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Abstract Energetic nonthermal particles (cosmic rays, CRs) are accelerated in supernova
remnants, relativistic jets and other astrophysical objects. The CR energy density is typically
comparable with that of the thermal components and magnetic fields. In this review we dis-
cuss mechanisms of magnetic field amplification due to instabilities induced by CRs. We
derive CR kinetic and magnetohydrodynamic equations that govern cosmic plasma systems
comprising the thermal background plasma, comic rays and fluctuating magnetic fields to
study CR-driven instabilities. Both resonant and non-resonant instabilities are reviewed, in-
cluding the Bell short-wavelength instability, and the firehose instability. Special attention is
paid to the longwavelength instabilities driven by the CR current and pressure gradient. The
helicity production by the CR current-driven instabilities is discussed in connection with the
dynamo mechanisms of cosmic magnetic field amplification.
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1 Introduction

Acceleration of cosmic rays (CRs) in the Galaxy by the first order Fermi mechanism is
believed to be very efficient. Most of the theoretical studies of shock acceleration agree
on its potential to convert, under favorable conditions, 50 % or more of shock mechanical
energy into the CR energy. Observational estimates of the supernova remnant (SNR) shock
power require, on the average, a 15–30 % conversion efficiency to maintain the observed CR
energy against losses from the Galaxy (see, e.g., Berezinskii et al. 1990; Drury et al. 1989).
However, this acceleration mechanism is fast enough only if it is self-sustained; accelerated
particles must be scattered across the shock at an enhanced rate (to gain energy rapidly)
by magnetic irregularities amplified by the particles themselves. Relying on the background
magnetic irregularities (interstellar medium [ISM] turbulence) would result only in a very
slow acceleration.

Fortunately, freshly accelerated CRs indeed comprise enough free energy to drive plasma
instabilities thus bootstrapping their own acceleration (see, e.g., Zweibel 1979). While they
are accumulated in a relatively thin layer near a shock front, their pressure gradient is built
up. Furthermore, they stream through the inflowing plasma so that their pitch-angle distri-
bution is anisotropic. They also provide an electric current and induce a return current in the
upstream plasma.

Instabilities driven by the above sources of free energy may loosely be categorized as
follows. First, an ion-cyclotron type, resonant instability (driven by the CR anisotropy) am-
plifies Alfven and magnetosonic waves, with no major changes to their dispersive properties
and the macroscopic state of the medium near the shock. However, the amplified waves
make the CR pressure and current to build-up rapidly through an enhanced CR scattering
and energy gain. Second, there is a non-resonant firehose type instability driven by the CR
pressure anisotropy. In contrast to the resonant instability, the firehose instability changes the
Alfven wave dispersive properties by making the growing mode aperiodic. So does the cur-
rent driven non-resonant instability. The renewed interest to this instability has been sparked
by Bell (2004), who revealed its potential to strongly amplify the background magnetic
field. Indeed, a formal analytic solution in which the instability driver is balanced by the
nonlinearity indicates that the instability saturates only at very high amplitudes, δB � B0

(see, e.g., Bell and Lucek 2001; Bell 2005; Marcowith et al. 2006; Caprioli et al. 2008;
Vladimirov et al. 2009; Malkov et al. 2012). Finally, the CR pressure gradient in the shock
precursor drives acoustic perturbations. All these instabilities should be treated on a unified
basis, as they are driven by the anisotropic inhomogeneous CR plasma component near a
shock front. An attempt of such treatment is presented below. However a complete nonlinear
study of these phenomena is a formidable task, yet to be accomplished.

While the above instabilities, clearly associated with collisionless shocks, will be central
to the present review, CRs are also known to drive instabilities crucial to their confine-
ment regardless of the way they are accelerated. For example, a sufficiently dense CR cloud
released into the ISM will drive Alfven waves which, in turn, will scatter the CRs, thus
delaying their escape (see, e.g., Ptuskin et al. 2008; Ohira et al. 2011; Malkov et al. 2013;
Yan et al. 2012). Moving further out to the CR confinement in the galaxy, the so-called
Parker instability is known to be important, in addition to the Alfven wave self-generation
by escaping CRs.

The diffusive shock acceleration (DSA) mechanism is based on repeated shock cross-
ings with a ∼us/c particle energy gain per cycle (see Krymskii 1977; Bell 1978; Blandford
and Eichler 1987; Berezhko and Krymskiı̆ 1988; Jones and Ellison 1991). While doing
so, particles diffusively escape from the shock up to a distance Lp ∼ κ(p)/us . Here κ is
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the momentum dependent diffusion coefficient and us is the shock velocity. One should
expect then an extended (∼Lp) shock precursor populated by accelerated protons and elec-
trons so that synchrotron radiating electrons may make it visible. High-resolution X-ray
observations have revealed thin X-ray synchrotron filaments and fast evolving clumps in
synchrotron emitting supernova shells. The filaments are much thinner than Lp because
the TeV regime electrons are confined in a narrow layer around the shock. Most likely
they are limited by fast synchrotron cooling due to the X-ray emission in a highly ampli-
fied magnetic field (see for review Cassam-Chenaï et al. 2007; Reynolds 2008; Vink 2012;
Helder et al. 2012). The synchrotron emission clumps with a year time scale variability ob-
served with Chandra observatory by Uchiyama et al. (2007) can be associated with strong
intermittency of the amplified magnetic fields (Bykov et al. 2008). Moreover, a quasi-regular
set of strips of synchrotron emission resolved with Chandra in Tycho’s SNR by Eriksen et al.
(2011) potentially can be used to study a specific angular dependence and the spectral prop-
erties of nonlinear mechanisms of magnetic field amplification by CR-driven instabilities
(Bykov et al. 2011).

According to the widely accepted view, the particle diffusion coefficient κ should
be close to the Bohm value, κ ∼ crg(p)/3, which requires strong magnetic fluctuations
δBk ∼ B0 at the resonant scale k ∼ 1/rg(p). The high level of fluctuations is achieved
through one of the instabilities driven by accelerated particles. A number of CR driven
instabilities have been suggested to generate magnetic field fluctuations. The first one is
the well known ion cyclotron resonant instability of a slightly anisotropic (in pitch angle)
CR distribution (see, e.g., Sagdeev and Shafranov 1961; Zweibel 1979; Schlickeiser 2002;
Amato 2011). The free energy source of this instability is potentially sufficient to generate
magnetic field fluctuations needed to scatter CRs ahead of the shock (see, e.g., Bell 1978;
McKenzie and Voelk 1982).

(δB/B0)
2 ∼ MAP cr/ρu2

s , (1)

where MA � 1 is the Alfvenic Mach number, P cr is the CR pressure, ρ is the gas density
and us is the shock velocity. However, the actual turbulence level was shown to remain
moderate, δB ∼ B0 as this is a resonant kinetic instability that is usually suppressed by a
quasilinear isotropisation or particle trapping effects easily (see, e.g., McKenzie and Voelk
1982; Achterberg and Blandford 1986; Zweibel 2003).

The second instability, is a nonresonant instability driven by the CR current. The advan-
tage of this instability seems to be twofold. First, it cannot be stabilized by the quasilinear
deformation of the CR distribution function since in the upstream plasma frame the driving
CR current persists, once the CR cloud is at rest in the shock frame. Second, it generates a
broad spectrum of waves, and the longest ones were claimed to be stabilized only at the level
δB � B0, due to the lack of efficient stabilization mechanism at such scales (see, e.g., Bell
2004). Within the context of the CR acceleration, this instability was studied by Achterberg
(1983) (see also Shapiro et al. 1998), but the fast regime of the nonresonant instability was
found by Bell and Lucek (2001) and Bell (2004), and therefore the instability is often re-
ferred to as Bell’s instability. Bell (2004) pointed out that in the instability is driven by a fixed
CR return current through the Ampere force jcr × B. It should be noted, however, that the
dissipation of the return current due to the anomalous resistivity still needs to be addressed.
The effect of a finite plasma temperature on the instability was studied by Zweibel and Ev-
erett (2010). Actually, as we will show below, both the resonant and the Bell instabilities are
interconnected, they are driven by the CR drift relative the background plasma. Moreover,
in the case of the modes propagating along the mean magnetic fields the two instabilities
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are simultaneously influencing the same modes. The dispersion relations of the modes are
strongly influenced by the presence of the CR current are markedly different from the stan-
dard MHD modes. The dispersion relations of the modes strongly influenced by the presence
of the CR current are markedly different from the standard MHD modes. The dispersion re-
lation in the longwavelength regime (where the mode wavelengths are larger than the bulk
CR gyroradii) can be also strongly modified by the ponderomotive forces induced by Bell’s
turbulence. The longwavelength instability has two regimes (Bykov et al. 2011b, 2012). The
first regime is prominent in the intermediate range where the mode wavelength is above the
CR gyroradii but below the CR mean free path. It is discussed in Sect. 4.4 and is associated
with a dynamo type instability driven by the nonzero helicity, which is, in turn, produced by
the short scale CR-driven turbulence. The intermediate wavenumber range is rather narrow
in the case of the Bohm-type CR diffusion. The modes with wavelengths larger than the
CR mean free path are subject of non-resonant long-wavelength instability caused by the
ponderomotive force acting on the background plasma that is induced by Bell’s turbulence.
We discuss the long wavelength instability below in Sect. 4.5.

The third instability is an acoustic instability (also known as Drury’s instability) driven
by the pressure gradient of accelerated CRs upstream (Dorfi and Drury 1985; Drury and
Falle 1986; Drury and Downes 2012; Schure et al. 2012). The pressure gradient is clearly
a viable source of free energy for the instability. So, among the macroscopic quantities
varying across a strong shock, the pressure jump is the most pronounced one in that it does
not saturate with the Mach number, unlike the density or velocity jumps.

The acoustic instability has received somewhat less attention than the first two. Moreover,
in many numerical studies of the CR shock acceleration, special care is taken to suppress it.
The suppression is achieved by using the fact that a change of stability occurs at that point in
the flow where ∂ lnκ/∂ lnρ � −1 (for both stable and unstable wave propagation directions,
of course, if such point exists at all). Here ρ is the gas density. Namely, one requires this
condition to hold identically all across the shock precursor, i.e., where the CR pressure
gradient ∇P cr �= 0. Not only is this requirement difficult to justify physically, but, more
importantly, an artificial suppression of the instability eliminates its genuine macroscopic
and microscopic consequences, as briefly discussed below.

Among the macroscopic consequences an important one is the vorticity generation
through the baroclinic effect (misalignment of the density and pressure gradients ∇ρ ×
∇P �= 0, e.g. Ryu et al. 1993; Kulsrud et al. 1997). Here ∇P may be associated with a
quasi-constant macroscopic CR-gas pressure gradient ∇P cr , generally directed along the
shock normal. Variations of ∇ρ are locally decoupled from P cr , unlike in the situation
in a gas with a conventional equation of state where P = P (ρ) and where the baroclinic
term vanishes. The vorticity generation obviously results (just through the frozen in con-
dition) in magnetic field generation, so that the field can be amplified by the CR pressure
gradient. More importantly, this process amplifies the large scale field, required for accel-
eration of high energy particles. Furthermore, the amplification takes place well ahead of
the gaseous subshock. The both requirements are crucial for improving high energy par-
ticle confinement and making the shock precursor shorter, in agreement with the observa-
tions. Large scales should be present in the ambient plasma as a seed for their amplifica-
tion by the acoustic instability and could be driven (or seeded) by wave packet modula-
tions. Apart from that, they result from the coalescence of shocks generated by the insta-
bility, and from the scattering of Alfven waves in k-space by these shocks to larger scales
(Malkov and Diamond 2006, 2009; Diamond and Malkov 2007). Note that the Bell instabil-
ity is essentially a short scale instability (the maximum growth rate is at scales smaller
than the gyro-radii of accelerated particles). At larger scales the magnetic field growth
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rate is dominated by the modified resonant and the longwavelength nonresonant instabil-
ities (Bykov et al. 2011b). It should be noted that vorticity (and thus magnetic field) can
be efficiently generated also at the subshock (see, e.g., McKenzie and Westphal 1970;
Bykov 1982, 1988; Kevlahan 1997; Kulsrud et al. 1997; Giacalone and Jokipii 2007;
Beresnyak et al. 2009; Fraschetti 2013). This would be too late for improving particle con-
finement and reducing the scale of the shock precursor. A more favorable for acceleration
scenario is the above discussed field amplification in the CR shock precursor.

Now the question is which instability dominates the CR dynamics? Given the finite pre-
cursor crossing time, it is reasonable to choose the fastest growing mode and consider the
development of a slower one under conditions created by the fast mode after its saturation.
The Bell instability is likely to be efficient at the outskirt of the shock precursor where the
CR current is dominated by the escaping CRs of the highest energies. The pressure gradient
and the pitch angle anisotropy are strong enough to drive the acoustic and resonant insta-
bility in the shock precursor (see, e.g., Pelletier et al. 2006). Recall that the anisotropy is
typically inversely proportional to the local turbulence level which is usually decrease with
the distance from the shock

Within the main part of the shock precursor, both the CR-pressure gradient and CR cur-
rent are strong, so that the nonresonant CR-driven instabilities are likely to be the strongest
candidates to govern the shock structure. In fact, these instabilities are coupled, not only
by the common energy source but also dynamically. But first, it is important to identify
conditions under which one of the instabilities dominates.

2 Cosmic Plasmas with Cosmic Rays: the Governing Equations

In this section we discuss the governing equations for MHD-type flows of a cold background
plasma interacting with cosmic rays. In most cases the cosmic ray particles are not subject
to binary Coulomb or nuclear interactions with the background plasma particles. The inter-
action between the two components is due to both regular and fluctuating electromagnetic
fields produced by the CRs. The momentum equation for the background plasma, including
the Lorentz force associated with these fields is given by

ρ̃

(

∂ũ
∂t

+ (̃u∇ )̃u
)

= −∇p̃g + 1

c
˜j ×˜B + e(̃np − ñe)˜E, (2)

where ˜B is the magnetic field induction, ˜E—the electric field, ũ—the bulk plasma velocity,
p̃g—the plasma pressure, ˜j—the electric current carried by the background plasma. We
assume quasi-neutrality for the whole system consisting of background plasma protons of
number density ñp , electrons of number density ñe, and cosmic rays of number density ñcr .
For simplicity we consider cosmic-ray protons only such that ñp + ñcr = ñe , and typically
ñcr � ñp .

The magnetic field is assumed to be frozen into the background plasma

˜E = −1

c
[̃u ×˜B]. (3)

Both the background electric current˜j and the electric current of accelerated particles˜jcr

are the sources of magnetic fields in Maxwell’s equations, where the Faraday displacement
current was omitted for the slow MHD-type processes

∇ ×˜B = 4π

c

(

˜j +˜jcr
)

. (4)
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Then, for the quasi-neutral background plasmas, using Eqs. (2), (3) and (4), one can write
the induction equation and the equation of motion of the background plasma in the form
used by Bell (2004), Bykov et al. (2011b) and Schure and Bell (2011)

∂˜B
∂t

= ∇ × (̃u ×˜B), (5)

ρ̃

(

∂ũ
∂t

+ (̃u∇ )̃u
)

= −∇p̃g + 1

4π
(∇ ×˜B) ×˜B − 1

c

(

˜jcr − eñcr ũ
) ×˜B. (6)

The microscopic CR-dynamics can be described by a kinetic equation for the single-
particle distribution function ˜f that has the form

∂ ˜f

∂t
+ v · ∂ ˜f

∂r
+ e˜E · ∂ ˜f

∂p
− ec

E
˜B · ̂O ˜f = 0, (7)

where the CR particle energy is E , ̂O is the momentum rotation operator (see, e.g., Toptygin
1983; Bykov et al. 2012). There are no Coulomb collisions in the kinetic equation (7), but
the microscopic electromagnetic fields are fluctuating in a wide dynamical range due to col-
lective plasma effects. The coarse grained distribution function of the CR particles f = 〈 ˜f 〉
obeys the equation that can be obtained by averaging the microscopic equation Eq. (7) over
an ensemble of appropriate short-scale fluctuations

∂f

∂t
+ v · ∂f

∂r
+ eE · ∂f

∂p
− ec

E
B · ̂Of = I

[

f,f ′]. (8)

Here ˜f = f + f ′, ˜B = B + b′, ˜E = E + E′, B = 〈˜B〉, E = 〈˜E〉—are the averaged fields,
and therefore 〈b′〉 = 0, 〈E′〉 = 0. The ensemble of fluctuations can be of external origin or
produced by the same population of charged particles we only assumed at this point that the
collision operator

I
[

f,f ′] = −e

〈

E′ · ∂f ′

∂p

〉

+ ec

E
〈

b′ · ̂Of ′〉, (9)

is a functional of the averaged distribution function f and can be expressed through the
statistical momenta of the fluctuating field. The collision operator describes the momentum
and energy exchange between CRs and the background plasma and therefore it must be
accounted for in the averaged governing equations for both the CRs and background plasma.

The momentum exchange rate is the first moment of Eq. (9)
∫

pI [f ]d3p = −e
〈

n′
crE′〉 + 1

c

〈

j′cr × b′〉, (10)

where n′
cr , j′cr—are the fluctuating parts of the CR number density and the CRs electric

current defined by

n′
cr = e

∫

f ′d3p, (11)

j′cr = e

∫

v(p)f ′d3p, (12)

where v(p)—is the CR particle velocity, and 〈f ′〉 = 0.
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Then, by averaging the last term in Eq. (6), one can get

1

c

〈

(˜jcr − encrũ) ×˜B
〉 = 1

c

(

jcr − encru
) × B − e

〈

n′
crE′〉 + 1

c

〈

j′cr × b′〉, (13)

where ncr, jcr—are the averaged CR number density and their electric current,˜jcr = jcr +
j′cr, ñcr = ncr + n′

cr. Note that Eq. (10) and the last two terms on the right hand side of
Eq. (13) are coincident. Therefore, we conclude that the CR scattering due to the stochastic
electromagnetic fields accounted for in the kinetic equation Eq. (8) by the collision operator
must be simultaneously included into the equation of motion of the background plasma
using Eq. (13).

The averaged induction equation Eq. (5) can be expressed as

∂B
∂t

= ∇ × (u × B), (14)

and the averaged equation of motion Eq. (6) for the background plasma

ρ

(

∂u
∂t

+ (u∇)u
)

= −∇pg + 1

4π
(∇ × B) × B − 1

c

(

jcr − encru
) × B

−
∫

pI [f ]d3p, (15)

where pg—is the averaged pressure of background plasma. Note that Eqs. (14) and (15)
is also valid for CRs consisting of electrons and positrons, with ncr being the difference
between the positron and the electron number densities, while jcr—the total electric current
of the particles.

In a few cases, namely, for weakly fluctuating magnetic fields or, for strong magnetic
fluctuations but at scales smaller than the CR gyroradii, some closure procedures exist to
reduce the collision operator I [f,f ′] to I [f ] (see, e.g., Toptygin 1983; Bykov et al. 2012). It
is instructive, nevertheless, to derive the force density

∫

pI [f ]d3p for the most simple case
of I [f ]. The simplest form of the collision operator is the relaxation time approximation in
the rest frame of the background plasma

I [f ] = −ν(f − fiso), (16)

where fiso—is the isotropic part of the momentum distribution f , and ν is the collision
frequency due to CR particle-wave interactions (e.g., Bykov et al. 2011b). This approach
usually implies that the scatterers have no mean (or drift) velocity relative to the rest frame of
the background plasma. This is not always true, if the plasma instabilities that are producing
the magnetic field fluctuations are highly anisotropic. However, it can be used to illustrate
the importance of the momentum exchange between CRs and the background plasma.

Using the parameterisation ν = aΩ , where Ω = ecB0
E , B0 is the mean magnetic field, and

a—is the CR collisionality parameter, from Eq. (16), one can obtain

∫

pI [f ]d3p = −aB0

c
jcr. (17)

This is the force density in Eq. (15).
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3 Instabilities Driven by Anisotropic CR Distributions: the Kinetic Approach

Consider incompressible modes propagating along the mean homogeneous magnetic field
B0 in the rest frame of the background plasma. The linear dispersion relation can be ob-
tained by the standard perturbation analysis of Eqs. (14), (15) and (8), assuming the small
perturbations of magnetic field b, plasma bulk velocity u and the CR distribution f to be
∝ exp(ikx − iωt). The unperturbed anisotropic CR distribution, that is the source of the
instability free energy, can be represented as

f cr
0 = ncrN(p)

4π

[

1 + 3βμ + χ

2

(

3μ2 − 1
)

]

, (18)

where μ = cos θ , θ—is the CR particle pitch-angle, ncr—CR number density. The multi-
pole moments of the CR angular distribution are parameterized by β (the dipole) and χ

(the quadrupole). We assume below β ≤ 1 and χ ≤ 1. The unperturbed state can be a
steady state of a system with CRs where both the anisotropy and the spectral distribu-
tion N(p) are determined by the energy source and sink as well as the magnetic field ge-
ometry through the kinetic equation Eq. (8) with some appropriate boundary conditions.
The most interesting application of the formalism is related to diffusive shock acceleration
model (see, e.g., Blandford and Eichler 1987; Malkov and Drury 2001; Bykov et al. 2012;
Schure et al. 2012). In that case the normalized power-law CR spectrum is appropriate:

N(p) = (α − 3)p
(α−3)

0

[1 − (
p0
pm

)α−3]pα
, p0 ≤ p ≤ pm, (19)

where α—is the spectral index, p0 and pm—are the minimal and maximal CR momenta,
respectively. In the DSA applications it is convenient to express the dipole anisotropy pa-
rameters through the shock velocity us as β = us

c
.

Then dispersion equation has the form:

ω2 = v2
a

{

k2 ∓ k

[

(1 ± ia)

(

k0A0(x0, xm) + 4πencrχ

B0
A1(x0, xm)

)

− k0

]}

, (20)

where va = B0√
4πρ

, k0 = 4π
c

jcr
0
B0

, j cr
0 = encrus, x = kcp

eB0
, x0 = kcp0

eB0
, xm = kcpm

eB0
,

A0,1(x0, xm) =
∫ pm

p0

σ0,1(p)N(p)p2dp (21)

σ0(p) = 3

4

∫ 1

−1

(1 − μ2)

1 ∓ xμ ± ia
dμ, (22)

σ1(p) = 3

4

∫ 1

−1

(1 − μ2)μ

1 ∓ xμ ± ia
dμ, (23)

where the ± signs correspond to the two possible circular polarizations defined by b =
b(ey ± iez), with the x-axis along the mean field B0. The functions A0,1(x0, xm) are ex-
pressed in elementary functions in the Appendix. In the collisionless limit a → 0 the con-
tribution of the pole to the imaginary part of Eq. (22) describes the well known resonant
instability (e.g., Zweibel 1979; Amato 2011), while the real part (the principal part of the
integral) is responsible for the instability discovered by Bell (2004) (see also Achterberg
1983).
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The kinetic approach we used here to derive the dispersion equation allows us to unify
the instabilities due to both the dipole and quadrupole-type CR anisotropy. The finite mean
free path of the CRs is characterized by the collisionality parameter a. The approach used
above allows one to study the instabilities driven by the CR anisotropy for arbitrary re-
lations between the mode wavelength, the CR mean free path and the CR gyroradii. It is
instructive to demonstrate the transition between the collisionless case (i.e. a = 0), where
the CR mean free part is much larger than the mode wavelength, and the opposite case with
the collisionality parameter a → 1 (Bohm’s diffusion limit). In the collisionless limit (i.e.
a = 0) the instabilities due to dipole type anisotropy (χ = 0) were discussed by Bell (2004),
Pelletier et al. (2006), and Amato and Blasi (2009). The firehose instability of a highly rel-
ativistic plasma without a dipole anisotropy was discussed by Noerdlinger and Yui (1968).
Schure and Bell (2011) derived a dispersion equation for the mono-energetic particle distri-
bution instead of the power-law distribution in Eq. (19) used here, and the dipole-type initial
anisotropy (i.e. χ =0). The firehose instability of the anisotropic CR pressure with nonzero
χ was studied by Bykov et al. (2011a).

4 Growth Rates of Incompressible Modes Propagating Along the Mean Magnetic
Field

In Fig. 1 we illustrate the growth rates derived from Eq. (20) for a particular choice of
parameters of the CR distribution functions typical for the upstream distribution of CRs
accelerated by the diffusive acceleration at a shock of velocity us

c
= 0.01, with α = 4, and

pm

p0
= 100. The DSA spectrum may span many decades, but we choose the two-decade

range of the particle spectrum to model the instability far upstream of the shock where the
longwavelength fluctuation amplification is the most efficient. The CR distribution function
and the CR current normalizations are fixed here by the dimensionless parameter k0rg0 =
100, where rg0 = cp0

eB0
.To estimate the normalization of the CR distribution we assumed that

about 10 % of the shock ram pressure is converted into the CR energy. For the CR spectrum
of the index α = 4 the fraction of CRs above the momentum p0 is ∝ pm/p0, while rg0 ∝ p0.
Therefore the spatial dependence of the key governing parameter of the Bell instability k0rg0

depends basically on the energy dependent CR anisotropy. The bulk of the CRs are confined
in the accelerator and therefore would have anisotropy about us/c (apart from the particles
at the very end of the CR spectrum escaping from the system).

4.1 Nonresonant Shortwavelength Instability

It is instructive to consider the short-scale CR-current driven modes produced by Bell’s
instability as an asymptotic case of the general Eq. (20), for different wavenumbers k in
the collisionless case a = 0, following Bell (2004) and Bykov et al. (2011a). In Fig. 1, we
illustrate the growth rate dependence on the collisionality parameter.

In the wavenumber range k0rg0 > krg0 > 1, corresponding to the instability discovered
by Bell (2004), the growth of the right hand polarized mode (panel a in Fig. 1) is much faster
than the left hand mode (panel b in Fig. 1). This results in fast helicity production. In the
collisionless limit the right hand mode has the growth rate

γb = va

√

k0k − k2. (24)

Equation (24) follows from Eq. (20), neglecting the response of the CR current on the mag-
netic fluctuations, i.e., A0(x0, xm) → 0 and A1(x0, xm) → 0. The weak CR-current response
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Fig. 1 The growth rates for the two circularly polarized modes. The right hand polarized mode (panel a)
and the left hand mode (panel b) are derived from Eq. (20). We illustrate the growth rate dependence on
the collisionality parameter a. Dotted line corresponds to a = 0.01, dashed line—a = 0.1, and dot-dashed
line—a = 1. The quadrupole anisotropy is χ = 6(us/c)

2. Note that in the bottom panel the dashed and dotted
lines are very close
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is the main cause of the Bell-type instability. Indeed, the CR current induces the compen-
satory reverse current in the background plasma and if the current is not responding to a
magnetic field variation, then the magnetic fluctuation is growing due to the Ampere force.
The CR current only weakly responds to the magnetic field fluctuations with wavenumbers
k0rg0 > krg0 > 1, and they grow. From Eq. (24) one may see that γb ∼ k

1
2 for k � k0.

4.2 The Resonant Instability

In the collisionless case for the wavenumber regimes xm > 1, but x0 < 1, the resonant contri-
bution dominates the pole in the integrand in Eq. (22). Therefore, the resonant mode growth
can be seen in Fig. 1 in the regime 0.01 < krg0 < 1, where both circular polarization modes
are growing with the very close rates ∝ k for α = 4 (compare panels a and b in Fig. 1).
Collisions do not change the mode growth drastically for a < 0.1, but in the limit of strong
collisions with a = 1 the left hand mode grows slower than the right hand polarized mode.
This may also result in helicity production.

4.3 A Nonresonant Longwavelength Instability: the Firehose Mode

In the longwavelength regime where xm = kcpm

eB0
� 1, within the collisionless case, the dis-

persion relation in Eq. (20) can be approximated, following Bykov et al. (2011a), as

ω2 = v2
ak

2

{

1 ∓ rg0

5

[

k0xm ± 4πencrχ

B0

ln pm

p0

(1 − p0
pm

)

]}

. (25)

As it follows from Eq. (25), in the regime dominated by the dipole CR anisotropy (χ → 0)
only the left-polarized mode is growing with the rate ∝ k

3
2 (see Schure and Bell 2011). For

a finite quadrupole-type CR anisotropy χ at small enough wavenumbers the modes of both
circular polarizations are growing again with the very close rates ∝ k (see in Fig. 1). The
instability due to the quadrupole-type CR anisotropy corresponds to the well known firehose
instability in a plasma with anisotropic pressure. Indeed, the CR pressure anisotropy derived
from the CR distribution Eq. (18) is

P cr
‖ − P cr

⊥ = 3

5
χP cr , (26)

where

P cr = 1

3
ncr

∫ ∞

0
v(p)N(p)p3dp. (27)

The dispersion relation for the modes produced by only the quadrupole-type anisotropy of
CR distribution can be obtained from Eq. (25) if one neglects the dipole-type contribution
xm → 0. Then, it is reduced to the standard hydrodynamic dispersion relation of the firehose
instability

ω = ±
√

v2
a − P‖ − P⊥

ρ
k, (28)

where P‖ − P⊥—is the pressure anisotropy along the mean magnetic field direction (see,
e.g., Blandford and Eichler 1987; Treumann and Baumjohann 1997). The dispersion relation
Eq. (28) is justified for the modes with the wavenumbers above the CR ion gyroradii. The
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dependence of the growth rates of the firehouse instability on the collisionality parameter
can be seen in Fig. 1. It should be noted that the growth rates of the firehose modes of both
polarizations in the regime krg0 < 1 are declining functions of the collisionality parameter.
Their growth rates would be equal in the case of lack of the CR current. Contrary, the growth
rates of the current driven modes are different for the two polarizations. The growth rate of
the right hand polarized CR-current driven mode is sensitive to the collisionality parameter
(see Schure and Bell 2011).

4.4 A Nonresonant Long-Wavelength Instability: the Cosmic-Ray Current Driven Dynamo

Bell’s instability results in the fast growth of short-scale modes with wavelengths shorter
than the gyroradius of the cosmic-ray particles and in the presence of CR-current it may
produce strong short-scale turbulence (e.g., Bell and Lucek 2001; Bell 2004; Zirakashvili
and Ptuskin 2008; Zirakashvili et al. 2008; Reville et al. 2008; Vladimirov et al. 2009;
Rogachevskii et al. 2012). Moreover, the shortscale turbulence is helical, and at the
wavenumbers below 2k0 its kinetic energy density dominates over the magnetic energy den-
sity making a favorable condition for a pure α-dynamo effect (see Bykov et al. 2011b). The
strong short-scale turbulence influences the background plasma dynamics on scales larger
than the CR gyroradii. Bykov et al. (2011b) derived the mean field dynamic equations av-
eraged over the ensemble of short-scale motions for plasma systems with CR-current. The
averaged equation of motion can be presented as

∂V
∂t

+ (V∇)V = − 1

ρ
∇Pg − 〈

(u∇)u
〉 + 1

4πρ

〈

(∇ × b) × b
〉

+ 1

4πρ

(

(∇ × B) × B
) − 1

cρ

((

jcr − encrV
) × B

)

−
∫

pI [f ]d3p, (29)

where V is the mean velocity of the plasma. The magnetic induction equation for the mean
magnetic field B reads

∂B
∂t

= c∇ × E + ∇ × (V × B) + νm�B. (30)

Here E = 〈u × b〉 is the average turbulent electromotive force and νm is the magnetic diffu-
sivity. The averaged equations Eqs. (29) and (30) are designed to be applied to the dynamics
of modes with scales larger than rg0, i.e., CR particles are magnetized on these scales.

The ponderomotive forces 〈(u∇)u〉 and 1
4πρ

〈(∇ × b) × b〉 in Eq. (29) describe the mo-
mentum exchange of the background plasma with the Bell mode turbulence. The averaged
turbulent electromotive force E results in the magnetic induction evolution. It is important
that in the case under consideration the ponderomotive forces in Eq. (29) depend on the
CR current through the Bell mode turbulence moments. To express the electromotive and
ponderomotive forces through the CR current (Bykov et al. 2011b) followed the mean field
closure procedure similar to the approach proposed by Blackman and Field (2002) in the
dynamo theory (see for a review Brandenburg 2009a). The closure procedure is introduced
by the parameter τcor. The correlation time τcor which is the relaxation time of triple correla-
tions and is approximately equal to the turnover time of the Bell turbulence. The dependence
of the electromotive force and the ponderomotive force on the CR current is determined by
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the kinetic coefficients αt and κt , correspondingly. The kinetic coefficients are determined
by the r.m.s. amplitude of Bell’s turbulence 〈b2

B〉 and τcor. The short scale turbulence pro-
duced by the Bell mode instability is helical and therefore there is also a contribution to the
electromotive force ∝ αtB resulting in the α-dynamo effect. Then, the dispersion equation
for the modes of wavelengths longer than rg0 in a plasma with anisotropic relativistic CRs
can be derived from Eqs. (29) and (30) by the standard linear perturbation analysis:

ω2 − k2v2
a ∓ ωik

αt

4πρ

[

1

2

(

k0A0(x0, xm) + 4πencrχ

B0
A1(x0, xm)

)

+ 3

2
k0

]

± kv2
a

(

1 + κt

B0

)[(

k0A0(x0, xm) + 4πencrχ

B0
A1(x0, xm)

)

− k0

]

+ iakv2
a

(

k0A0(x0, xm) + 4πencrχ

B0
A1(x0, xm)

)

= 0. (31)

The dispersion relation Eq. (31) was derived for the systems where the unperturbed
CR-current is directed along the unperturbed magnetic field, and the short scale turbulence
consists of Bell’s modes. It is convenient to introduce two dimensionless parameters NB =√

〈b2
B

〉
B0

—Bell’s turbulence r.m.s. amplitude, and the dimensionless mixing length ξ , instead

of the correlation time τcor. The mixing length is defined here as 2πξ/k0 = τcor

√〈v2〉 ≈
τcor

√

ξ 〈b2
B〉/(4πρ). Then αt ≈ 〈b2

B〉τcor ≈ 8π2√ξNBvak
−1
0 ρ and κt = πNBB0.

In Fig. 2 we illustrate the long wavelength mode growth derived from Eq. (31) for ξ = 3.
The corresponding mixing length is close to the scale of the maximal growth rate of the short
scale Bell’s instability. The α-dynamo effect dominates the growth rate of a polarized mode
shown in Fig. 2 (panel b) in the intermediate wavenumber regime a < krg0 < 1. One should
have in mind that in the case of Bohm’s CR diffusion a ∼ 1 and therefore the intermediate
wavenumber regime is rather limited. It should be noted that the helicity of the unstable,
long-wavelength mode studied above is opposite to that of the short-scale Bell mode. This
provides, at least in principle, the possibility of balancing the global helicity of the system by
combining short and long-wavelength modes. Care must be taken however, since numerical
models indicate a high saturation amplitude of the Bell mode making a nonlinear analysis
necessary to address the helicity balance issue. We will discuss some nonlinear simulations
below in Sect. 5.

4.5 The Cosmic-Ray Current Driven Instability in the Hydrodynamic Regime

The nonresonant modes in a hydrodynamic regime, where the wavelength is longer than
the mean free path, i.e., krg0 < a, are unstable, as it follows from Eq. (31) (see, for details,
Bykov et al. 2011b). Both circular polarizations in panels a and b in Fig. 2 grow with the
same rate given by

γ ≈
√

πNB

2

√

kk0ava. (32)

The transition from the intermediate wavenumber regime a < krg0 < 1, dominated by the
dynamo effect discussed in Sect. 4.4, where the mode growth rate can be approximated by

γ ≈ 4π
√

ξNBvak, (33)
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Fig. 2 The growth rates of the longwavelength modes of two circular polarizations. The right hand polarized
mode (panel a) and the left hand mode (panel b) are propagating along the mean magnetic field as function of
the wavenumber. The dotted line curves are derived from the dispersion equation Eq. (31) for the collisionality
parameter a = 0.1, the dimensionless r.m.s. amplitude of Bell’s turbulence NB = 1, and the mixing parameter
ξ = 3. The dashed curves given for comparison are the growth rates derived from Eq. (20) which are shown
in Fig. 1
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to the hydrodynamical regime with krg0 < a where the growth rate is ∝ k1/2 according to
Eq. (32), is clearly seen in Fig. 2 (panel b). Note that for the mode polarization shown
with the dotted line in the panel a of Fig. 2, no dynamo-type instability occurs, but the
hydrodynamical regime instability is present. This mode grow fast in the short wavelength
regime krg0 > 1 due to Bell’s instability.

The effect of the short-scale turbulence on the hydrodynamic regime instability enters
Eq. (31) through the turbulent coefficient κt/B0. The turbulent ponderomotive force is
large enough in both the intermediate and hydrodynamical regimes, and the CR current
response in the long-wavelength regime can no longer be neglected. The current cannot be
treated as a fixed external parameter, as is normally done for the short-scale Bell instability,
and therefore the MHD models of the Bell turbulence that assume a constant CR-current
(see, e.g., Bell and Lucek 2001; Zirakashvili and Ptuskin 2008; Zirakashvili et al. 2008;
Reville et al. 2008; Vladimirov et al. 2009; Rogachevskii et al. 2012) cannot be di-
rectly applied to the nonlinear models of the longwavelength instabilities discussed above.
Particle-in-cell simulations with very limited dynamical range performed by Riquelme and
Spitkovsky (2009, 2010) indicate the importance of the CR backreaction effect on the
CR-driven instabilities. Therefore the nonlinear dynamics of the long-wave CR-driven tur-
bulence in a wide dynamical range remains to be investigated. In the next section we illus-
trate the nonlinear evolution of the short scale turbulence driven by a fixed CR current, using
high resolution MHD simulations.

5 Numerical Solutions of the Bell–Dynamo Instability

Significant insights have been possible through high-resolution direct numerical simulations
(DNS) and large eddy simulations (LES) of the Bell instability and its subsequent satura-
tion. In this section we describe some of the main results and, in particular, the connection
with the dynamo instability. The simulations have been carried out in a Cartesian domain of
size L3, so the smallest wavenumber in that domain is k1 = 2π/L. The system is character-
ized by the non-dimensional parameter

J = 4π

c

j cr

k1B0
. (34)

In the ideal case (νM = 0), the Bell instability is excited when J > 1 and the normalized
wavenumber of the fastest growing mode is k/k1 = J /2. The normalized growth rate of this
fastest growing mode is γb/vA0k1 = J /2. In Fig. 3 we reproduce the results of numerical
simulations of Bell (2004) for J = 2 using 1283 mesh points and Zirakashvili et al. (2008)
for J = 16 using 2563 mesh points. These simulations confirmed the analytically expected
linear growth rates. Interestingly, the saturation of the instability was never perfect. Instead,
the magnetic field still continued to grow at a slow rate. Rogachevskii et al. (2012) have
argued that this slow growth after the end of the exponential growth phase of the instability
is the result of a mean-field α effect. The purpose of this section is to elaborate on this
possibility.

We begin by discussing first the recent DNS of Rogachevskii et al. (2012) for J = 80
and J = 800 at a resolution of 5123 mesh points and discuss also new results for J = 800 at
a resolution of 10243 mesh points. In all cases, explicit viscosity ν and magnetic diffusivity
νM are used, so the fastest growing modes in those cases have somewhat smaller wavenum-
bers than in the ideal case. This is quantified by the Lundquist number Lu = va/νMk1 and
the ideal case corresponds then to Lu → ∞. For example, Rogachevskii et al. (2012) used
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Fig. 3 Numerical solutions of the Bell instability for J = 2 using 1283 mesh points (left hand side, Bell
2004) and J = 16 using 2563 mesh points (right hand side, Zirakashvili et al. 2008). Note the continued
growth of the magnetic field at the end of the linear growth phase at t ≈ 10 on the left and t ≈ 1 in the right.
Courtesy of Tony Bell (left panel) and Vladimir Zirakashvili (right panel)

Fig. 4 Time evolution of EM(k, t) for J = 80 (left) and J = 800 (right) at resolutions 5123 and 10243,
respectively. The solid lines refer to the initial spectra proportional to k4 for small values of k and the red and
blue lines represent the last instant of EM and EK , respectively. The straight lines show the k4 and k−5/3

power laws

Lu = 80, in which case the fastest growing mode has kz/k1 ≈ 21 for J = 80 while for
J = 800 it has kz/k1 ≈ 63. The DNS show that most of the power is at somewhat larger
wavenumbers; see Fig. 4, where we show magnetic energy spectra for both cases.

In Fig. 5 we show the temporal evolution of spectral magnetic energy EM and the spectral
kinetic energy EK at selected wavenumbers. These curves show an exponential growth at
early times, followed by a slower growth at later times. At the wavenumbers of the Bell
mode, the growth rate from linear theory is reproduced. At smaller wavenumbers, the growth
is at first slower, and then it is even faster than the growth rate of the Bell mode. This is a
consequence of mode coupling (Rogachevskii et al. 2012). Comparing with Fig. 4, we see
that after some time a k4 energy spectrum is established. Such an energy spectrum is also
known as Batchelor spectrum and can be derived under the constraints of solenoidality and
causality (Durrer and Caprini 2003). When the k4 spectrum is established, the growth of
spectral energy at small wavenumbers is no longer described by linear theory, but follows
the growth of the Bell mode.

In Fig. 6 we show visualizations of Bx/B0 on the periphery of the computational domain
for J = 80 using 5123 mesh points and J = 800 using 10243 mesh points at two different
times. One clearly sees that at early times, the magnetic field shows a layered structure
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Fig. 5 Time evolution of EMk1/v2
A0 for J = 80 (left) at wavenumbers k/k1 = 1 (solid line), 5 (dotted),

and 21 (dashed) and J = 800 (right) at wavenumbers k/k1 = 1 (solid line), 10 (dotted), and 63 (dashed).
The short straight lines show the growth of the energies for the Bell (dashed) and dynamo (solid) instabilities

Fig. 6 Visualization of Bx/B0 on the periphery of the computational domain J = 80 using 5123 mesh
points (upper row) and J = 800 using 10243 mesh points (lower row) with Lundquist number Lu = 80 in
both cases

with a high wavenumber in the z direction. At later times, the magnetic field breaks up and
becomes turbulent. In both cases, larger scale structures develop, as one also sees from the
energy spectra in Fig. 4.

It should be pointed out that, owing to the persistent growth of magnetic and kinetic
energy, the Reynolds numbers grow eventually beyond the limit of what can be resolved
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at a given resolution. Unlike some of the earlier LES, where numerical effective viscosity
and diffusivity keep the small scales resolved, in the DNS of Rogachevskii et al. (2012)
this is not the case and the numerical code (in this case the PENCIL CODE1) eventually
‘crashes’. The point when this happens can be delayed by using higher resolution. This is
why we show here the results for J = 800 at a resolution of 10243 mesh points, where the
simulation can be carried out for about 0.126 Alfvén times, compared to only 0.09 Alfvén
times at a resolution of 5123 mesh points used in Rogachevskii et al. (2012). Remeshing the
10243 run to 20483 mesh points, we were able to continue until 0.142 Alfvén times, after
which we were unable to continue the run due to a disk problem.

The Bell instability is driven by the simultaneous presence of an external magnetic field
B0 and an external current jcr, giving therefore rise to a pseudo-scalar jcr · B0; here, B0 is an
axial vector while jcr is a polar vector. In stellar magnetism, the presence of a pseudo-scalar
is caused by rotation Ω (an axial vector) and gravity g (a polar vector). This property is
generally held responsible for the production of magnetic fields by what is known as the α

effect. As explained in Sect. 4.4, the α effect denotes the presence of a tensorial connection
between a mean electromotive force E = u × b and a mean magnetic field via

E i = αijBj + ηijkBj,k + · · · , (35)

where higher order derivatives (indicated by commas) of the mean magnetic field are also
present. If the tensors αij and ηijk were isotropic and the evolution characterized by just two
quantities, α = δijαij /3 and ηt = εijkηijk/6, the growth of the mean magnetic field would
occur at the rate

γdynamo = αk − ηT k2, (36)

where ηT = ηt + νM is the total (turbulent plus microphysical) magnetic diffusivity and the
fastest growth occurs at wavenumber k = α/2ηT with the growth rate γmax = α2/4ηT .

In stellar dynamos, where the magnetic Reynolds number is very large, the actual growth
is dominated by small-scale dynamo action, so Eq. (36) is in practice not obeyed, unless
the small-scale dynamo is not excited, for example at low magnetic Prandtl numbers (Bran-
denburg 2009b). However, in the present case the magnetic energy spectra show that at late
times, magnetic power moves gradually to larger scales. This is why we now ask whether
this can be explained by the α effect.

Rogachevskii et al. (2012) have shown that in the case of jcr and B0 pointing in the z

direction, the large-scale mean magnetic field is a function of x and y and can be written in
terms of two scalar functions A‖(x, y, t) and B‖(x, y, t) with

B(x, y, t) = ∇ × (ẑA‖) + ẑB‖, (37)

where ẑ = (0,0,1) is the unit vector in the z direction. These functions obey the mean field
equations

∂A‖/∂t = αAB‖ + ηA∇2A‖, (38)

∂B‖/∂t = αBJ ‖ + ηB∇2B‖, (39)

where J ‖ = −∇2A‖ is the xy dependent part of the mean current density in the z direction.
We consider a homogeneous system, so the coefficients αA, αB , ηA, and ηB are constant and

1http://www.pencil-code.googlecode.com.

http://www.pencil-code.googlecode.com
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we can seek solutions of a form proportional to exp(λt + ik · x). In this case, the dynamo
growth rate is still described by Eq. (36), provided we substitute

α → αeff = (

αAαB + ε2
ηk

2
)1/2

and ηt → ηeff
t = (ηA + ηB)/2, (40)

where εη = (ηA − ηB)/2 quantifies the anisotropy of the turbulent diffusivity.
To determine these coefficients from the DNS, we use the so-called test-field method

of Schrinner et al. (2005), which was originally used in spherical coordinates. The imple-
mentation in Cartesian coordinates is described in Brandenburg (2005) and especially in
Brandenburg et al. (2012), where the mean magnetic field was allowed to depend on all
three spatial coordinates, and not just on one, as was assumed in Brandenburg (2005). Un-
der the assumption that the turbulence is governed by only one preferred direction, which is
here the case, the number of coefficients reduces to 9, and homogeneity reduces this number
further to 5, so in the present case we have

E = α⊥B⊥ + α‖B‖ − β⊥J⊥ + β‖J‖ − μẑ × K⊥, (41)

where J = ∇ × B characterizes the antisymmetric part of the magnetic derivative tensor and
Ki = (Bi,j +Bj,i)ẑj /2 the symmetric part. We have followed here the notation of Branden-
burg et al. (2012), except that there the two α coefficients were defined with the opposite
sign. Comparing with the coefficients used in Eqs. (38) and (39), we find that αA = α‖,
αB = α⊥, ηA = β‖, and ηB = β⊥ − μ/2. In Fig. 7 we show the time dependence of the var-
ious parameter combinations. In the early kinematic phase (tvA0k1 < 0.08), the root mean
square velocity, urms, as well as α‖ and α⊥ grow exponentially. At later times, α‖ continues
to grow, while α⊥ remains small and approximately constant. The other turbulent transport
coefficients also grow exponentially in the kinematic phase, and at later times β‖, ηt , and εη

continue to grow, while β⊥ and μ remain small and can even become negative. The resulting
effective dynamo number, which is proportional to the product α‖α⊥, reaches values well
above the critical value of unity. The estimated and actual growth rates agree roughly and
have a value of around 10 in units of ηtk1.

6 Instabilities Driven by the Nearly Isotropic CR Distributions

In many astrophysical objects the CR mean free path due to the particle scattering by mag-
netic fluctuations carried by the background plasmas is below the characteristic scale sizes
of the plasma flow. In that case the angular distribution of the CRs is nearly isotropic with
a small anisotropic part (i.e. both β � 1 and χ � 1 in Eq. (18)). Then one can use the
diffusion approximation that assumes

f cr(r,p) = 1

4π

[

Ncr(r,p) + 3

vp
pJcr (r,p)

]

, (42)

where the diffusive current of CRs is

J cr
α = −καβ∇βNcr − p

3

∂Ncr

∂p
uα, (43)

καβ is the momentum-dependent CR diffusion tensor. Then the kinetic equation Eq. (8)
reduces to the advection-diffusion equation for the isotropic part of CR distribution
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Fig. 7 Time evolution of the model parameters for J = 800 and Lu = 80 using 10243 mesh points. (a) Ex-
ponential growth and subsequent near-saturation of urms, α‖, and α⊥ (all normalized by vA0) in linear-log-
arithmic representation. (b) Evolution of α‖ and α⊥ (normalized by vA0) in double linear representation,
showing that α⊥ is much smaller than α‖ . (c) Evolution of β‖, β⊥ , and μ (normalized by vA0/k1). (d) Evo-
lution of ηt and εη (normalized by vA0/k1). (e) Evolution of Cα (negative values are shown as dotted lines),
and (f) growth of the fasted growing mode

Ncr(r,p, t)

∂Ncr

∂t
= ∇ακαβ∇βNcr − (u∇)Ncr + p

3

∂Ncr

∂p
∇u, (44)

where u(r, t) is the bulk velocity of the background plasma (see, e.g., Toptygin 1983). It is
assumed here for simplicity that the scatterers are carried with the plasma bulk velocity,
though it is possible to account for the scatterers drift velocity (see, e.g., Skilling 1975).
The advantage of this approach is that it is valid for collision operators I [f ] more general
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than just the simple relaxation time approximation given by Eq. (16). In the diffusion ap-
proximation the exact form of the collision operator determines the form of the diffusion
tensor and its momentum dependence. Therefore, the results obtained within the diffusion
approximation are valid for different collision operators.

To explore the effect of CRs on the background plasma one should calculate the first
moment of the kinetic equation Eq. (8) for CRs that is the momentum exchange rate between
the CRs and the background plasma:

∂Pα

∂t
+ ∇αP

cr + ∇βΠ ′
αβ =

[

1

c

(

jcr − encru
) × B +

∫

pI [f ]d3p

]

α

, (45)

where P cr is the CR pressure, the CR momentum density

P(r, t) =
∫

pf d3p, (46)

and the reduced CR momentum flux density Π ′
αβ is defined by

Π ′
αβ =

∫

pαvβf d3p − P crδαβ . (47)

In the diffusion approximation for the steady state (e.g., in the shock rest frame) the first
and the third terms in the left hand side of Eq. (45) are small and then Eq. (15) can be
reduced to

ρ

(

∂u
∂t

+ (u∇)u
)

= −∇(

pg + P cr
) + 1

4π
(∇ × B) × B. (48)

The equation can be applied to longwavelength perturbations. It should be supplied with the
continuity equation:

∂ρ

∂t
+ ∇(ρu) = 0, (49)

the energy equations for the background plasma:

∂pg

∂t
+ (u∇)pg + γgpg∇u = 0, (50)

the MHD induction equation

∂B
∂t

= ∇ × (u × B), ∇B = 0, (51)

and the equation for CR-pressure variations

∂P cr

∂t
+ (u∇)P cr + γcrP

cr∇u = ∇ακαβ∇βP cr , (52)

where καβ is the CR diffusion tensor averaged over the CR distribution function, γg and
γcr—are the adiabatic indexes of the plasma and CRs, respectively.
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7 Acoustic Instability Driven by the CR Pressure Gradient

It was found by Drury (1984), Dorfi and Drury (1985), Drury and Falle (1986) and Drury and
Downes (2012) that the force density in Eq. (48) associated with the CR pressure gradient
that does not depend on the density of the background plasma results in a specific instability.
The effect of magnetic field on the instability was studied by Berezhko (1986) and Chalov
(1988b). The analytical study of the instability can be performed for the modes with the
wavenumbers below the scale size of the CR pressure gradient L ∼ P cr/|∇P cr |. In the
generic case of the diffusive shock acceleration L ∼ (c/us) × rg/a. Following Drury and
Falle (1986) and Chalov (1988b) for the wavenumber range kL > 1, but krg/a < 1 the
mode growth and damping can be derived from the continuity equation for the wave action.

The mode growth rate Γ in the simplified geometry where the CR pressure gradient is
directed along the unperturbed magnetic field was derived using a standard linear analysis
of Eqs. (48)–(52) by Chalov (1988a), who obtained the following expression

Γ = v2
m − v2

a

2v2
m − (v2

s + v2
a)

{

−γcrP
cr
0

ρ0

k2

κ0‖k2
‖ + κ0⊥k2

⊥

v2
m − v2

a

k2‖
k2

v2
m − v2

a

± ∇P cr
0

ρ0vm

k‖
k

[

1 + ςκ0‖k2

κ0‖k2
‖ + κ0⊥k2

⊥

v2
m − v2

a

k2‖
k2

v2
m − v2

a

]}

. (53)

Here vs is the sound speed of the background plasma, P cr
0 is the unperturbed CR pressure,

∇P cr
0 is the gradient of the unperturbed CR pressure, k‖ and k⊥ are the components of the

mode wavevector parallel and transverse to the unperturbed magnetic field, respectively, and
κ0‖, κ0⊥ are the components of the averaged CR diffusion tensor. It is assumed that the CR
diffusion tensor components scale with the background plasma density as κ‖,⊥ ∼ ρς . The
phase velocity of the mode is

vm =
[

v2
s + v2

a ± 1

2

√

(

v2
s + v2

a

)2 − 4v2
s v

2
a

k2
‖

k2

] 1
2

. (54)

The first term in Eq. (53) is the wave damping rate due to the irreversible stochastic Fermi II
CR acceleration effect (Achterberg 1979; Bykov and Toptyghin 1979; Ptuskin 1981), while
the second and the third terms describe the growth/damping of the modes due to the acoustic
instability studied by Drury and Falle (1986). A more general treatment with an arbitrary
direction of the unperturbed magnetic field was performed by Chalov (1988b). He accounted
for the response of the CR diffusion tensor to both the density and magnetic field variations
and found that the latter does not change the character of the angular dependence of the
growth rate significantly. A similar angular dependence of the long-wave mode growth rate
due to the CR current driven instability (discussed above in Sect. 4.5) was found by Bykov
et al. (2011b).

In the space plasma with the modest level of the magnetic field fluctuations the local
CR diffusion is anisotropic. For magnetized CR particles (a � 1) the diffusion parallel to
the mean magnetic field dominates over the CR diffusion transverse to the mean field, i.e.,
κ0‖ � κ0⊥. The growth rate of the acoustic instability in the anisotropic system is maximal
for the modes propagating nearly transverse to the mean magnetic field (ϑ → π

2 ). Here ϑ is
the angle between the mode wavevector and the mean magnetic field.
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Fig. 8 The characteristic angular dependence of the growth rate of the acoustic instability Eq. (53) for
a = 0.3 (the dashed curve), a = 0.2 (the dotted curve), a = 0.1 (the dot-dashed curve), a = 0.05 (the rare
dot curve)

The angular dependence of the growth rate Eq. (53) can be approximated by

G0(ϑ) = cosϑ

cos2 ϑ + κ0⊥
κ0‖ sin2 ϑ

, (55)

where we used
k‖
k

= cosϑ , k⊥
k

= sinϑ . The anisotropy of the CR diffusion is determined
by the CR particle magnetization (e.g., Toptygin 1983), that is the inverse collisionality
parameter a, and therefore, κ0⊥

κ0‖ ∝ a2. The maximal growth rate is therefore achieved for

the mode propagating at cosϑmax = a, where Gmax(ϑmax) = 1
2a

. The angular dependence
of the growth rate of the acoustic instability is illustrated in Fig. 8 for various values of
collisionality parameter a.

The linear perturbation analysis discussed above is based on the diffusion approxima-
tion of the CR dynamics in Eqs. (48)–(52) and, therefore, it is valid for the modes of the
wavenumbers above the mean free path of the CRs. A numerical model of the acoustic in-
stability in the nonlinear regime was performed recently by Drury and Downes (2012), who
found a significant amplification of magnetic field. The authors assumed a fixed CR diffu-
sion gradient with no response of the CR pressure to the fluctuations, that may affect the
model results.
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8 Self-Confinement of CRs Near Their Acceleration Sites

Apart from being a central issue for the acceleration in SNR shocks, the CR-driven instabil-
ities are fast becoming an integral part of CR escape models. One common difficulty with
the observational verification of the proton escape is that, in contrast to electrons, they likely
remain invisible until they reach some dense material in SNR surroundings. Only there gen-
erate they enough π0 mesons in collisions with other protons and the mesons in turn decay
into gamma photons which may be detected. Not surprisingly, the escape of CRs from an
SNR is a hot topic of today research in gamma-ray astronomy.

The backbone of the DSA is a self-confinement of accelerated particles by scattering off
various magnetic perturbations that particles drive by themselves while streaming ahead of
the shock. Most important of them were discussed at some length in this review. Logically,
this process should also control the ensuing propagation of CRs, before their density drops
below the wave instability threshold. Strictly speaking the CR release (escape) from the
accelerator should be treated together with the acceleration, as it does not occur at once for
all the particles. But this would be a combination of two difficult enough problems and most
of the progress in CR escape was made by considering it separately from acceleration.

Remarkably, even within this limited approach, and under rather loose formulation of the
problem, no consensus on the escape mechanism has been reached so far; the dividing lines
seem to run across the following issues: (i) does the escape occur isotropically or along the
local magnetic field? (ii) does the scattering by the background MHD turbulence control the
CR propagation alone or self-excited waves need to be included? (iii) if so, is a quasilinear
saturation of self-excited waves sufficient or nonlinear processes of wave damping are cru-
cial to the particle propagation? (iv) if they are, which particular mechanism(s) should be
employed?

Starting with (i–ii) we note that most of the early models, and some of the recent ones
that target specific remnants, assume isotropic CR propagation from a point source impeded
only by the background turbulence (one may call them test particle models, e.g. Aharonian
and Atoyan 1996; Gabici et al. 2009; Ellison and Bykov 2011; Gabici 2011). It should be
noted, however, that e.g., Rosner and Bodo (1996) and Nava and Gabici (2013) adopted a
field aligned propagation while Drury (2011) included the finite radius of a SNR shock in
the CR escape description. Given the topic of the present short review, however, we focus in
this section on models that explicitly include the self-excited waves. Brief reviews of other
aspects of CR propagation in the galaxy were given recently by Gabici (2011) and Ptuskin
(2012).

The role of self-confinement effects in the CR escape, their subsequent propagation and
how these phenomena are treated in different models, can be best demonstrated by writing
the following equations that self-consistently describe the CR diffusion and wave generation

d

dt
PCR(p) = ∂

∂z

κB

I

∂PCR

∂z
(56)

d

dt
I = −va

∂PCR

∂z
− Γ I. (57)

Here va is the Alfvén velocity, κB is the CR diffusion coefficient in Bohm regime, κB =
crg/3, and the time derivative is taken along the characteristics of unstable Alfvén waves,
forward propagating along the field (z-direction):

d

dt
= ∂

∂t
+ va

∂

∂z
(58)
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Eq. (56) above is essentially a well-known convection-diffusion equation, written for the
dimensionless CR partial pressure PCR instead of their distribution function f (p, t). We
normalized it to the magnetic energy density ρv2

a /2:

PCR = 4π

3

2

ρv2
a

vp4f, (59)

where v and p are the CR speed and momentum, and ρ—the plasma density. The total CR
pressure is normalized to d lnp, similarly to the wave energy density I :

〈δB2〉
8π

= B2
0

8π

∫

I (k)d lnk = B2
0

8π

∫

I (p)d lnp

Eq. (57) is a wave kinetic equation in which the energy transferred to the waves equals the
total work done by the particles, (u + va)∇PCR, less the work done on the fluid, u∇PCR

(Drury 1983) (we neglect the bulk flow velocity u, here and in Eq. (58) assuming that the
active phase of acceleration ended by this time). The above interpretation of the wave gener-
ation indicates that it operates in a maximum efficiency regime. A formal quasilinear deriva-
tion of this equation assumes that the particle momentum p is related to the wave number
k by the ‘sharpened’ resonance condition kp = eB0/c instead of the conventional cyclotron
resonance condition kp‖ = eB0/c (Skilling 1975), (note that here k = k‖). We assume that
∂PCR/∂z ≤ 0 at all times, so that only the forward propagating waves are unstable. The latter
inequality is ensured by the formulation of initial value problem symmetric with respect to
z = 0, so we consider the CR escape into the half-space z > 0 with the boundary condition
∂PCR/∂z = 0 at z = 0.

Papers on CR self-confinement discussed below use equations that are largely similar to
Eqs. (56)–(57) but different assumptions are made regarding geometry of particle escape
from the source (see (i) above), the character and strength of wave damping Γ (iv), and the
role of quasilinear wave saturation (iii). Fujita et al. (2011) and Yan et al. (2012) utilize the
isotropic escape models (in this case ∂/∂z should be replaced by ∂/∂r , etc.) while Ptuskin
et al. (2008) and Malkov et al. (2013) assume that particles propagate predominantly along
the local large-scale field. Note that Yan et al. (2012) considered the escape from an active
accelerator (in Eq. (58), one should include the flow bulk velocity, va → va +u in this case)
and, in addition, they introduce a step-wise increase in CR diffusivity at a certain particle
momentum above which particles escape the accelerator. These assumptions make it difficult
to compare their results with those of the remaining three papers. In these, Fujita et al. (2011)
presented the results of numerical integration of Eqs. (56)–(57) (in a spherical symmetry)
with neglected damping term Γ . The results indicate a considerable delay of diffusion from
the source due to a self-confinement.

However, in the regions where magnetic perturbations are weak, i.e. I � 1, the field
aligned CR transport is appropriate, as the perpendicular diffusion is suppressed, κ⊥ �
I 2κ‖ � κ‖ � κB/I . Taking into account the condition IISM � 1, such regime appears in-
evitable far away from the source and at late times when particles are spread over a large
volume and the waves are driven only weakly. At earlier times and close to the region of the
initial localization of CRs, an estimate κ⊥ ∼ κ‖ ∼ κB appears to be adequate. Both analyti-
cal models by Ptuskin et al. (2008) and Malkov et al. (2013), however, do not embrace the
general case and rely on the assumption κ⊥ � κ‖ thus considering a field-aligned escape. At
the same time, they are different in further simplifications made, that lead to rather different
results, both quantitatively and qualitatively.
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Ptuskin et al. (2008) neglect dI/dt on the l.h.s of Eq. (57) thus balancing the driving
term with the damping term on its r.h.s and assume a Kolmogorov dissipation for Γ ,

Γ = kva

√
I/(2CK)3/2 (60)

with CK ≈ 3.6 and k � 1/rg(p) being the resonant wave number. Therefore, only one equa-
tion (56) needs to be solved which lead to the following self-similar solution (in notations
and normalization used in Eqs. (56)–(57))

PCR = 4 · 3−3/2

t ′3/2
√

σ + (kz)4/t ′6
(61)

where the dimensionless time t ′ = (κBk2/2CK)t , σ = Γ 8(1/4)/π236η4, and Γ is the
gamma function. The single important parameter this solution depends on is the integrated
(along the field line) CR partial pressure

η = 2k

∞
∫

0

PCRdz (62)

Therefore, the CR density decays at the source as ∝ t−3/2 and the flat-topped, self-confined
part of the CR distribution spreads as z ∝ t3/2, both pointing at the superdiffusive CR trans-
port. The reason is clearly in a very strong wave damping due to the Kolmogorov dissi-
pation. For the same reason this solution does not recover the test particle asymptotic re-
sult PCR ∝ t−1/2 exp(−z2/4DISMt), physically expected in z, t → ∞ limit in the interstellar
medium with the background diffusion coefficient DISM.

An alternative choice of damping mechanism is the Goldreich and Sridhar (1997) MHD
spectrum, which seems to be more appropriate in I � 1 regime under not too strong MHD
cascade (Farmer and Goldreich 2004; Beresnyak and Lazarian 2008; Yan et al. 2012). The
damping rate in this case is

Γ = va

√

k

L
(63)

where L is the outer scale of turbulence which may be as large as 100pc. Not only is this
damping orders of magnitude (roughly a factor

√

rg/L ) lower than the Kolmogorov one
but, as it does not depend on I and can be considered as coordinate independent, it allows
for the following (‘quasilinear’) integral of the system of Eqs. (56) and (57):

PCR(z, t) = PCR0

(

z′) − κB

va

∂

∂z
ln

I (z, t)

I0(z′)
(64)

Here PCR0(z) and I0(z) are the initial distributions of the CR partial pressure and the wave
energy density, respectively, and z′ = z − vat . Substituting PCR in Eq. (57) and neglecting
slow convection with va in Eq. (58), we arrive at the following diffusion equation for I

∂I

∂t
= ∂

∂z

κB

I

∂I

∂z
− Γ I − va

∂PCR0

∂z
.

The equation is supplemented with the boundary condition I → IISM , for |z| → ∞. Outside
of the region where PCR �= 0, the last term on the r.h.s. may be neglected. The second term
may be eliminated by replacing I exp(Γ t) → I ,

∫ t

0 exp(Γ t)dt → t . However, if Γ is taken
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Fig. 9 Spatial distribution of CR partial pressure (as a function of ζ = z/
√

avat , multiplied by v
3/2
a

√
at/κB )

shown for integrated values of this quantity Π = 3.6; 6.7; 10.1 and for the background diffusivity
DISM = 104. Exact analytic solutions are shown with the solid lines while the interpolations given by
Eq. (65) are shown with the dashed lines. For comparison, a formal test particle solution for Π = 10.1 is
also shown with the dot-dashed line. Note the three characteristic zones of the CR confinement: the inner-
most flat top core, the scale invariant (1/ζ ) pedestal, and the exponential decay zone

in the form of Eq. (63), it is fairly small due to the factor
√

rg/L � 1. We may simply neglect
it. The solution for I and PCR(z, t) may be found in an implicit form (see Malkov et al. 2013
for details). However, there exists a very accurate convenient interpolation formula that can
be represented as follows

PCR = 2κB(p)

v
3/2
a

√
Lct

[

ζ 5/3 + (DNL)5/6
]−3/5

e−ζ 2/4DISM (65)

where Lc is the size of the initial CR cloud, ζ = z/
√

vaLct , and DNL = C(Π)DISM ×
exp(−Π), with Π being a normalized integrated pressure

Π = va

κB

∞
∫

0

PCRdz

and DISM is the normalized background diffusivity

DISM = κB

vaLc

I−1
ISM

while C ∼ 1, for Π � 1 and C ∼ Π−2, for Π � 1.
The representation of the solution given in Eq. (65) is convenient in that the func-

tion
√

tPCR(ζ ) does not depend on t , so that the solution can be shown for all t, z

with only one curve, Fig. 9. To summarize these results, the self-regulated normalized
(PCR = vaLcPCR/κB(p)) CR partial pressure profile PCR comprises the following three
zones (Π � 1): (i) a quasi-plateau (core) at small z/

√
t <

√
DNL of a height ∼(DNLt)−1/2,

which is elevated by a factor ∼Π−1 exp(Π/2) � 1, compared to the test particle solution
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because of the strong quasi-linear suppression of the CR diffusion coefficient with respect
to its background (test particle) value DISM: DNL ∼ DISM exp(−Π) (ii) next to the core,
where

√
DNL < z/

√
t <

√
DISM, the profile is scale invariant, PCR ≈ 2/z. The CR dis-

tribution in this “pedestal” region is fully self-regulated, independent of Π and DISM for
Π � 1, (iii) the tail of the distribution at z/

√
t >

√
DISM is similar in shape to the test

particle solution in 1D but it saturates with Π � 1, so that the CR partial pressure is
∝ (DISMt)−1/2 exp(−z2/4DISMt), independent of the strength of the CR source Π , in con-
trast to the test-particle result which scales as ∝ Π . Because of the CR diffusivity reduction,
the CR cloud half-life is increased and the cloud width is decreased, compared to the test
particle solution.

Depending on the functions Π(p) and DISM(p), the resulting CR spectrum generally
develops a spectral break for the fixed values of z and t such that z2/t ∼ DNL(p) ∼
DISM exp(−Π).

9 Summary

Cosmic rays, being a highly non-equilibrium component, often comprise an energy den-
sity that is comparable to the ram pressure of energetic plasma flows and magnetic fields
in astrophysical sources with high energy release such as supernova remnants, fast stellar
winds, and astrophysical jets of different scales. CRs may also play a role in the global
dynamics of interstellar gas in galaxies, in particular, they may support galactic winds. In
the presence of gravitation, the buoyancy of CRs and magnetic field at galactic scales may
result in the magnetic Parker instability (Parker 1966, 1967; Shu 1974; Ryu et al. 2003;
Hanasz et al. 2009). The local CR diffusion is an important factor for the Parker instability
to occur.

The microphysical instabilities discussed above lay the groundwork for detailed sim-
ulations of the global interstellar matter dynamics. In this review we addressed the re-
cent progress in understanding of the CR-driven instabilities with special attention to non-
relativistic shocks. We started with a quasi-linear analysis of the growth rates of the instabil-
ities driven by anisotropic and inhomogeneous CR distributions. Time dependent nonlinear
simulations are needed to draw conclusions about the saturation level and the spectra of
magnetic fluctuations produced by the non-equilibrium CR distributions. We used numeri-
cal simulations to illustrate the nonlinear dynamics of magnetic fluctuations. The CR-driven
instabilities are shown to be crucial for modeling particle acceleration sources and the CR
escape from the sources into the interstellar matter.
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Appendix

The dispersion equation (20) can be expressed in the elementary functions by evaluating
Eqs. (22) and (23) as

σ0(p) = 3
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(
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