere or the
lower corona, travels over an extended radial distance to the upper corona. In this environ-
ment, density and temperature vary by several orders of magnitude, which is not easy to
handle in numerical models. Additionally, the origin of the CMEs is assumed to relate to
the magnetic fields and the velocity pattern at the surface. However, the surface magnetic
and velocity fields are rooted in the solar convection zone, where convective motions, in
interplay with differential rotation, generate the magnetic field and the velocity patterns that
are observed at the surface. The majority of researchers modeling CMEs do not include the
convection zone in their setup, and thereby neglect the effect of the magnetic and velocity
fields being rooted to this layer. Often the initial conditions for the magnetic and velocity
fields are prescribed or taken from 2D observations; see for example Antiochos, De Vore,
and Klimchuk (1999) and Amari et al. (1999) as well as Török and Kliem (2003).
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Another approach is to study the emergence of flux ropes from the lower convection
zone into the corona. In the presence of strong shear, convection simulations have been
showing the formation of flux tubes (Guerrero and Käpylä, 2011; Nelson et al., 2011),
but such structures are similar to vortex tubes whose diameter is known to relate with the
visco-resistive scale (Brandenburg, Procaccia, and Segel, 1995). In other approaches flux
ropes are inserted in a self-consistent model, but their origin is left unexplained. In sev-
eral recent papers (Martínez-Sykora, Hansteen, and Carlsson, 2008; Jouve and Brun, 2009;
Fang et al., 2010), the focus lies on the emergence of magnetic flux and the resulting fea-
tures in the solar atmosphere. However, eruptive events have not been investigated with
this setup. In earlier work (Warnecke and Brandenburg, 2010, hereafter WB) a different ap-
proach was developed. The solar convection zone was combined with a simple model of
the solar corona. The magnetic field, which was here generated by dynamo action beneath
the solar surface, emerged through the surface and was ejected out of the domain. The fo-
cus was on the connection of the dynamo-generated field and eruptive events like CMEs
through the dynamo-generated twist. WB used a simplified coronal model and drove the
dynamo with forced turbulence. These simplifications allowed them to study the emergence
and a new mechanism to drive ejections in great detail. In subsequent work (Warnecke,
Brandenburg, and Mitra, 2011, hereafter WBM), the setup of WB was improved by using a
spherical coordinate system and helical forcing with opposite signs in each hemisphere to
mimic the effects of rotation on inhomogeneous turbulence. In addition, WBM included the
stratification resulting from radial gravity for an isothermal fluid. To improve this model, we
now employ convection to generate the velocity field. In a related approach, Pinto and Brun
(2011) considered convective overshoot into the chromosphere and the excitation of gravity
waves therein, but dynamo-generated twist seemed to be unimportant in their work. The tur-
bulent motions driving the generation of magnetic field are now self-consistently generated
by convective cells operating beneath the surface. The setup of the convection zone follows
ideas of Käpylä, Korpi, and Brandenburg (2008), Käpylä et al. (2010, 2011) and Käpylä,
Mantere, and Brandenburg (2011, 2012). There are other approaches simulating convection
in hot massive stars, which have thin subsurface convection zones (Cantiello et al., 2011).
But we now use an extended cooling layer to describe some properties of a solar corona. The
results of this work complement those of earlier work and can be compared with observa-
tions. The model of the solar atmosphere is still a very simplified one, but can be regarded as
a preliminary step, which will provide a reference point for improved work in that direction.

2. The Model

As in WB and WBM, a two-layer model is used, which represents the convection zone and
an extended corona-like layer in one and the same model. Our convection zone is similar to
those of Käpylä et al. (2010, 2011). The domain is a segment of the Sun and is described
in spherical polar coordinates (r, θ,φ). We model the convection zone starting at radius r =
0.7R and the solar corona until r = Rc, where Rc = 1.5R in the present models, where R

corresponds to the solar radius. In the latitudinal direction, our domain extends in colatitude
from θ = 15◦ to 165◦ and in the azimuthal direction from φ = 0◦ to 90◦. We solve the
following equations of compressible magnetohydrodynamics:

∂A

∂t
= U × B + η∇2A, (1)

D lnρ

Dt
= −∇ · U , (2)
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DU

Dt
= g − 2Ω0 × U + 1

ρ
(J × B − ∇p + ∇ · 2νρSSS) − D(r, θ, t), (3)

T
Ds

Dt
= 1

ρ
∇ · K∇T + 2νSSS2 + μ0η

ρ
J 2 − Γcool, (4)

where the magnetic field is given by B = ∇ × A and thus obeys ∇ · B = 0 at all times, μ0

is the vacuum permeability, η and ν are the magnetic diffusivity and kinematic viscosity,
respectively, D/Dt = ∂/∂t + U · ∇ is the advective time derivative, ρ is the density, and U

is the velocity. The traceless rate-of-strain tensor is given by

Sij = 1

2
(Ui;j + Uj ;i ) − 1

3
δij∇ · U , (5)

where semicolons denote covariant differentiation; see Mitra et al. (2009) for details.
Ω0 = Ω0(cos θ,− sin θ,0) is the rotation vector, p is the pressure, K is the radiative heat
conductivity, and D(r, θ, t) describes damping in the coronal region; see Section 2.2 for
details. The gravitational acceleration is given by

g = −GMr/r3, (6)

where G is Newton’s gravitational constant, and M is the mass of the star. The fluid obeys
the ideal gas law, p = (γ −1)ρe, where γ = cp/cv = 5/3 is the ratio of specific heats at con-
stant pressure and constant volume, respectively, and e = cvT is the internal energy density,
which defines the temperature T . The cooling term Γcool will be explained in Equation (10)
below in more detail.

2.1. Initial Setup and Boundary Conditions

For the thermal stratification in the convection zone, we consider a simple analytical setup
instead of profiles from solar structure models as in, e.g., Brun, Miesch, and Toomre (2004).
The hydrodynamic temperature gradient is given by

∂T

∂r
= −|g|

cv(γ − 1)(m + 1)
, (7)

where m = m(r) is the radially varying polytropic index, for which we assume a stepwise
constant profile. We also use Equation (7) as the lower boundary condition for the tempera-
ture. This gives the logarithmic temperature gradient ∇ (familiar to those working in stellar
physics, but not to be confused with the operator ∇) as

∇ = ∂ lnT

∂ lnp
= 1

m + 1
. (8)

The stratification is convectively unstable if ∇ − ∇ad > 0, where ∇ad = 1 − 1/γ is the adia-
batic temperature gradient, corresponding to m < 1.5 for unstable stratification. We choose
m = 1 in the convectively unstable layer beneath the surface, r < R. The region above r = R

is stably stratified and isothermal due to a cooling term Γcool with respect to a constant refer-
ence temperature in the entropy equation. The density stratification is obtained by requiring
the hydrostatic equilibrium condition to be satisfied.

The thermal conductivity follows from the constancy of the radial luminosity profile
L(r) = L0 = const throughout the domain and is given by

K = L0

4πr2∂T /∂r
. (9)
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Figure 1 Initial stratification of
temperature (dashed line),
density (solid), pressure
(dot-dashed) and the
Brunt–Väisälä frequency
N2 = −(|g|/Hp)(∇ − ∇ad)

(dash-triple-dotted) for Run A5.
The subscripts b refers to the
values at r = 0.7R. The dotted
horizontal (vertical) line denotes
the value of zero (r = R)

To speed up the thermal relaxation processes, we apply shallower profiles, corresponding to
ρ ∝ T 1.4, for the thermal variables within the convectively unstable layer. The value m = 1
is just used in the convection zone to determine the thermal conductivity. In Figure 1 we
show the initial non-convecting stratification. The radial temperature gradient at the bottom
of the domain is set to a constant value, which leads to a constant heat flux into the domain.
In the coronal part the gradient goes smoothly to 0 by using the r dependent cooling function
Γcool, which is included in the entropy evolution (4). The cooling term is given by

Γcool = Γ0f (r)

(
c2

s − c2
s0

c2
s0

)
, (10)

where f (r) is a profile function equal to unity in r > R and smoothly connecting to zero
in r ≤ R, and Γ0 is a cooling luminosity chosen so that the sound speed in the coronal part
relaxes towards c2

s0 ≡ c2
s (r = Rc). Whether the stratification is convectively stable or not

depends on the Brunt–Väisälä frequency N , defined through

N2 = |g|
(

1

γ

∂ lnp

∂r
− ∂ lnρ

∂r

)
= − |g|

Hp

(∇ − ∇ad), (11)

where Hp = −∂r/∂ lnp is the pressure scale height. If N2 is negative, the stratification is
unstable.

We initialize the magnetic field as a weak, random, Gaussian-distributed seed field in
the whole domain. In the coronal part the magnetic field diffuses after a short time. We
do not use a background coronal field, so the field is self-consistently generated by the
dynamo in the convective layer. We apply periodic boundary conditions in the azimuthal
direction over a 90◦ fraction of the full circumference. For the velocity we take stress-
free boundary conditions on all other boundaries. As in WBM, the stress-free boundary
conditions prevent mass flux, so no stellar wind is possible. Because no mass can es-
cape, material will eventually fall back from the boundary. Thermodynamic variables have
zero gradients at the latitudinal boundaries. We employ perfect conductor boundaries for
the magnetic field at the latitudinal and at the lower radial boundaries, and radial field
conditions at the outer radial boundary. The latter is motivated by the fact that in the
Sun, the solar wind pushes the magnetic field to open field lines and at a radius of r =
2.0 . . .2.5 solar radii. The field lines are mostly radial (Levine, Schulz, and Frazier, 1982;
Hoeksema, Wilcox, and Scherrer, 1982). This choice has been substantiated by subsequent
work of Wang and Sheeley (1992) as well as Schrijver and De Rosa (2003). While this
choice might still be too restrictive for coronal holes and coronal streamers, and given also
that our radial extent in most of the simulations is smaller than r = 2R, we nevertheless
choose the vertical field boundary condition, because it satisfies our primary objective of
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letting magnetic helicity leave the domain, which is believed to be crucial for the dynamo
to operate at large values of ReM (Blackman and Field, 2000a, 2000b; Brandenburg and
Sandin, 2004). However, we must be aware of the fact that with this choice our description
of the field in the exterior layer is not a realistic one.

To describe the corona as an isothermal extended cooling layer is a serious simplification,
in that the temperature inside the coronal layer is not higher than in the convection zone as
in a real stellar corona, but it stays fixed at the surface value; see Figure 1. Besides the fact
that a simple cooling layer is easy to handle numerically, we emphasize the importance of
facilitating comparison with previous models of WBM. It can also be seen as a step towards
studying effects that are not solely due to a low plasma β corona, for which the magnetic
pressure, i.e. the magnetic field, is strong compared with the gas pressure (β = 2μ0p/B2).
Indeed, given that our initial field is weak, the plasma β is necessarily large in the outer parts.
We note that it is not even clear whether a hot corona promotes or hinders coronal ejections.
To understand the formation and evolution of magnetic ejections, studies that isolate these
effects, such as the present one, may be important.

We use the PENCIL CODE1 with sixth-order centered finite differences in space and a
third-order accurate Runge–Kutta scheme in time; see Mitra et al. (2009) for the extension
of the PENCIL CODE to spherical coordinates. We use a grid size of 128 × 128 × 64 mesh
points (Runs A5 and Ar1), and 256 × 256 × 128 (Run A5a).

2.2. Velocity Damping in the Corona

Whether the solar corona rotates like a solid body or differentially coupled with the photo-
sphere is unclear. In recent work by Wöhl et al. (2010), where SOHO-EIT data of the bright
points in the solar corona were used to estimate the rotation speeds, it was found that the
corona rotates similarly as the small magnetic features in the photosphere. Similar results
have been obtained by Badalyan (2010), where the coronal rotation has been measured by
analyzing the green Fe XIV 530.3 nm line. This author finds also a variation pattern with
the activity cycle. However, the observations of the “boot” coronal hole by SKYLAB sug-
gested rigid rotation (Timothy, Krieger, and Vaiana, 1975). Recent work on coronal holes
by Lionello et al. (2005) claims that the rigid rotation is only an apparent one. The magnetic
field is sheared by the differential rotation, but the boundary of the hole remains relatively
unchanged, due to reconnection. Owing to the low plasma β in the solar corona, the fluid mo-
tions are dominated by the magnetic fields whose footpoints are anchored in the photosphere
or even further down. So the magnetic field might then be rigid enough to prevent differ-
ential rotation of the solar corona. However, the observed bright points and other features
in the corona are strongly correlated with the magnetic field so they can give a misleading
picture about the global rotation of the corona.

In our simulations, the Coriolis force is included in the momentum equation as a conse-
quence of the rotation. In the solar corona the density is more than 14 orders of magnitude
smaller than in the lower convection zone. Because of the weak density stratification in our
simulation, the Coriolis force in our coronal part is too strong and can cause possible arti-
facts such as the magnetorotational instability. To avoid this – at least for runs with rapid
rotation – we apply a damping function D(r, θ) in the momentum equation, which is given
by

D(r, θ, t) = 1

τD
Θ(r − R)U(r, θ, t), (12)

1http://pencil-code.googlecode.com.

http://pencil-code.googlecode.com
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where

Θ(r − R) = 1

2

[
1 + tanh

(
r − R

w

)]
, (13)

with τD being the damping time and w the width of the transition layer from convection zone
to the coronal part. Here and elsewhere, the overbar denotes averaging over φ, defined as
F(r, θ, t)=

∫
F(r, θ,φ, t)dφ/2π . Occasionally, we also use time averages denoted by 〈.〉t .

2.3. Units, Nondimensional Quantities, and Parameters

Dimensionless quantities are obtained by setting

R = GM = ρb = cp = μ0 = 1, (14)

where ρb is the density at r = 0.7R. Below, we will describe the properties of the runs
by the following dimensionless parameters: fluid Reynolds number Re = urms/νkf, mag-
netic Reynolds number ReM = urms/ηkf, where kf = 2π/0.3R is an estimate for the typi-

cal wavenumber of the energy-carrying eddies and urms =
√

3/2〈U 2
r + U 2

θ 〉 is the volume-
averaged rms velocity in the convection zone (r ≤ R). In our definition of urms we omit the
contribution from the φ-component of the velocity, because it is dominated by contributions
from the large-scale differential rotation that develops when rotation is included and would
give an atypical estimate of the convective turnover time. To compensate for this, and to
have an estimate of urms comparable with earlier work, we apply the 3/2 correction fac-
tor. We also define the magnetic Prandtl number PrM = ν/η = ReM /Re and the Coriolis
number Co = 2Ω0/urmskf. Time is expressed in units of τ = (urmskf)

−1, which is the eddy
turnover time in the convection zone. We measure the magnetic field strength as the rms
value averaged over the convection zone Brms, where we often normalize this value with the
equipartition value of the magnetic field defined by B2

eq = μ0〈ρu2
rms〉r≤R . The relative kinetic

helicity is hrel(r, t) = ω · u/ωrmsurms, where ω = ∇ × u is the vorticity and ωrms is its rms
value inside the convection zone.

3. Results

3.1. Hydrodynamic Phase of the Simulations

After around 100 turnover times, convection has reached saturation and we find convec-
tion cells as typical patterns in the radial velocity just below the surface. In our model, the
dominant energy transport mechanisms are radiative and convective fluxes in the bulk of
the convection zone and an (optically thin) cooling flux in the outer (coronal) parts. The
radiative and convective fluxes are defined as

Frad = −K
∂T

∂r
, Fconv = cP ρu′

rT
′, (15)

where the averages are taken over θ and φ and the prime indicates fluctuations about the
respective mean quantity. In our present setup, however, the convective flux reaches barely
about 5 % in the convection zone; see Figure 2, where we plot the relevant contributions
to the luminosity for Run A5. Above the surface the cooling takes over to maintain an
approximately isothermal atmosphere. The total flux is constant, except for small departures
near the surface. The kinetic energy and viscous fluxes are negligible in the present runs.
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Figure 2 Flux balance from
Run A5. The different
contributions to the total
luminosity (solid blue line) are
due to radiative diffusion (dashed
red line), resolved convection
(dotted black line) and cooling
(dash-triple-dotted black line).
The black thin line denotes the
zero level and the surface
(r = R), respectively.

Figure 3 Radial velocity (Ur ) above the surface for r = 1.15, 1.25, 1.35R from left to right, for Run A5.
Dark blue shades represent negative and light yellow positive values.

Figure 4 Root-mean-square
values of Ur (dotted), Uθ

(dashed), and Uφ (dash-dotted)
as a function of radius for
Run A5. The solid line shows the
radial profile of our nominal rms
velocity,

urms =
√

3/2(U2
r + U2

θ ). The
(red) vertical line indicated the
surface at (r = R). The values are
normalized by

√
GM/R.

To determine the degree of overshooting and penetration into the stably stratified layers
above the convection zone, we show in Figure 3 the radial velocity above the surface at
r = 1.15, 1.25, and 1.35R for Run A5. At low latitudes, there is very little radial penetration
(velocity features are only seen until r = 1.15R), while at higher latitudes the radial velocity
pattern is transmitted all the way to 1.35R. This is not surprising in view of the Taylor–
Proudman theorem, which states that for rapid rotation (large values of Co) the local angular
velocity of the gas is constant along cylindrical surfaces.

Next, we plot in Figure 4 the rms values of all three velocity components for Run A5. The
amplitude of the radial velocity component falls off the fastest. The latitudinal component
also falls off with radius, but remains about three times larger than the radial component. The
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Figure 5 Radial velocity (Ur ) beneath the surface (r = 0.89R) for Runs A5, A5a, and Ar1 from left to right.
Dark blue shades represent negative and light yellow positive values.

Table 1 Summary of the runs. Re is the fluid Reynolds number, urms =
√

3/2(U2
r + U2

θ ) is the volume-

averaged rms velocity in the convection zone normalized by
√

GM/R, PrM is the magnetic Prandtl number,
Co is the Coriolis number, and hrel is the maximum value of the relative kinetic helicity using azimuthal

averages as defined in Section 2.3. ρb
ρs

and ρb
ρt

give the density ratios of the bottom of the convection zone to
those at the surface and the top of the domain, respectively. In the right-most column we note if damping for
velocity in the coronal part is used (Y) or not (N); see Section 2.2.

Run Resolution urms√
GM/R

Re PrM
B2

rms
B2

eq

ρb
ρs

ρb
ρt

Co hrel D

A5 1282 × 64 0.0072 3.3 10 0.1 – 0.4 3.6 39 7 0.5 N

A5a 2562 × 128 0.0105 100 1 0.2 3.6 39 4.5 0.3 N

Ar1 1282 × 64 0.0040 38 1 1.5 – 5.5 3.6 39 50 0.3 Y

longitudinal component, on the other hand, increases with radius in a way that is compatible
with rigid rotation with an angular velocity that is somewhat larger than the rotation rate of
the frame of reference.

The size of the convection cells depends strongly on the strength of rotation and the
degree of density stratification; see also Käpylä, Mantere, and Brandenburg (2011). We plot
the radial velocity Ur at r = 0.89R for Runs A5, A5a, and Ar1 in Figure 5. The Run A5
has a low fluid Reynolds number and therefore the convection cells are large; see Table 1.
The flow pattern shows clear ‘banana cells’ as in previous work with comparable Coriolis
parameter, cf. Käpylä et al. (2011). A higher fluid Reynolds number and higher resolution, as
in Run A5a, allow the velocity field to form more complex structures. However, the banana
cells are still visible. If one now looks at a simulation with more rapid rotation (Run Ar1,
plotted in the right-most panel of Figure 5) with a Coriolis number of Co = 50, the number
of banana cells increases and they are more clearly visible than in Run A5a. Note also that
the radial velocity is now significantly reduced at high latitudes inside the inner tangent
cylinder.

In the Sun, differential rotation is an important element to produce the magnetic field
structures observed at large scales, exhibiting a cyclic behavior over time, as manifested by
the sunspot cycle. To illustrate the differential rotation profiles generated in the simulations,
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Figure 6 Differential rotation profiles Ω(r, θ) = Uφ/(r sin θ) + Ω0 for Runs A5, A5a, and Ar1 from left to
right. Dark blue shades represent low and light yellow high values, overplotted by the isocontours with solid
black lines. The dotted white lines parallel to the rotation axis are given for orientation and the dashed line
indicates the surface (r = R).

we plot the azimuthally averaged angular velocity, Ω(r, θ) = Uφ/(r sin θ) + Ω0, for Runs
A5, A5a, and Ar1 in the saturated state of the simulation; see Figure 6. In the plot, we show
isocontours of angular velocity with solid black lines. In the convection zone the contours
of local angular velocity tend to be cylindrical, which is likely a consequence of the absence
of a strong latitudinal modulations of specific entropy (Brandenburg, Moss, and Tuominen,
1992; Kitchatinov and Rüdiger, 1995; Miesch, Brun, and Toomre, 2006). The coronal part
seems to rotate as a solid body outside the outer tangent cylinder (i.e., for r sin θ > R),
while inside it some differential rotation occurs also in the coronal part. In the convection
zone between the inner and outer tangent cylinders, the angular velocity is enhanced relative
to that inside the inner tangent cylinder (see the first and second panels of Figure 6), while
in the case of extremely rapid rotation this may actually be reversed.

In the three runs shown in Figure 6 the stratification in the whole domain is just ρb/ρt =
40, which is rather small compared to the stratification of the Sun (ρb/ρt ∼ 1014). It seems,
therefore, that the Coriolis force is acting much more strongly in the coronal part of our
simulation than in reality. In the Sun the Lorentz force plays a more important role in the
corona than in our model. In the convection zone, we find quenching of convection due
to rapid rotation. In Run A5, where Co = 7, the lines of constant rotation rate are more
radial than vertical and show super-rotation, i.e., the equator rotates faster than the poles.
As expected, this tends to coincide with locations where the Reynolds stress in the radial
direction is negative (see, e.g., Rüdiger, 1980). However, the convection cells are rather
big and have a strong local influence on Uφ and could in principle lead to subrotation; see
the corresponding discussion in Dobler, Stix, and Brandenburg (2001). Note that the rms
velocity in Run A5 is two times smaller than in Run A5a, which has higher resolution
and higher fluid and magnetic Reynolds numbers (Re = ReM = 100). Due to this, we find
clear super-rotation, even though the Coriolis number is slightly lower (Co = 4.5) than what
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Figure 7 Relative helicity hrel(r, t) = ω · u/ωrmsurms plotted for Runs A5, A5a, and Ar1 from left to right.
Dark blue shades represent negative and light yellow positive values. The dashed line indicates the surface
(r = R).

is realized in Run A5. In the third case, Run Ar1, where the rotation is extremely rapid
(Co = 50), we also find super-rotation, where the lines of constant rotation rate are almost
all vertical. In comparable work (Käpylä et al., 2011; Käpylä, Mantere, and Brandenburg,
2011), super-rotation has been found, when the Coriolis number was larger than 4. This
is similar to our results including a coronal part. In addition, there is a minimum of the
rotation rate at mid-latitudes and a polar vortex at high latitudes. Rotation profiles, which
show a comparable behavior, have been found by several groups (Miesch et al., 2000; Elliot,
Miesch, and Toomre, 2000; Käpylä et al., 2011; Käpylä, Mantere, and Brandenburg, 2011).
The region with the higher rotation rate near the equator is limited to the upper convection
zone and can even penetrate into the coronal part. In Run Ar1 the velocity damping described
in Section 2.2 is used. By comparing the right-most panel of Figure 6, with damping, to
the left-most panels, without it, we conclude that the damping does not make much of a
difference to the coronal velocity structures.

Simulations with randomly forced turbulence (WB,WBM) have shown that the relative
kinetic helicity hrel has a strong influence both on the generation of large-scale magnetic
fields and the ejection events. In WB and WBM, values of hrel of order unity were achieved
by using a forcing function with purely helical plane waves. In the convection runs presented
here, however, values of large relative helicity, hrel = 0.5, are obtained (for Run A5), at
least at certain radii. In Figure 7, we present contour plots of azimuthally averaged relative
helicity in the meridional plane for Runs A5, A5a, and Ar1. All three show the typical
sign rule of kinetic helicity under the influence of rotation, i.e. the northern hemisphere has
predominantly a negative sign and the southern a positive one. Close to the bottom of the
convection zone, the sign changes, which has earlier been reported by several authors both
in Cartesian (e.g., Brandenburg et al., 1990; Ossendrijver, Stix, and Brandenburg, 2001) and
spherical geometries (e.g. Miesch et al., 2000; Käpylä et al., 2010). Only in Run Ar1 with
rapid rotation, the behavior is not that clear. The relative helicity is no longer confined to the
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Figure 8 Time-averaged Bφ for Run A5, A5a, and Ar1 from left to right. Dark blue shades represent nega-
tive and light yellow positive values. The magnetic field is normalized by the equipartition value. The dashed
line indicates the surface (r = R).

convection zone, but significant values occur also in the coronal region. The sign rule still
holds within the convection zone, while a more complicated sign behavior is visible in the
coronal part. The maximal values of the azimuthally averaged helicity are around hrel = 0.3,
occurring close to the surface. In Run A5a, the maximum value is slightly higher and is
located in the middle of the convection zone, although relatively high values are present in
the coronal part as well. It is not yet completely clear how high values of relative kinetic
helicity can be achieved; strong rotation tends to suppress it, whereas strong stratification
increases it. Its exact role in generating coronal ejections is yet unclear.

3.2. Convective Dynamo

The convective motions generate a large-scale magnetic field due to dynamo action. The
magnetic field grows first exponentially and begins then to affect the velocity field. The
effects of this backreaction can be subtle in that we found a 6 % enhancement of the rms
velocity after saturation. The growth of the magnetic field saturates after around 200 to 1000
turnover times, depending on the Coriolis and Reynolds numbers. In the runs in Table 1, we
obtain different dynamo solutions for the saturated field.

In Figure 8 we show the time-averaged azimuthal magnetic field Bφ for Run A5, A5a,
and Ar1. Note that the φ component of the magnetic field is also strong in the coronal
part and roughly antisymmetric about the equator. Furthermore we find an oscillation of
the volume-averaged rms magnetic field in the convection zone; see the left-hand panel of
Figure 9 for Run A5. The growth tends to be steeper than the decline, the period being
around t/τ = 220. The field reaches a maximum of 60 % of the equipartition field strength,
Beq, which is comparable to the values obtained in the forced turbulence counterparts both
in Cartesian and spherical coordinates (WB,WBM). Comparing this with the change of the
kinetic energy, plotted as fluctuations of the rms velocity squared, we find an anti-correlation
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Figure 9 Phase relation of the magnetic field (B2
rms/B

2
eq, solid black lines) and the velocity field

(urms(t)
2/〈u2

rms〉t , dashed red lines) in the convection zone for Runs A5 (left panel) and Ar1 (right). The
velocity has been multiplied by a factor of 0.3 (left panel) and 3 (right), respectively, and smoothed over five
neighboring data points.

Figure 10 Variation of Bφ and
Br in the convection zone at
r = 0.9R for Run A5. Dark blue
shades represent negative and
light yellow positive values. The
dashed horizontal lines show the
location of the equator at
θ = π/2. The magnetic field is
normalized by the equipartition
value.

with respect to the magnetic field oscillation. The magnetic field is high (low), when the
velocity is low (high). In the work by Brun, Browning, and Toomre (2005), the authors
interpret this behavior as the interplay of the magnetic backreaction and the dynamo effect
of the differential rotation. Due to the Lorentz force a higher magnetic field strength leads to
quenching of the differential rotation. An increased magnetic field quenches the Reynolds
stress and thus lowers the differential rotation, which limits the magnetic field. A weak
magnetic field leads to stronger differential rotation. Similar behavior has been observed
also in previous forcing simulations (WBM). This behavior is not seen as clearly in the
large-scale magnetic field which shows variations in strength, but not in sign. As shown in
Figure 10 for Run A5, the Bφ and Br have local maxima in time and in latitude, but the
overall structure is nearly constant in time. Even though the large-scale field structure is
stationary, the small-scale structures show an equatorward migration near the equator. The
reason for this is unclear, but meridional circulation does not seem to play a role here.

In Run Ar1, the magnetic field reaches up to 5.5 times the equipartition value, but does
not show a periodic oscillation; see the right hand panel of Figure 9. In comparable work
(Käpylä et al., 2010), similar values for the field strength were found. However, the rms
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Figure 11 Variation of Bφ and
Br in the convection zone at
r = 0.9R for Run Ar1. Dark blue
shades represent negative and
light yellow positive values. The
dashed horizontal lines show the
location of the equator at
θ = π/2. The magnetic field is
normalized by the equipartition
value.

Figure 12 Variation of Uφ in the convection zone at r = 0.9R for Run A5 (left panel) and Run Ar1 (right
panel). Dark blue shades represent negative and light yellow positive values. The dashed horizontal lines
show the location of the equator at θ = π/2. The velocity is normalized by the mean rms velocity in the
convection zone.

velocity is also quenched, when the magnetic field is high. Looking at Bφ and Br , plotted
over time and latitude in Figure 11, the large-scale magnetic field is similar to Run A5,
which is constant in time without any oscillation. In the recent work by Käpylä, Mantere,
and Brandenburg (2012), the authors found an oscillatory behavior of Bφ and Br including
equatorward migration for latitudes below 60◦, which is the first time that such a result is
obtained from direct numerical convection simulation of rotating convection.

The azimuthal velocity Uφ versus time and latitude (Figure 12) shows minima at the
same times as the maxima of the magnetic field occur. In Run A5a, the occurrence of strong
magnetic fields suppresses the differential rotation. The pattern of the azimuthal velocity is
symmetric about the equator and shows an oscillatory behavior, which is not that clear in the
large-scale magnetic field. In the Uφ plot in Figure 12 of Run Ar1, we find just one localized
minimum, which coincides with the low values of urms(t)

2/〈u2
rms〉t between t/τ = 2100 and

2400.

3.3. Coronal Ejections

In the runs that we have been performed so far, and of which only three have been discussed
in this paper, only a small fraction of events can be identified with actual coronal ejections
similar to the ones seen in WB and WBM. Especially the Runs A5 and Ar1 show some
clear ejection events. There the magnetic field emerges out of the convection zone and is
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Figure 13 Time series of a coronal ejection near the equator (θ = π/2), taken from Run A5. The normalized

current helicity, μ0RJ · B/〈B2〉t , is shown in a color-scale representation from different times; dark blue
represents negative and light yellow positive values. The dashed horizontal lines show the location of the
surface at r = R.

ejected as an isolated structure. In Figure 13 we have plotted the normalized current helicity,

μ0RJ · B/〈B2〉t , as a time series for Run A5. At small scales, the current helicity density, J ·
B , is a good proxy for magnetic helicity density, A ·B , and is, as opposed to the latter, gauge
invariant. In addition, the current helicity can be an indicator of helical magnetic structures,
which are believed to be present in coronal mass ejections (Low, 1994, 2001; Plunkett et al.,
2000; Régnier, Amari, and Kersalé, 2002; Thompson, Kliem, and Török, 2011). Close to
the equator a bipolar structure emerges through the surface. The inner bulk has a positive
current helicity, in Figure 13 represented by a yellow color, and it pushes an arc with negative
current helicity ahead of it; see Figure 14. Such bipolar ejections have been identified in
earlier work (WBM) and compared with the ‘three-part structure’ of coronal mass ejection,
which is described in Low (1996). The three parts consist of a prominence, which is similar
to the bulk seen in our simulations, a front with an arc shaped structure corresponding to our
arc, and a cavity between these two features. A bipolarity of twisted magnetic field has also
been seen in observed magnetic clouds by Li et al. (2011). Even though the domain of the
simulation is larger in the θ direction than in WBM, the ejections are much smaller, which
is actually closer to the CMEs observed on the Sun. In the work of WBM the ejections
have a size that corresponds to about 500 Mm, whereas in this work they seems to have
a size corresponding to around 100 Mm if scaled to the solar radius. The ejections seem
to expand slightly, but no significant expansion rate can be measured using this resolution.
Comparing with the forced turbulence runs, the difference in size is mostly due to the more
complex and fluctuating magnetic field in convection runs. In the sequence of images of
Figure 14, an ejection near the equator reaches the outer boundary and leaves the domain.
To investigate the mechanism driving the ejection, we look at the dynamics of the magnetic
field in Figure 14, where field lines of the azimuthally averaged mean field are shown as
contours of r sin θAφ , and colors represent Bφ together with the density fluctuations and
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Figure 14 Time series of a coronal ejection zoomed into the region of the ejection near the equator
(θ = π/2), taken from Run A5. The dashed horizontal lines show the location of the surface at r = R. Left

column: normalized current helicity, μ0RJ · B/〈B2〉t . Middle column: magnetic field, contours of r sin θAφ

are shown together with a color-scale representation of Bφ . The contours of r sin θAφ correspond to field lines
of B in the r, θ plane, where solid lines represent clockwise magnetic field lines and the dashed ones counter–
clockwise. Right column: density fluctuations �ρ(t) = ρ(t) − 〈ρ〉t . For all plots, the color-scale represents
negative as dark blue and positive as light yellow.
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Figure 15 X-point-like structure
in the r,φ plane at the equator
(θ = π/2) at t/τ = 2204 zoomed
into the ejection region, taken
from Run A5. Contours of rAθ

are shown together with a
color-scale representation of Bθ ;
dark blue stands for negative and
light yellow for positive values.
The contours of rAθ correspond
to field lines of B in the r,φ

plane. The dashed horizontal
lines show the location of the
surface at r = R.

current helicity. During the ejection, one may notice a strong concentration of magnetic
field lines that are directed radially outwards. This concentration appears first beneath the
surface and then emerges below the current helicity structure and follows it up into the
coronal part. Investigating the direction of field lines of the mean field in the time series in
Figure 14, an X-point can be found. In the first panel, at r = 1.07R and θ = π/2 + 0.1,
the magnetic field lines form a junction-like shape. The dotted line represents a counter-
clockwise oriented field loop, so at the two corners of the junction there are field lines with
opposite signs. After around 14 turnover times this “junction” has reconnected at the same
position as where the ejection is detected. It appears that these two events are related to each
other. Looking at the magnetic field line in the r,φ plane, which here is not averaged over
the perpendicular direction (Figure 15), we identify a structure which has a shape similar to
an X-point.

The ejection causes also a strong variation in the density. If the time-averaged density
profile is subtracted from instantaneous ones, the density fluctuations are obtained. After
removing the density stratification one obtains �ρ(t) = ρ(t) − 〈ρ〉t . We plot these density
fluctuations, �ρ(t), in the right column of Figure 14 to visualize the effect of the ejection
on the density. The density in the ejection is much lower than in the rest of the coronal part.
However, the density variations are also associated with fluctuations in the specific entropy
(�s/cp ≈ 0.01), which suggests that thermal buoyancy also plays a role. One interpretation
could be that the strong magnetic field reduces the density to achieve total pressure equilib-
rium and the ejection rises partly because of magnetic buoyancy. Such an effect is also seen
by inspecting other ejections.

To characterize the emergence we plot different properties of the ejection in the θ,φ

plane; see Figure 16. The magnetic field shows a strong concentration in its radial and az-
imuthal components. The concentration is associated with a downflow in spite of it being a
low-density region. It is interesting to note that in this case the gas velocity does not reflect
the actual pattern speed. From the time evolution of the low-density region shown in Fig-
ure 14, we know that this region is moving radially upwards in a way that is consistent with
a motion expected from buoyancy forces. In particular, the specific entropy has a high value
in this region. In visualizations of the current density, we see the formation of two current
sheets. This leads to two current helicity regions of opposite sign.

When discussing coronal ejections, one is usually interested in the plasma β parameter to
characterize the corona. In our simplified coronal part, the plasma β does not decrease with
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Figure 16 Different properties of the ejection in the θ,φ plane at the surface (r = R) at t/τ = 2204, taken
from Run A5. Upper row, left panel: Contours of Ar are shown together with a color-scale representation
of Br ; dark blue stands for negative and light yellow for positive values. The contours of Ar correspond
to field lines of that part of B that is solenoidal in the θ,φ plane. Solid lines represent clockwise-oriented
magnetic field lines and dotted lines counter-clockwise ones. Middle panel: The arrows show (Uθ ,Uφ) and
colors show Ur (blue corresponds to downflows). Right panel: Color-scale representation of the density ρ;
dark blue stands for low and light yellow for high values. Lower row, left panel: Color-scale representation
of specific entropy s; dark blue stands for low and light yellow for high values. Middle panel: Color-scale
representation of the current density squared J 2; dark blue stands for low and light yellow for high values.
Right panel: Current helicity J · B , color-scale as in Figure 13. The dashed line indicates the equator at
θ = π/2 = 90◦ .

radius, but it stays rather high, which is due to the low magnetic field strength, especially
in the coronal part, even though B2

rms/B
2
eq = 0.1 – 0.4 in the convection zone. The time-

averaged value is always above 5 × 104, and is therefore not comparable with the values in
the solar corona, where the plasma β is very low because of the low density. There the mag-
netic field can drag dense plasma from the lower corona to its upper part. In our simulations
the density stratification of the convection zone is much lower than in the Sun. Therefore,
the density in the corona in our model is much higher and is closer to the density of the pho-
tosphere or the chromosphere. A rising magnetic flux tube has formed a low-density region
in its interior due to a higher magnetic pressure. As the tube rises further into the coronal
part, the density inside the tube is still lower than that outside because the coronal density is
rather high in our model.

The simplification of a high plasma β corona might not be suitable to describe properly
the mass flux of the plasma dragged by the magnetic field of the CME in the corona. How-
ever, the early work of Mikić, Barnes, and Schnack (1988), Ortolani and Schnack (1993),
and Wiegelmann (2008) has shown that an isothermal force-free approach (not to be con-
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Figure 17 Recurrence of ejections shown by plotting the dependence of the dimensionless ratio

μ0RJ · B/〈B2〉t on time t/τ and radius r in terms of the solar radius, taken from Run A5. The top pan-
els show a narrow band in θ in the northern hemisphere and the bottom ones in the southern hemisphere. We
have also averaged in latitude from 4.1◦ to 19.5◦ (left panel) and 32.5◦ to 45.5◦ (right). Dark blue shades rep-
resent negative and light yellow positive values. The dashed horizontal lines show the location of the surface
at r = R.

fused with force-free magnetic equilibria) can describe the coronal magnetic field and even
plasmoid ejections rather well. Note that in those papers the pressure gradient term was
omitted, just like in the coronal part of WB. How important this really is remains unclear,
because the pressure gradient term was not omitted in the work of WBM, which still showed
ejections similar to those of WB. It would therefore be useful to compare our present model
with one where the pressure gradient term is ignored in the coronal part, just like in WB.

The ejection seen in Figures 13 – 16 is not a single event – others follow in a recur-
rent fashion. However, the periodicity is not as clear as in previous work (WB,WBM). For
Run A5, for example, we observe around five ejections during a time interval of about 1000
turnover times. A clearer indication for the recurrence of the ejections can be seen in Fig-
ure 17, where the normalized current density is averaged over two narrow latitude bands
in each hemisphere. The slope of structures in the outer parts in these rt diagrams gives
an indication about the ejection speed Vej which turns out to be around one solar radius in
200 – 250 turnover times. This translates to Vej/urms ≈ 0.1, which is somewhat less than the
values 0.2 – 0.5 found for the simulations of WBM. However, the mechanism which sets the
time scale of ejections is at present still unclear.

Given that gravity decreases with radius, there is in principle the possibility of a radial
wind with a critical point at r∗ = GM/2c2

s (Choudhuri, 1998), which would be at r∗ = 9.3R,
i.e. well outside our coronal part. Because of this and the fact that we use closed boundary
conditions with no mass flux out of the domain, no such wind can occur in our simulations.
Using a boundary condition that would allow a mass flux in the radial direction could change
the speed and the ejection properties significantly. Including a solar-like wind in a model can
have two major effects, which require a much higher amount of computational resources.
The radial variation of gravity applied in these simulations implies the presence of a critical
point rather close to the surface of the convection zone. Therefore, if a wind were to develop,
the resulting velocity in the convection zone would be too high for a dynamo to develop; the
magnetic field would be blown out too quickly. Using instead a more realistic profile for the
solar wind with a position of the critical point around r∗ = 10R, the corresponding density
stratification would be too strong to be stably resolved.
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4. Conclusions

In the present paper we have presented an extension of the two-layer approach of WB and
WBM by including a self-consistent rotating convection zone into the model. We find a
large-scale magnetic field generated by the convective turbulent motion in the convection
zone. At moderate rotation rates, for a Coriolis number larger than three, we obtain a differ-
ential rotation pattern showing super-rotation, i.e., an equator rotating faster than the poles.
The dynamo solutions we find are different and some of them have a periodic oscillatory
behavior, where the large-scale magnetic field does not change sign; only the strength is
varying. At the maxima, the velocity is suppressed due to the backreaction via the Lorentz
force. Small-scale magnetic structures seem to show an equatorward migration near the
equator and a poleward one near the poles.

Using a convectively driven dynamo complicates the generation of ejections into a coro-
nal part due to lower relative kinetic helicity. However, it was possible to produce ejections
in two of the runs. The shape and the bipolar helicity structure are comparable with those of
WBM. Due to the relatively high plasma β in the outer parts of our model (compared with
the solar corona), the ejections produce local minima of density which are carried along
and ejected out to the top of the domain. The ejections occur recurrently, but not clearly
periodically, which is similar to the Sun.

Note that our results have to be interpreted cautiously, given the use of a simplistic solar
atmosphere. We neglect the effects of high temperature and low plasma β. However, we feel
that the mechanism of emergence of magnetic structures driven by dynamo action from self-
consistent convection may not strongly depend on these two conditions. This suggestion has
to be proven in more detail in forthcoming work.

An extension of the present work would require a detailed parameter study of cause and
properties of the ejections. This also includes an advanced model for the solar corona with
a lower plasma β and more efficient convection, which has a stronger stratification and is
cooled by radiation. Another important aspect would be the generation of a self-consistent
solar wind which supports and interacts with the ejections.
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