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A central quantity in mean-field magnetohydrodynamics is the mean electromotive force E,
which in general depends on the mean magnetic field. It may however also have a part
independent of the mean magnetic field. Here we study an example of a rotating conducting
body of turbulent fluid with non-zero cross-helicity, in which a contribution to E proportional
to the angular velocity occurs (Yoshizawa, A., Self-consistent turbulent dynamo modeling of
reversed field pinches and planetary magnetic fields. Phys. Fluids B 1990, 2, 1589–1600). If the
forcing is helical, it also leads to an � effect, and large-scale magnetic fields can be generated.
For not too rapid rotation, the field configuration is such that Yoshizawa’s contribution to E is
considerably reduced compared to the case without � effect. In that case, large-scale flows are
also found to be generated.
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1. Introduction

Many studies of the large-scale magnetic fields in turbulent astrophysical bodies such as

the Sun or the Galaxy are carried out in the framework of mean-field electrodynamics

(see the textbooks by Moffatt 1978, Parker 1979, Krause and Rädler 1980, Zeldovich

et al. 1983). It is based on the induction equation governing the magnetic field B,

@B

@t
¼ ;� U� B� ��0Jð Þ, ð1Þ

where U is the fluid velocity, J¼;�B/�0 the current density, � the magnetic diffusivity
and �0 the vacuum permeability. Both the magnetic field B and the velocity field U are

considered sums of mean parts, B and U, defined as proper averages of the original

fields, and fluctuations. The averages are assumed to satisfy the Reynolds averaging

rules. The mean magnetic field B then obeys the mean-field induction equation

@B

@t
¼ ;� U� Bþ E � ��0J

� �
: ð2Þ
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Here E ¼ u� b is the mean electromotive force resulting from the fluctuations of
velocity and magnetic field, u ¼ U�U and b ¼ B� B. Generally, E can be represented

as a sum

E ¼ Eð0Þ þ EðBÞ ð3Þ

of a part Eð0Þ, which is independent of B, and a part EðBÞ vanishing with B. In many
representations and applications of mean-field electrodynamics the part Eð0Þ of E is

ignored. Only the part EðBÞ, which is of crucial importance for dynamo action, is taken

into account.
Here we focus our attention on the part Eð0Þ of E. It may depend on non-magnetic

quantities influencing the turbulence, in general also on U. If the magnitude of U is

small, and if U varies only weakly in space and time, we may write

E
ð0Þ
i ¼ E

ð00Þ
i þ�ijUj þ �ijkUj,k ð4Þ

with E
ð00Þ
i as well as �ij and �ijk being independent of U. Of course, the contribution

Eð00Þ to Eð0Þ can only be non-zero if the turbulence allows us to define a direction. For

example, turbulence in a rotating body shows in general an anisotropy determined by

the angular velocity X, and Eð00Þ might then be proportional to X, say equal to cOX.

The �ij term in (4) can only be unequal to zero if the turbulence lacks Galilean

invariance. In the case of isotropic turbulence it describes a contribution to Eð0Þ
proportional to U, say equal to cUU. Note that in forced turbulence Galilean invariance

can be broken if, independent of the flow, the forcing is fixed in space and shows a finite

correlation time (see, e.g. Rädler and Brandenburg 2010). The Wijk term, if restricted to

isotropic turbulence, corresponds to a contribution to Eð0Þ proportional to ;�U, say

equal to cW;�U. The coefficients cO and cW are, in contrast to cU, pseudoscalars. The

contributions cOX and cW;�U to the mean electromotive force were first considered

by Yoshizawa (1990). He found that both cO and cW are closely connected with the

cross-helicity u . b. In what follows the occurrence of the contributions cOX and

cW;�U to the mean electromotive force E is called ‘‘Yoshizawa effect’’. This effect has

been invoked to explain magnetic fields in accretion discs (Yoshizawa and Yokoi 1993)

and spiral galaxies (Yokoi 1996). It has also been used to explain the surprisingly high

level of magnetic fields in young galaxies (Brandenburg and Urpin 1998), because the

amplification of the mean field by this effect is independent of any seed magnetic field.

The equivalence of a rotation of the frame of reference with a rotation of the fluid body

might suggest an equality of cO and 2cW. However, this equivalence exists only in pure

hydrodynamics, which is governed by the momentum equation, but no longer in

magnetohydrodynamics, where both the momentum equation and the induction

equation are important. As a consequence, cO is in general different from 2cW, see

Rädler and Brandenburg (2010), in particular the discussion at the end of section 3.1.
As for the part EðBÞ of E, we recall here the traditional ansatz

EðBÞ ¼ �ijBj þ �ijkBj,k: ð5Þ

It can be justified for cases in which B varies only slowly in space and time. In the simple
case of isotropic turbulence it takes the form EðBÞ ¼ �B� �t;� B, which describes the

� effect and the occurrence of a turbulent magnetic diffusivity (Krause and Rädler

1980).

208 A. Brandenburg and K.-H. Rädler
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In this article, we report on numerical simulations of magnetohydrodynamic

turbulence in a rotating body, that is, under the influence of the Coriolis force. We

present results for the mean electromotive force and discuss them in the light of the

above remarks, focussing particular attention on the Yoshizawa effect.

2. Model

We consider forced magnetohydrodynamic turbulence of an electrically conducting,

compressible, rotating fluid which is permeated by a magnetic field. An isothermal

equation of state is used so that the pressure p and the mass density � are proportional

to each other, p ¼ �c2s , with cs being a constant sound speed. The magnetic field B, the

fluid velocity U and the mass density � are assumed to obey

@A

@t
¼ U� B� ��0Jþ fM, ð6Þ

DU

Dt
¼ �c2s; ln �� 2X�Uþ

1

�
J� Bþ

1

�
; . 2��Sþ fK, ð7Þ

D ln �

Dt
¼ �; . U: ð8Þ

Unless indicated otherwise, we exclude a homogeneous part of the magnetic field. A is
the magnetic vector potential, ;�A¼B, and � again the magnetic diffusivity,

D/Dt¼ @/@tþU .; is the advective time derivative, X the angular velocity which defines

the Coriolis force, Sij ¼
1
2ðUi,j þUj,iÞ �

1
3�ij; . U the trace-less rate of strain tensor, � the

kinematic viscosity, while fM and fK define the magnetic and kinetic forcings specified

below. The simultaneous magnetic and kinetic forcing is a simple way to generate non-

zero cross-helicity. We admit only small Mach numbers, that is, only weak

compressibility effects.
Equations (6)–(8) are solved numerically in a cubic domain with the edge length L

assuming periodic boundary conditions. Then k1¼ 2�/L is the smallest possible

wavenumber. We assume that X is parallel to the positive z direction, that is,

X¼ (0, 0,O) with O4 0.
With the intention to approximate a forcing that is �-correlated in time we add after

each time step of duration �t the contributions �tfM and �tfK to A and U, respectively,

and change fM and fK randomly from one step to the next (Brandenburg 2001). We

define them until further notice by putting

fM ¼ NMRe
�

~fkðtÞ exp½ikðtÞ . xþ i	ðtÞ�
�
, fK ¼ NKRe

�
ikðtÞ � ~fkðtÞ exp½ikðtÞ . xþ i	ðtÞ�

�
:

ð9Þ

Here NM and NK are given by

NM ¼ NMcs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0�0cs=kf�t

p
, NK ¼ NKcs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cs=kf�t

p
, ð10Þ

where NM and NK are dimensionless amplitudes, �0 is the initial mass density,
considered as uniform, kf the average forcing wavenumber and �t the duration of the
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time step. Further ~fk is given by

~fk ¼
fkðtÞ � i"k̂ðtÞ � fkðtÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ "2
p , ð11Þ

where fk, considered as a function of k, is a statistically homogeneous isotropic non-
helical random vector field, k̂ is the unit vector k/jkj and " a parameter satisfying j"j � 1

(Haugen et al. 2004). Then ~fk is non-helical if "¼ 0, and maximally helical if j"j ¼ 1. We

consider the wavevector k and the phase 	 as random functions of time, k¼ k(t) and

	¼	(t), such that their values within a given time step are constant, but change at the

end of it and take then other values that are not correlated with them. We further put

fkðtÞ ¼
kðtÞ � eðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kðtÞ2 � ðkðtÞ . eðtÞÞ2
q , ð12Þ

where e(t) is a unit vector which is in the same sense random as k(t) but not parallel to
it. In this way we have ; . fM¼; . fK¼ 0. The wavevectors k are chosen such that their

moduli k¼ jkj lie in a band of width �k around a mean forcing wavenumber kf, that is,

kf� �k/2� k� kfþ �k/2, and we choose �k¼ k1. In the limit of small time steps, which

we approach in our calculations, the forcing may be considered as �-correlated.
The fluid flow is then Galilean invariant, because due to the lack of memory of the

forcing one cannot distinguish between a forcing that is advected with the flow from

one that is not.
We describe our simulations using the magnetic Prandtl number PrM, the Coriolis

number Co, the magnetic Reynolds number ReM and the Lundquist number Lu,

PrM ¼ �=�, Co ¼ 2O=urmskf, ReM ¼ urms=�kf, Lu ¼ brms=
ffiffiffiffiffiffiffiffiffiffi
�0�0
p

�kf, ð13Þ

with urms and brms being defined using averages over the full computational volume.
While PrM and Co are input parameters, ReM and Lu are used for describing results.

For our numerical simulations we use the PENCIL CODEy, which is a high-order public

domain code (sixth order in space and third order in time) for solving partial differential

equations, including the hydromagnetic equations given above.

3. Results and interpretation

We have performed a series of simulations with PrM¼ 1, NK¼ 0.01, NM¼ 0.005,

kf¼ 5k1 and varying Co. As initial conditions we used U¼A¼ 0 and �¼ �0.
We discuss the results here in terms of space averages taken over the full

computational volume defined above and denoted by angle brackets. More precisely,

we now put, e.g. U and B equal to hUi and hBi. Of course, quantities like hUi and hBi

are independent of space coordinates. We have further B¼hBiþ b and U¼hUiþ u.

Using B¼;�A and the periodicity of A, we have hBi ¼ 0, that is, B¼ b. By contrast,

hUi is not necessarily equal to zero. hBi¼ 0 is however enough to justify hU .Bi¼ hu . bi

and hU�Bi¼ hu� bi.

yhttp://pencil-code.googlecode.com/
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D
ow

nl
oa

de
d 

by
 [

C
op

en
ha

ge
n 

U
ni

ve
rs

ity
 L

ib
ra

ry
] 

at
 1

9:
58

 0
3 

M
ar

ch
 2

01
3 



Within this framework the mean electromotive force discussed above and denoted
there by E is equal to hu� bi. According to the ideas expressed in section 1, and
recalling that volume averages of spatial derivatives of our periodic variables A or U
vanish, we expect

hu� bi ¼ cOXþ cUhUi ð14Þ

with cO determined by the cross-helicity hu . bi. Owing to Galilean invariance of the flow
in our model cU should vanish. In all simulations under the mentioned conditions hUi
turned out very small. Even if the initial condition for U was changed and larger jhUij
were thereby generated, no influence of hUi on hu� bi was observed. We conclude from
this that indeed cU¼ 0.

Let us give further results first for non-helical forcing, "¼ 0. In this case we expect no
� effect and see no reason for the generation of large-scale magnetic fields. Figure 1
gives ReM and Lu, here considered as measures for urms and brms, as functions of Co.
Figure 2 shows that the cross helicity hu . bi and, if Co 6¼ 0, also the z component of the
mean electromotive force hu� bi are non-zero. The moduli of the x and y components
of hu� bi are negligible. According to Yoshizawa’s result we expect
hu� biz ¼

1
2
hu . biCo with 
 being a number of the order of unity. Figure 3 shows

that hu� biz/hu . bi Co is indeed around 0.5 as long as Co is small. The decay with
growing Co might be a result of strong rotational quenching of hu� biz.

Consider next the case of maximally helical forcing, "¼ 1. The simulations for this
case have been carried out with a modified definition of fK. In (9) and (10), ikðtÞ � ~fkðtÞ
has been replaced by ~fkðtÞ, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cs=kf�t

p
by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cskf=�t

p
. Now an � effect is to be expected

and, as a consequence, the generation of magnetic fields with scales comparable to that
of the computational domain (Brandenburg 2001). Indeed, as illustrated in figure 4,
different types of large-scale magnetic fields with a dominant wavenumber k¼ k1 occur.
Following Hubbard et al. (2009), we call them ‘‘meso-scale fields’’. As can be seen in the
example of figure 5, these fields are to a good approximation of Beltrami shape. Three
different types of such fields have been observed,

BX ¼ B0ð0, sink1x, cosk1xÞ, BY ¼ B0ðcosk1y, 0, sink1yÞ, BZ ¼ B0ðsink1z, cosk1z, 0Þ,

ð15Þ

Figure 1. Non-helical case. Dependence of ReM and Lu on Co for fixed forcing amplitudes, as specified in
the text.

Yoshizawa’s cross-helicity effect 211

D
ow

nl
oa

de
d 

by
 [

C
op

en
ha

ge
n 

U
ni

ve
rs

ity
 L

ib
ra

ry
] 

at
 1

9:
58

 0
3 

M
ar

ch
 2

01
3 



in general with common phase shifts of the components in the x, y and z directions. B0

was always of the order of several equipartition values Beq, defined by Beq ¼
ffiffiffiffiffiffiffiffiffiffi
�0�0
p

urms.
For not too large Co all three types, BX, BY and BZ, turned out to be possible, but for Co
exceeding a value of about unity only that of type BZ occurs. This becomes
understandable when considering that for the amplification of meso-scale fields of type
BX and BY, the products �yy�zz and �xx�zz are important, while for BZ it is �xx�yy, but
j�zzj is reduced by rotational quenching (Rüdiger 1978) for large values of Co.

Furthermore, meso-scale flows of type UX and UY, defined analogously to (15), are
also possible; see the lower rows of figure 4. Such flows have never been seen in the
absence of cross-helicity. They could be, e.g., a consequence of the Lorentz force due to
the meso-scale magnetic fields, or of a contribution to the Reynolds stresses which exists
only for non-zero cross-helicity, in particular terms linearly proportional to derivatives
of the mean magnetic field (Rheinhardt and Brandenburg 2010, Yokoi 2011). Revealing
the nature of these flows requires further investigation. Remarkably, already for small

Figure 2. Non-helical case. Normalized cross-helicity hu . bi/urmsbrms and z component of normalized mean
electromotive force hu� bi/urmsbrms as functions of Co. The moduli of the x and y components of hu� bi/
urmsbrms are below 10�3.

Figure 3. Non-helical case. Dependence of hu� biz/hu . biCo on Co.
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Co it seems impossible to tolerate UZ flows. This might be connected with the fact that
the Coriolis force acting on a UZ flow would produce a 90� phase-shifted flow
proportional to (cos k1z, �sin k1z, 0). By comparison, the Coriolis force acting on a UX

or a UY flow gives another one proportional to (sin k1x, 0, 0) or (0, �cos k1y, 0),
respectively, which does not directly interfere with UX or UY.

Both the cross-helicity hu . bi and the mean electromotive force hu� bi are influenced
by the presence of the meso-scale magnetic fields and meso-scale flows. Figure 6 shows
the dependence of hu . bi and hu� biz on the types of the meso-scale magnetic fields and
on Co. Meso-scale magnetic fields of BX or BY type together with meso-scale flows
enhance the level of hu . bi/urmsbrms, especially for small values of Co. With meso-scale
magnetic fields of BZ type hu . bi/urmsbrms is reduced relative to that in the non-helical
case (figure 2), because brms is enhanced by a factor of about 2. As figure 7
demonstrates, hu� biz/hu . biCo depends now crucially on whether meso-scale fields of
BX or BY type or of BZ type are present. In the first case the Yoshizawa effect is clearly
reduced by the meso-scale fields; in the second case it is enhanced for small Co, but
reduced for larger Co.

Figure 4. Helical case. Upper row: By/Beq on the periphery of the computational domain, state with BX type
field (left) and BZ type field (right), Co¼ 0.37. Lower row: same as above, but Uy/urms.
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The remarkable strength of the meso-scale fields can lead to strong magnetic
quenching effects. As a first approach to the understanding of such effects the non-
helical case has been studied with an imposed homogeneous magnetic field in the y or z
directions, (0,B0, 0) or (0, 0,B0), respectively. Figure 8 shows as an example the
dependence of hu� biz/hu . biCo at Co� 0.25 on B0/Beq. It suggests that in the helical
case the reduction of hu� biz/hu . biCo by BX or BY fields, which possess a non-zero z
component, is stronger than that by BZ fields, which have no z components.

4. Discussion

The mean electromotive force in a turbulent fluid may have a part that is independent
of the mean magnetic field and also independent of the mean flow. As an example we

Figure 5. Helical case. Profiles of ByðxÞ=Beq and BzðxÞ=Beq as well as their product in a state with BZ field,
Co¼ 0.2. Overbars denote yz averages. The dashed line gives the level of the x average of ByBz=B

2
eq, which is

close to zero (here, � �10�3).

Figure 6. Helical case. Normalized cross-helicity hu . bi/urmsbrms (upper lines) and z component of the
normalized mean electromotive force hu� bi/urmsbrms (lower lines) as functions of Co; the moduli of the x and
y components are below 10�3. Solid lines correspond to states with BX or BY type fields, dashed lines to states
with BZ type fields.
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have studied forced hydromagnetic turbulence in a rotating body. In this case the
Yoshizawa effect occurs, that is, a contribution cOX to hu� bi. We have confirmed that
cO is determined by the mean cross-helicity hu . bi. We have also seen that, if an � effect
is present, the Yoshizawa effect can to a large extent be compensated by the action of
magnetic fields maintained by this � effect.

In astrophysics, the occurrence of non-zero cross-helicity is not a very common
phenomenon. We give here a few examples in which the findings of this article could be
of interest. In the solar wind, the systematic radial flow together with the Sun’s large-
scale magnetic field give rise to cross-helicity of opposite sign in the two hemispheres.
Although this primarily implies cross-helicity associated with mean flow and mean
magnetic field, it also results in cross-helicity associated with the fluctuations. Together
with the Sun’s rotation, the latter should then produce a component of the mean

Figure 8. Non-helical case with an imposed homogeneous magnetic field in y or in z direction, (0,B0, 0)
(dashed line) or (0, 0,B0) (solid line). Dependence of hu� biz/hu . biCo on B0/Beq at Co� 0.25, ReM� 10.

Figure 7. Helical case. Dependence of hu� biz/hu . biCo on Co. Solid lines correspond to states with BX or
BY type fields, dashed lines to states with BZ type fields.
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electromotive force that is distinct from that related to the � effect. Note, however, that
the cross-helicity associated with the fluctuations is directly a consequence of the cross
helicity from the large-scale field.

Another example where small-scale cross-helicity can be generated is in a stratified
layer with a vertical magnetic field (Rüdiger et al. 2011). Again, the sign of hu . bi is
linked to the orientation of the large-scale field relative to the direction of gravity.

Finally, cross-helicity can be generated spontaneously and can then be of either sign,
such as in the Archontis dynamo (Archontis 2000); for kinematic simulations see
Archontis et al. (2003) as well as Cameron and Galloway (2006). Sur and Brandenburg
(2009) have analysed this dynamo with respect to the Yoshizawa effect. In this example
too, large-scale and small-scale fields are intimately related. This interrelation means
that whenever we expect the Eð0Þ term to be present in an astrophysical system, there
should also be a mean magnetic field. Such an effect that is odd in the mean magnetic
field might therefore instead just as well be associated with an � effect. As it turns out,
this is also the case in the present simulations, where a large-scale magnetic field has
been produced. In the present case, we have gone a step further by including kinetic
helicity also, in addition to just cross-helicity. This produces an � effect and, as a
consequence of this, a large-scale magnetic field. This field is particularly important
when rotation is weak, because then the Yoshizawa effect is strongly quenched by
this field.
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