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Abstract The negative effective magnetic-pressure instability operates on scales encom-
passing many turbulent eddies, which correspond to convection cells in the Sun. This insta-
bility is discussed here in connection with the formation of active regions near the surface
layers of the Sun. This instability is related to the negative contribution of turbulence to the
mean magnetic pressure that causes the formation of large-scale magnetic structures. For
an isothermal layer, direct numerical simulations and mean-field simulations of this phe-
nomenon are shown to agree in many details, for example the onset of the instability occurs
at the same depth. This depth increases with increasing field strength, such that the growth
rate of this instability is independent of the field strength, provided the magnetic structures
are fully contained within the domain. A linear stability analysis is shown to support this
finding. The instability also leads to a redistribution of turbulent intensity and gas pressure
that could provide direct observational signatures.

Keywords Magnetohydrodynamics (MHD) · Sun: dynamo · Sunspots · Turbulence

1. Introduction

Active-region formation in the Sun is traditionally thought to be a deeply rooted phe-
nomenon, because their size (≈ 100 Mm) is much larger than the naturally occurring scales

Solar Dynamics and Magnetism from the Interior to the Atmosphere
Guest Editors: R. Komm, A. Kosovichev, D. Longcope, and N. Mansour

K. Kemel (�) · A. Brandenburg · N. Kleeorin · D. Mitra · I. Rogachevskii
Nordita, Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23,
10691 Stockholm, Sweden
e-mail: brandenb@nordita.org

K. Kemel · A. Brandenburg
Department of Astronomy, Stockholm University, 10691 Stockholm, Sweden

N. Kleeorin · I. Rogachevskii
Department of Mechanical Engineering, Ben-Gurion University of the Negev, POB 653, Beer-Sheva
84105, Israel

mailto:brandenb@nordita.org


294 K. Kemel et al.

in the surface layers of the convection zone (≈ 1 – 10 Mm); see Golub et al. (1981). They are
also long-lived (several months), which seems unnaturally long if associated with the near-
surface layers (40 Mm depth), where typical time scales are about a day. This is particularly
true of what are called complexes of activity, which can live for ≈ 1/2 year (Golub and Va-
iana, 1980). At the bottom of the convection zone, or even beneath it in the tachocline, the
typical timescales are long (≈ one month) and it might then, at these depths, be easier to
envisage mechanisms for producing recurrent eruptions including sunspots over timescales
exceeding 1/2 year. A detailed report of recurrent sunspot activity between 23 August 1903
and 14 August 1904 was published by Epstein (1904), who referred to that region as a Fleck-
enherd, which can be translated as sunspot hearth. Later, Sanford (1941) referred to this as
an active region and gave details about an event lasting 620 days from 20 August 1929 to 2
May 1931. In Epstein’s early article, which was written in German,1 he wrote that a Fleck-
enherd is a region on the solar surface where sunspots (both larger and smaller ones, of
shorter and longer duration) have occurred in a confined area for at least eight rotation
periods. Such regions on the Sun would nowadays be referred to as complexes of activity,
while those discussed by Sanford (1941) would perhaps be called superactive regions or ac-
tive zones (Bai, 1987, 1988), and might also be related to active longitudes (Vitinskij, 1969;
Bogart, 1982).

All of these phenomena, from active regions to active longitudes, are probably caused by
magnetic-flux enhancements of some sort. For the purpose of this article, we simply refer to
them as active regions. Instabilities in the tachocline are generally held responsible for their
formation such as the clamshell and tipping instabilities (Cally, Dikpati, and Gilman, 2003),
which are global instabilities of a magnetic belt around the Sun. Based on calculations using
the thin-fluxtube approximation, the field strength of such a magnetic belt is expected to
be around 105 G (Choudhuri and Gilman, 1987; D’Silva and Choudhuri, 1993; Schüssler
et al., 1994); see Fan (2009) and Charbonneau (2010) for recent reviews on the subject.
However, such strong fields may be unstable (Tayler, 1973); see Arlt, Sule, and Rüdiger
(2007), who found 100 G to be the limit. A completely different idea is to invoke a coupling
to non-axisymmetric dynamo modes (Ruzmaikin, 1998; Bigazzi and Ruzmaikin, 2004), but
the field is still thought to reside near the bottom of the convection zone.

A general problem with deeply rooted active regions as a source of sunspots is the dif-
ficulty of keeping a buoyant flux tube intact, so that it can pierce through the surface to
form a well-confined bipolar region. Another difficulty concerns the angular velocity of ac-
tive regions. At the beginning of the solar cycle, at 30◦ latitude, they have a rotation rate of
≈ 446 nHz, matching the local angular velocity at a radius of ≈ 0.95R�, but exceeding the
value at the bottom of the convection zone by ≈ 10 nHz. Likewise, at the end of the cycle,
at 4◦ latitude, they have a rotation rate of ≈ 462 nHz, matching the local angular velocity
near the surface at a radius of ≈ 0.97R�, again exceeding the value at the bottom of the
convection zone by ≈ 10 nHz; see Figure 4 of Benevolenskaya et al. (1999) and Figure 2 of
Brandenburg (2005). Other difficulties concern the high field strength in the tachocline re-
quired by thin-fluxtube calculations to explain the observed tilt angles (D’Silva and Choud-
huri, 1993). On the other hand, Kosovichev and Stenflo (2008) pointed out that there is no

1We gave here a rather free translation of his original and somewhat antique formulation. For historical rea-
sons, and for the benefit of those with restricted access to the original issue of Astronomische Nachrichten,
we reproduce here his original definition: Ein Fleckenherd auf der Sonne. So kann man füglich eine Gegend
auf der Sonnenoberfläche bezeichnen, wo in einem verhältnismäßig beschränkten Bezirke im Verlaufe eine
Jahres in mindestens acht Rotationen Flecke, teils größere, teils kleinere, teils von kürzerem, teils von län-
gerem Bestande, aufgetreten sind. . . . [Th. Epstein, Frankfurt am Main, Oktober 1904]
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evidence for a dependence of the tilt angle on magnetic-field strength, as expected based
on thin-fluxtube calculations. Furthermore, Stenflo and Kosovichev (2012) find no indica-
tion of a dependence of the tilt angle on the size of the region, which one may expect if
the tilts were produced by the Coriolis force during the buoyant rise of flux loops from the
tachocline. Several of the arguments discussed above have led to the consideration of so-
lar activity as a shallow phenomenon; see Brandenburg (2005) for details. Even sunspots
themselves suggest their being rather shallow (Zhao, Kosovichev, and Duvall, 2001;
Kosovichev, 2002). This raises the question whether there is then a mechanism that could
be responsible for accumulating magnetic flux near the surface.

The idea of magnetic-field clustering has been discussed in the contexts of both
deeply rooted (Ruzmaikin, 1998) and shallow (Schatten, 2007) dynamo scenarios that
are now becoming more fashionable (Pipin and Kosovichev, 2011). Here we discuss the
negative effective magnetic-pressure instability (Kleeorin, Rogachevskii, and Ruzmaikin,
1989, 1990; Kleeorin and Rogachevskii, 1994; Kleeorin, Mond, and Rogachevskii, 1996;
Rogachevskii and Kleeorin, 2007; Brandenburg, Kleeorin, and Rogachevskii, 2010; Bran-
denburg et al., 2011) as a possible mechanism for producing magnetic-flux concentra-
tions of the form of active regions. Of course a magnetic field [B] always gives rise to
a positive magnetic pressure [B2/2μ0], where μ0 is the vacuum permeability. In a tur-
bulent medium, however, magnetic fields also suppress the turbulence and thus decrease
the turbulent pressure [ρu2/3], and modify the pressure caused by magnetic fluctuations
[b2/6μ0]. Here, u and b are velocity and magnetic fluctuations, ρ is the density, μ0 is
the vacuum permeability, and the coefficients in the turbulent fluid and magnetic pres-
sure are given for isotropic turbulence. Magnetic fluctuations can be due to both small-
scale dynamo action as well as tangling of a large-scale field [B]. The total field is thus

B = B + b. The sum of both effects [pturb = ρu2/3 + b2/6μ0] is positive definite, but
it depends on B , and pturb tends to be reduced as B ≡ |B| increases. Indeed, pturb =
2ET /3 − b2/6μ0, where the total turbulent energy ET = ρu2/2 + b2/2μ0 ≈ constant, so
that the change of the turbulent pressure is negative (δpturb < 0) when the magnetic fluc-
tuations are generated by tangling of the mean magnetic field by the velocity fluctuations
at the expense of turbulent kinetic energy (Kleeorin, Rogachevskii, and Ruzmaikin, 1990;
Brandenburg et al., 2011). Thus, we write

pturb(B) = pturb(0) − qp(B)B
2
/2μ0, (1)

where pturb(0) is the turbulent pressure at zero mean field and qp(B) is a positive function
of B such that pturb is reduced in the presence of B . The pressure pturb(0) only includes
those contributions from b2 that are associated with small-scale dynamo action, but not the
magnetic fluctuations resulting from the tangling of the mean magnetic field. The relevant

magnetic pressure in the evolution equation for the mean flow [U ] is then not just B
2
/2μ0,

but it is affected by the B-dependence of pturb, i.e. it depends on

pturb(B) + B
2
/2μ0 = pturb(0) + [

1 − qp(B)
]
B

2
/2μ0, (2)

which is also still positive. But 1 − qp(B) may well become negative, which leads to what
we call a negative effective magnetic pressure. The first term, pturb(0), on the right-hand side
of Equation (2) is independent of B , so it ignores the dynamics of the mean field and only
affects the density scale height. Therefore, the expression

peff = (1 − qp)B
2
/2μ0 (3)

is referred to as the effective magnetic pressure. We emphasize that the effective magnetic
pressure is an averaged quantity describing the dependence on the mean magnetic field. One



296 K. Kemel et al.

could therefore also talk about a magnetic mean-field pressure. In addition, there is also
the gas pressure [pgas]. Once the effective magnetic pressure drives a mean flow, the gas
density changes, and as a consequence the gas pressure, so as to re-establish approximate
total pressure balance. Therefore, pgas and ρ will also depend on B .

In the presence of gravity, the properties of magnetic buoyancy are drastically altered
by a negative effective magnetic pressure. In the following we illustrate how this can lead
to an instability. Since the flow velocities are highly subsonic, we can make the anelastic
approximation, i.e. ∇ · ρU = 0. This leads to ∇ · U + U · ∇ lnρ = 0, or

∇ · U = Uz

Hρ

, (4)

where we have used the density scale height [Hρ ], so that ∇ lnρ = (0,0,−1/Hρ). This
equation shows that a downward motion, Uz < 0, leads to compression: ∇ · U < 0. This
enhances an applied field locally. We consider an applied equilibrium magnetic field of the
form (0,B0,0) and the mean field has only a y-component, i.e. B = (0,By(x, z),0), so we
have

DBy

Dt
= −By∇ · U , (5)

where D/Dt = ∂/∂ + U · ∇ is the advective derivative. Note that for a magnetic field with
only a y-component, but ∂/∂y = 0, there is no stretching term, so there is no term of the
form B · ∇U . Using Equation (4), and linearizing Equation (5) around U = 0 and B = B0,
we have

∂B1y

∂t
= −B0

U 1z

Hρ

, (6)

where subscripts 1 denote linearized quantities. The vertical-velocity perturbation [U 1z] is
caused by magnetic buoyancy. Assuming total pressure equilibrium, pgas + peff = constant,
we see that an increase in the effective magnetic pressure causes a decrease is the gas pres-
sure, i.e. δpgas = −δpeff, just as in the regular magnetic-buoyancy instability. Therefore, the
Archimedian buoyancy force is

−δρ

ρ
g = −δpgas

pgas
g = δpeff

ρc2
s

g = dpeff

dB
2

δB
2

ρc2
s

g, (7)

where we have used pgas = ρc2
s for an isothermal gas. In the regular magnetic-buoyancy

instability (Parker, 1966, 1979), without turbulence effects, we have 2μ0 dpeff/dB2 = 1. In
the domain where the negative effective magnetic-pressure effect causes dpeff/dB2 to be
negative, a magnetic-field enhancement leads to a further reduction of the local pressure,
which is compensated by horizontal inflows, increasing density (and field strength), making
this fluid parcel heavier, causing it to sink. Conversely, a local field reduction causes outflows
and rises until it reaches the region where this feedback reverses. Thus, the instability loop
is closed by considering the momentum equation in its linearized form:

∂U 1z

∂t
= dpeff

dB
2

2B0B1y

ρc2
s

g. (8)

Using c2
s /g = Hρ for an isothermal atmosphere, we then find the dispersion relation for the

growth rate [λ] of the resulting instability

λ = vA

Hρ

√
−2μ0 p′

eff − ηtk
2, (9)
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where vA = B0/
√

μ0ρ is the Alfvén speed and

2μ0 p′
eff = 2μ0 dpeff/dB

2 = 1 − qp − dqp/d lnB
2

(10)

is twice the derivative of the effective magnetic pressure. We have also included here the
effects of turbulent magnetic diffusivity [ηt] and turbulent magnetic viscosity [νt], assuming
νt/ηt = 1. Here, k is the effective wavenumber. A proper derivation of the growth rate of the
instability, but again without including turbulent magnetic diffusivity and turbulent magnetic
viscosity, is given in Appendix A. This analysis shows that the first term in Equation (9) is
to be multiplied by a factor kx/k, as is also familiar for gravity modes (Stein and Leibacher,
1974). This implies that λ = 0 for kx = 0, and that λ(kx) has a maximum for intermediate
values of kx ; see Appendix A.

The negative contribution of turbulence to the mean magnetic pressure and the resulting
large-scale instability has been predicted long ago (Kleeorin, Rogachevskii, and Ruzmaikin,
1990; Kleeorin, Mond, and Rogachevskii, 1996; Kleeorin and Rogachevskii, 1994). How-
ever, this instability has been detected in direct numerical simulations (DNS) only recently
(Brandenburg et al., 2011; Kemel et al., 2012a). This large-scale instability is called the
negative effective magnetic pressure instability (NEMPI).

Equation (9) demonstrates that stronger stratification and thus a smaller scale height leads
to an increased growth rate of the instability. This was qualitatively confirmed by Kemel et
al. (2012b). Using numerical solutions of the full mean-field equations, they found further-
more that the growth rate of the instability is actually independent of vA. This seems to be
at odds with Equation (9). To understand this, we use the following approximation for qp,
based on fits to the DNS results (Brandenburg et al., 2011, 2012; Kemel et al., 2012b):

qp(β) = β2
	

β2
p + β2

, (11)

where β	 and βp are constants, β = B/Beq is the modulus of the normalized mean magnetic
field, and Beq = √

μ0ρurms is the equipartition field strength. Thus, for β	 � β � βp, we
have

λ ≈ β	

urms

Hρ

− ηtk
2, (12)

so the growth rate is indeed independent of the imposed field strength.
In a mean-field model, urms is normally expressed in terms of ηt = urms/3kf, where kf is

the wavenumber of the energy-carrying eddies, so Equation (12) becomes

λ

ηtk2
≈ 3β	

kf/k

kHρ

− 1, (13)

which illustrates immediately the importance of large enough scale separation, i.e. large
enough values of kf/k.

The purpose of this article is to show that NEMPI can work over a range of different field
strengths. Such a result was recently predicted using the mean-field simulations (MFS) by
Kemel et al. (2012b). We shall also investigate the close connection between MFS and DNS
results, which allows us to determine the resulting effective magnetic pressure as a function
of the mean magnetic field in the plane perpendicular to the mean field. Here we focus on
a series of simulations with different field strengths, but for a fixed value of the magnetic
Reynolds number and fixed value of the scale separation ratio. For a numerical study of
the dependence on magnetic Reynolds number and on scale separation ratio, but fixed field
strength, we refer to the recent work of Kemel et al. (2012a). In the following, we discuss
first DNS of NEMPI and turn then to MFS. We begin with a simplistic illustration of the
nature of NEMPI.
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2. Vertical Profile of Effective Magnetic Pressure

The first successful DNS of NEMPI has been possible under the assumption of an isother-
mally stratified layer with an isothermal equation of state (Brandenburg et al., 2011). Much
of the same physics is also possible in adiabatically stratified layers, but NEMPI was found
in this case only in mean-field models (Brandenburg, Kleeorin, and Rogachevskii, 2010;
Käpylä et al., 2012). The isothermal case has conceptual advantages that help us understand
better the underlying physics of this instability. We make use of this advantage in the present
article, too.

In most of the isothermal setups studied so far, the rms velocity is only weakly dependent
on height, so the z-variation of Beq was only caused by that of ρ = ρ0 exp(−z/Hρ). Before
we perform DNS and MFS, let us determine the conditions for which NEMPI is most effec-
tive. To this end we plot the effective magnetic pressure, which is normalized by the local
equipartition field strength [Beq],

Peff(β) = 1

2

[
1 − qp(β)

]
β2, (14)

Figure 1 Profiles of Peff, dPeff/dβ2, and β(−2dPeff/dβ2)1/2 for fit parameters qp0 = 20 and βp = 0.167,
and the three field strengths B0/Beq0 = 0.05, 0.1, and 0.2 within the z-range from −π to π , which is consis-
tent with some of the models discussed below. The vertical lines of similar line types give the location where
the unstable eigenmodes reaches its peak.
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i.e. Peff = peff/B
2
eq, where qp(β) is determined by Equation (11). Since β = β(z) =

β0 exp(z/2Hρ) increases with z, Peff(z) is small at large depths, reaches a negative mini-
mum at some depth, and then becomes positive and equal to β2. In Figure 1 we show ver-
tical profiles of Peff, dPeff/dβ2, and β(−2dPeff/dβ2)1/2 for the fit parameters qp0 = 20 and
βp = 0.167 derived later in this article, and the three field strengths β0 ≡ B0/Beq0 = 0.05,
0.1, and 0.2 within the z/Hρ -range from −π to π , which is also consistent with the DNS
and some of the MFS discussed below. Here, Beq0 = Beq(z = 0), qp0 = qp(β = 0), and
β	 = βp

√
qp0.

Notice first of all that all three curves of Peff have minima with left flanks (negative
slopes) within the domain. As the imposed field is increased, these curves shift downward
(smaller values of z). Thus, we should expect the peak of the unstable eigenmode to appear
somewhere along the left flanks of these curves and that these peaks move further down
as the imposed field is increased. This is qualitatively reproduced by the DNS and MFS
discussed below, except that the location is consistently a certain distance below the position
where the left flanks have their steepest gradient. On the other hand, as is evident from the
middle panel of Figure 1, the largest value of dPeff/dβ2 is always achieved at the bottom of
the domain. However, the growth rate of NEMPI still has a factor proportional to vA = urmsβ

in front of it; see Equation (9). This then confines the instability to a narrow strip within the
domain. In the third panel of Figure 1 we also plot therefore β(−2dPeff/dβ2)1/2, and their
extrema are now only slightly above the location where DNS and MFS show a peak in the
eigenfunction. The reason for the remaining discrepancy is not well understood at present.

3. Onset and Saturation of NEMPI in DNS

3.1. Isothermal Setup in DNS

Following the earlier work of Brandenburg et al. (2011) and Kemel et al. (2012a), we solve
the equations for the velocity [U ], the magnetic vector potential [A], and the density [ρ]:

ρ
DU

Dt
= −c2

s ∇ρ + J × B + ρ(f + g) + ∇ · (2νρS), (15)

∂A

∂t
= U × B + η∇2A, (16)

∂ρ

∂t
= −∇ · ρU , (17)

where ν is the kinematic viscosity, η is the magnetic diffusivity due to Spitzer conduc-
tivity of the plasma, B = B0 + ∇ × A is the magnetic field, B0 = (0,B0,0) is the im-
posed uniform field, J = ∇ × B/μ0 is the current density, μ0 is the vacuum permeabil-
ity, Sij = 1

2 (∂jUi + ∂iUj ) − 1
3δij∇ · U is the traceless rate-of-strain tensor. The forcing

function [f ] consists of random, white-in-time, plane, non-polarized waves with a certain
average wavenumber [kf]. The turbulent rms velocity is approximately independent of z

with urms = 〈u2〉1/2 ≈ 0.1 cs. The gravitational acceleration [g = (0,0,−g)] is chosen such
that k1Hρ = 1, so the density contrast between bottom and top is exp(2π) ≈ 535. Here,
Hρ = c2

s /g is the density scale height and k1 = 2π/L is the smallest wavenumber that fits
into the cubic domain of size L3. In most of our calculations, structures develop whose
horizontal wavenumber [kx ] is close to k1. We consider a domain of size Lx × Ly × Lz in
Cartesian coordinates (x, y, z), with periodic boundary conditions in the x- and y-directions
and stress-free, perfectly conducting boundaries at the top and bottom (z = ±Lz/2). In all
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cases, we use a scale separation ratio [kf/k1] of 30, a fluid Reynolds number Re ≡ urms/νkf

of 18, and a magnetic Prandtl number [PrM = ν/η] of 0.5. In our units, μ0 = 1 and cs = 1.
The value of B0 is specified in units of the volume-averaged value [Beq0 = √

μ0ρ0 urms]
where ρ0 = 〈ρ〉 is the volume-averaged density, which is constant in time. In addition to
visualizations of the actual magnetic field, we also monitor By , which is an average over y

and a certain time interval [�t ]. Time is sometimes specified in terms of turbulent-diffusive
times [t ηt0k

2
1 ], where ηt0 = urms/3kf is the estimated turbulent diffusivity. Since the simu-

lations are periodic in the x- and y-directions, we sometimes shift the images such that the
peak field strength of NEMPI appears in the middle of the frame.

The simulations are performed with the PENCIL CODE [http://pencil-code.
googlecode.com] which uses sixth-order explicit finite differences in space and a third-order
accurate time stepping method. We use a numerical resolution of 2563 mesh points.

3.2. Results

In Figure 2 we demonstrate that NEMPI can work over a range of field strengths. As we
increase the strength of the imposed field, NEMPI develops at progressively greater depth.
This result was recently obtained for MFS, but is now for the first time demonstrated in
DNS. Figure 3 shows that the growth of the large-scale field [B1] of the magnetic struc-
ture is similar for three different field strengths. Here, B1 has been determined by taking
the maximum value of the mean field in the neighborhood of the position where the flux
concentration later develops. Note that there is a range over which B1 grows approximately
exponentially, independent of the value of B0.

In Figure 4 we show By at early, intermediate, and late stages of the saturation process
(left), and compare with visualizations of Peff at the same times. Here, Peff = 1

2 (1 − qp)β
2,

where qp(β) with β = B/Beq is evaluated from

qp = −2��
f
xx/ B

2
, (18)

for B0 = (0,B0,0), and

��
f
ii = ρ

(
u2

i − u2
0i

) + 1

2

(
b2 − b2

0

) − (
b2

i − b2
0i

)
, (19)

is applied to the xx-component of the total stress from the fluctuating velocity and magnetic
fields. In Equation (19) no summation over the repeated index i is assumed.

In Figure 4, blue shades correspond to low values of Peff and occur around the minimum
line (marked in white) where Peff = Pmin. As time progresses, low values of Peff are also
found at greater depth as the magnetic-flux concentration descends. The fact that there is a
clear spatial correlation between By and Peff provides strong evidence that the interpretation
of the formation of structures in the stratified turbulence simulations in terms of NEMPI is
indeed the correct one.

The descending structures have previously been referred to as “potato sack” structures
(Brandenburg et al., 2011), because of their widening cross-section with greater depth.
When such structures were first seen in MFS (Brandenburg, Kleeorin, and Rogachevskii,
2010), they were originally thought to be artifacts of the model that one would not expect to
see in the Sun. However, such structures were later also found in DNS (Brandenburg et al.,
2011), highlighting therefore the strong predictive power of MFS.

A visualization of the resulting mean flow [U ] is shown in Figure 5 as vectors. The
flow shows a convergent shape toward the magnetic structures. It is interesting to note that
such convergent flow structures are now also seen in local-helioseismic flow measurements

http://pencil-code.googlecode.com
http://pencil-code.googlecode.com


Negative Effective Magnetic Pressure Instability 301

Figure 2 By/B0 from DNS for three values of the imposed field strength at the end of the linear growth
phase of NEMPI for ReM = 18 and PrM = 0.5. The times are t ηt0/H 2

ρ ≈ 0.93, 1.09, and 1.26 for
B0/Beq0 = 0.05, 0.1, and 0.2, respectively. The location of the Pmin line is indicated in panels 2 and 3,
while for panel 1 it lies above the computational domain.

Figure 3 Growth of the large-scale field strength [B1] at the center of the magnetic structure for three field
strengths.

around active regions (Hindman, Haber, and Toomre, 2009). In this connection it is instruc-
tive to discuss the somewhat peculiar shape of such a structure that widens as it descends.
Normally, in a strongly stratified atmosphere, descending structures get compressed and be-
come narrower, but this is not seen in the present visualizations. As already argued by Bran-
denburg et al. (2012), this is because the boundaries of these structures do not coincide with
material lines, so the mass is not conserved inside them and can leak through the boundaries.
Indeed, these structures grow as they descend, and may become amenable to helioseismic
detection; cf. Ilonidis, Zhao, and Kosovichev (2011). This phenomenon is well known in the
description of turbulent plumes as a model of turbulent downdrafts in convection (Rieutord
and Zahn, 1995). Such structures are known to widen as a result of entrainment. The sink-
ing behavior of these apparently disconnected flow structures can be explained as follows:
while inflows dominate downflows throughout the whole lifespan of the field concentration,
in the initial stage the former can drag in a large fraction of the surrounding magnetic field,
overcompensating the losses by downflows. However, as the environment gets depleted, this
dynamical balance shifts and the structures start moving downwards.

3.3. Mean-Field Coefficients from DNS

In earlier work by Kemel et al. (2012b), the parameters qp0 = 40 and βp = 0.05, correspond-
ing to β	 = 0.32, were used. Those values are compatible with work by Brandenburg et al.
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Figure 4 By and Peff from DNS at three times (t ηt0/H 2
ρ ≈ 0.84, 1.34 and 1.84) showing the descent of the

potato sack feature for ReM = 18, PrM = 0.5, and B0/Beq0 = 0.20.

(2012) and Kemel et al. (2012a). However, in the present case we have a larger scale separa-
tion ratio, kf/k1 = 30, for which these parameters have not yet been determined. In Figure 6
we show the functional form of Peff(β) for the present case with kf/k1 = 30, ReM = 18, and
PrM = 0.5. Here we have followed the method described by Brandenburg et al. (2012); see
their Equation (17). For the present model we find as fit parameters qp0 = 20 and βp = 0.167,
which corresponds to β	 = 0.75.
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Figure 5 Vectors of U together
with a color/grey-scale
representation of By from DNS
at a late time (t ηt0/H 2

ρ ≈ 1.7)
for ReM = 18, PrM = 0.5, and
B0/Beq0 = 0.20. The color scale
is the same as in the lower left
panel of Figure 4, and the longest
vector corresponds to a flow
speed of 0.04cs or 0.4urms.

Figure 6 Peff(β) for the DNS used in this article with kf/k1 = 30, ReM = 18, and PrM = 0.5. The dashed
line is a fit based on Equation (11) with qp0 = 20 and βp = 0.167, which corresponds to β	 = 0.75, and the
dashed-dotted lines show the error-bar range.

4. Comparison with MFS

Recently, many aspects of NEMPI seen in the DNS have also been detected in MFS. Estab-
lishing the usefulness and limitations of MFS is important, because such models are easier
to solve and allow one to explore parameters in regimes where DNS are harder to apply or
have not yet been applied in the limited time since the close correspondence between DNS
and MFS was first noted.

In the following we consider two-dimensional mean-field models, in which the presence
of qs has no effect on the solutions (Kemel et al., 2012b). Furthermore, we ignore other
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effects connected with the anisotropy of the turbulence. These effects have previously been
found to be weak (Brandenburg et al., 2012; Käpylä et al., 2012).

4.1. Isothermal Setup in MFS

In this section we solve the evolution equations for mean velocity U , mean density ρ, and
mean vector potential A, in the form

∂U

∂t
= −U · ∇U − c2

s ∇ lnρ + g + FM + FK, (20)

∂ρ

∂t
= −U · ∇ρ − ρ∇ · U , (21)

∂A

∂t
= U × B − (ηt + η)J , (22)

where FM is given by

ρ FM = −1

2
∇[

(1 − qp)B
2]

, (23)

and

FK = (νt + ν)

(
∇2U + 1

3
∇∇ · U + 2S∇ lnρ

)
(24)

is the total (turbulent plus microscopic) viscous force. Here, Sij = 1
2 (Ui,j +Uj,i)− 1

3δij∇ ·U
is the traceless rate-of-strain tensor of the mean flow and qp is approximated by Equa-
tion (11), which is only a function of the ratio β ≡ |B|/Beq. In Equation (23) we have taken
into account that the mean magnetic is independent of y, so the mean magnetic tension
vanishes.

4.2. Aspects of the MFS

We begin by showing By for three values of the imposed field strength at the end of the linear
growth phase of NEMPI. The results are shown in Figures 7 and 8 for two different setups.
In the former we use qp0 = 20 and βp = 0.167 for the same z-range (−π ≤ z/Hρ ≤ π ) as
in the DNS, while in the latter we use qp0 = 40 and βp = 0.05 for somewhat stronger fields
and a deeper z-range (0 ≤ z/Hρ ≤ 2π ), which is also the fiducial model used by Kemel
et al. (2012b). In the former case the growth rate is ≈ 11H 2

ρ /ηt , while in the latter it is
≈ 5.0H 2

ρ /ηt .
Unlike the DNS, the MFS show that in the former series of models with qp0 = 20 and

βp = 0.167 the x-extent is slightly larger than the optimal horizontal wavelength of the
instability, because one sees that some of the structures begin to split into two (Figure 7).
This is not the case for the second model with qp0 = 40 and βp = 0.05 (Figure 8).

Next, we compare By with Peff = 1
2 (1 − qp)β

2. Again, there is a close correspondence
between the By field and the resulting distribution of Peff; see Figure 9. Here, qp(β) is
evaluated using Equation (11). Furthermore, there is a close correspondence between regions
of enhanced magnetic field and enhanced density; see the right-most column of Figure 9.
Note also that the relative variation of the mean density [�ρ/ρ] is of the order of 10−4.

This small value is a consequence of the plasma β being very large, i.e. B
2
/2μ0ρc2

s  1.

Indeed, we expect �ρ/ρ ≈ B
2
/2μ0ρc2

s = β2M2
a , where β at z/Hρ = −5 is about 0.1 and

Ma = urms/cs is the rms Mach number, which is also about 0.1. We note that similar values
are also seen in DNS, but here the variations from the turbulence are typically much larger.
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Figure 7 By/B0 from mean-field models for three values of the imposed field strength at the end of the
linear growth phase of NEMPI. Here, qp0 = 20 and βp = 0.167, which corresponds to β	 = 0.75. The times

are t ηt/H
2
ρ ≈ 0.84, 0.99, and 1.14 for B0/Beq0 = 0.05, 0.1, and 0.2, respectively.

Figure 8 By/B0 from mean-field models for three values of the imposed field strength at the end of the
linear growth phase of NEMPI, but for larger field strengths than in Figure 7 and vertical domain boundaries
that are deeper down, so the magnetic field maxima of the instability fit better into the domain. Here, qp0 = 40
and βp = 0.05, corresponding to β	 = 0.32.

5. Application to the Sun

The motivation for studying an isothermal model lies in its simplicity, allowing a more thor-
ough investigation of all possible aspects of NEMPI. The Sun is obviously not isothermal
nor is it stably stratified. The purpose of this section is to discuss what is known about
model dependencies of NEMPI and what else can be learn from the isothermal model. We
here discuss the aspects of stratification, scale separation, and the combination of both.

i) Stratification. As we have shown above, NEMPI requires strong stratification: decreas-
ing Hρ increases the growth rate; see Equation (13). The restoring force associated with
stable stratification gives rise to Brunt–Väisälä oscillations, which are however eliminated
by using an isothermal equation of state. Including it tends to suppress NEMPI, as was
shown by Käpylä et al. (2012). In an isentropic layer with marginal stability, this stabilizing
effect is absent. The temperature increases now linearly with depth. The scale height is then
smallest near the top, so NEMPI always tends to develop in the upper layers. Nevertheless,
unstable structures still sink; see Brandenburg, Kleeorin, and Rogachevskii (2010).

ii) Scale separation. The growth rate increases with the scale separation ratio; see Equa-
tion (13). This suppresses NEMPI in deeper layers, so sinking structures must eventually
dissolve. Such a variable scale-separation ratio is not yet included in our model. Realistic
models of solar convection, such as those of Kitiashvili et al. (2010) or Stein et al. (2011),
may not have enough scale separation; in our models we used kf/k1 = 30. Also, it is impor-
tant that the models are run for long enough; see the discussion in Kemel et al. (2012a).
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Figure 9 By/B0, Peff, and �ρ/ρ from mean-field models at three times: t ηt/H
2
ρ ≈ 2.2, 2.5, and 2.8. Here,

B0/Beq0 = 0.40.

iii) Relation between stratification and scale separation. In the model we have varied
Hρ and kf separately, but in the Sun the scale of the turbulent eddies is believed to be
proportional to the local scale height, so kfHρ ≈ constant. Furthermore, in an isothermal
domain, the value of k1 has no physical significance, because the solution is independent
of the position of the boundaries provided they are sufficiently far away from the location
where the large-scale structures develop. In most of the models presented above, k1 was
equal to the horizontal wavenumber [kx ] of the structures. In Figure 10 we show that, as
we decrease Hρ by a factor of three, the horizontal wavelength also decreases by a factor
of three, and so kxHρ is approximately constant. In the following we refer to wavenumbers
normalized by 1/Hρ as κ , and since the horizontal wavelength is in the range 6 – 8Hρ , we
have κx ≡ kxHρ ≈ 1.0 – 0.8. As Hρ decreases, the vertical extent of the structures (in ab-
solute units) shrinks by the same factor, so the effective kz/kx is approximately unity and
thus k ≈ √

2kx , so κ ≡ kHρ ≈ 1.5 – 1.1. This shows that the growth rate for an isothermal
atmosphere is fully determined by the coefficient kfHρ . If it is too small with respect to the
strength of turbulent diffusion, the instability will not work.

In stellar mixing-length theory one assumes that the typical scale of the turbulent eddies
is the mixing length [�mix], given by

�mix ≈ αmixHp, (25)

where αmix ≈ 1.6 is an empirical dimensionless mixing-length parameter and Hp ≈ γHρ is
the pressure scale height with γ ≈ 5/3 being the ratio of specific heats. Thus, using kf =



Negative Effective Magnetic Pressure Instability 307

Figure 10 By in a setup similar to the first simulation from Figure 7 but with gravity three times stronger
(or scale height three times smaller), taken at an early time.

2π/�mix, we have κf ≡ kfHρ ≈ 2.4. In that case the growth rate given in Equation (13)
becomes

λ

ηtk2
≈ 3β	

kfHρ

(kHρ)2
− 1 = 3β	

κf

κ2
− 1. (26)

Using β	 ≈ 0.23 (Kemel et al., 2012a), κf = 2.4, and κ = 1.5 – 1.1, we find λ/ηtk
2 =

−0.3 . . . + 0.4. On the other hand, using the convection-zone model of Spruit (1974) uses
a larger value of αmix such that κf ≈ 3.3 and thus λ/ηtk

2 = 0 . . . + 0.9, so the possibility
of NEMPI under solar conditions hinges on details of the model. Next, for the near-surface
shear layer at a depth of 20 – 40 Mm we estimate

ηtk
2 ≈ urms

3kf

κ2

H 2
ρ

≈ urms

3Hρ

κ2

κf
= 0.2–0.3

urms

Hρ

= 1

2–5 days
, (27)

while for the Spruit model the e-folding time would be 1 – 3 days. In this depth range the
pressure scale height is 7 – 13 Mm, so the density scale height is 12 – 22 Mm, and thus the
typical scale of flux concentrations is 80 – 150 Mm. (We recall that in our isothermal model
NEMPI can occur at any depth, just depending on the field strength.)

In the Sun, many other effects play a role, for example the convective turbulence is
strongly anisotropic with vertical motions dominating over horizontal ones, thus causing
negative radial shear in the surface layers (Kitchatinov and Rüdiger, 2005). This may cause
new effects that could either enhance or diminish the vertical coupling of different layers.
Whether the final outcome still leads to structures resembling active regions can only be
answered by performing calculations in which such vertical variations of the stratification
are taken into account.

6. Conclusions

The present work has demonstrated that NEMPI is able to concentrate the magnetic field
into large patches encompassing the size of many turbulent eddies. The physics of this in-
stability is principally different from the usual interchange instability of continuous mag-
netic fields (Parker, 1966, 1979; Hughes and Proctor, 1988; Cattaneo and Hughes, 1988;
Wissink et al., 2000; Isobe et al., 2005; Kersalé, Hughes, and Tobias, 2007), because here
the energy source of the instability is turbulent energy as opposed to gravitational energy.
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Furthermore, we are here concerned with a turbulent medium, and so the sign of the buoy-
ancy force is reversed in a regime of intermediate field strength. We have here re-examined
the simple case of an isothermal layer in which NEMPI can in principle occur at any depth
whose value is determined by the strength of the imposed field. Our new DNS have verified
that the growth rate is indeed independent of the strength of the imposed field, provided that
the peak of the instability fits still comfortably within the domain. During the subsequent
nonlinear evolution of the instability, the overall density stratification readjusts, allowing the
magnetic-field concentrations to move further down. It is important to realize that the result-
ing structures are subject to significant turbulent entrainment (Rieutord and Zahn, 1995),
so their boundaries are not closed. The agreement with corresponding mean-field models is
remarkable and much more convincing than what has been possible to demonstrate in mean-
field dynamo theory. Mean-field models provide therefore a strong source of guidance when
designing new setups for DNS.

While NEMPI now begins to be fairly well understood for isothermal models, more
work is required for non-isothermal ones. In that case, the density scale height is no longer
constant and the degree of stratification is much stronger at the top than in deeper lay-
ers. The simple result that the instability can occur at any height, depending just on the
strength of the imposed field, is then no longer so obvious. At the same time, there is an-
other, perhaps more important, aspect: the possibility of other instabilities. One of them is
connected with the suppression of turbulent convective-energy flux by the mean magnetic
field. As shown by Kitchatinov and Mazur (2000), this effect can also lead to magnetic-
flux concentrations and it may be sustained for much stronger magnetic-field strengths,
thus allowing the formation of structures in which the magnetic pressure becomes com-
parable to the ambient gas pressure. There may also be a connection with flux-segregation
events seen in simulations of magneto-convection at large aspect ratios (Tao et al., 1998;
Kitiashvili et al., 2010), which have already been shown to produce bipolar regions in simu-
lations with radiation transfer (Stein et al., 2011). The study of the possibility of producing
sunspots similar to those of Rempel (2011a, 2011b), but without initial flux structures, is
now of high priority in the quest for solving the solar dynamo problem in terms of dis-
tributed dynamo models in which magnetic activity is explained as a surface phenomenon.
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Appendix A: Growth rate of NEMPI

In this appendix we derive the growth rate of NEMPI, neglecting for simplicity dissipation
processes, using the anelastic approximation, and assuming Hρ = constant and ∇y = 0.
However, in contrast to the simplistic derivation of Equation (8), we employ here a consistent
treatment of lateral pressure variations in the equation of motion, ignoring in Equation (20)
the U · ∇U nonlinearity,

∂U(t, x, z)

∂t
= − 1

ρ
∇ptot + g, (28)

where ptot = p + peff is the total pressure (the sum of the mean gas pressure [p] and the
effective magnetic pressure [peff]). We shall take into account that the mean magnetic field
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is independent of y, so the mean magnetic tension vanishes. Taking twice the curl of Equa-
tion (28), and noting that ẑ · ∇ × ∇ × U = −�Uz + ∇z∇ · U , we obtain

∂

∂t

[
�Uz + ∇z(U · ∇ lnρ)

] = ẑ · ∇ × ∇ ×
(

ptot

ρ2 ∇ρ

)
, (29)

where we have used the anelastic approximation in the form ∇ · U = −U · ∇ lnρ [see
the derivation of Equation (4)] and the fact that under the curl the gradient can be moved
to ρ. If we were to ignore variations of the density, the right-hand side would reduce to
∇2

xpeff/ρHρ . In the following, however, we retain such variations, which result from the
fact that qp = qp(β) depends both on B and on ρ. The right-hand side of Equation (29) can
be simplified to give

ẑ · ∇ × ∇ ×
(

ptot

ρ2 ∇ρ

)
= ∇x

[(
∇z

ptot

ρ

)∇xρ

ρ
−

(
∇x

ptot

ρ

)∇zρ

ρ

]
. (30)

We linearize, indicating small changes by δ or subscript 1, as in Section 1, and note that

δ

(
ptot

ρ

)
= 1

2
v2

A

(
1 − qp − dqp/d lnβ2

)
(

2
δBy

B0
− δρ

ρ

)
, (31)

while

∇z

(
ptot

ρ

)
= 1

2
v2

A

(
1 − qp − dqp/d lnβ2

) 1

Hρ

. (32)

Inserting this into Equation (30), the δρ term in Equation (31) cancels the linearized form of
∇xρ in Equation (30), and we are left with

∂

∂t

(
� − 1

Hρ

∇z

)
δUz = 2

v2
A

Hρ

dPeff

dβ2

∇2
x δBy

B0
, (33)

where we have used Equation (14). Introducing a new variable Vz = √
ρ δUz, and rewriting

Equation (33) for Vz, we obtain

∂

∂t

(
� − 1

4H 2
ρ

)
Vz = 2

√
ρ

v2
A

Hρ

dPeff

dβ2

∇2
x δBy

B0
. (34)

Using the linearized form of Equation (6), we arrive at the following equation:

∂2

∂t2

(
� − 1

4H 2
ρ

)
Vz(t, x, z) = −2v2

A

H 2
ρ

dPeff

dβ2
∇2

xVz. (35)

It follows from Equation (35) that a necessary condition for the large-scale instability is

dPeff

dβ2
< 0. (36)

For instance, in the WKB approximation when kz Hρ � 1, i.e. when the characteristic scale
of the spatial variation of the perturbations of the magnetic and velocity fields are much
smaller than the density height length [Hρ ], the growth rate of the instability reads

λ = vA

Hρ

(
−2

dPeff

dβ2

)1/2
kx

k
. (37)

For an arbitrary vertical inhomogeneity of the density, we seek a solution of Equation (35)
in the form Vz(t, x, z) = V (z) exp(λt + ikx x) and obtain an eigenvalue problem:

λ−2
0 (z)

[
1 + k−2

x

(
1

4H 2
ρ

− ∇2
z

)]
Vz = λ−2Vz, (38)
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Figure 11 Upper panel: comparison between the graphs of λ0(z) and the corresponding eigenvalues [λ]
(horizontal lines segments) for B0/Beq0 = 0.05, 0.1, and 0.2. Lower panel: eigenfunctions [Vz(z)] for the
same three cases obtained by solving Equation (38).

where λ−2 is the eigenvalue and

λ0(z) = vA(z)

Hρ

(
−2

dPeff(z)

dβ2

)1/2

. (39)

We are interested in the fastest growing solutions, corresponding to the maximum value
of λ. We find the maximum value of λ by discretizing Equation (38) on a grid, using a
second-order finite-difference scheme for the derivatives, and solving the resultant eigen-
value problem numerically. In Figure 11 the resulting values of λ are compared with λ0(z)

and the profiles of Vz(z). The values of λ turn out to be about twice as large as the actual
growth rates found in the fully compressible mean-field models, where viscosity and mag-
netic diffusion are included. A reasonable improvement would be to subtract the damping
rate [ηtk

2] from the ideal growth rates [λ]; see Equation (9). In Figure 12 we compare λ(kx)

with attenuated growth rates [λ(kx) − ηtk
2] for different values of ηt, assuming that the

effective wavenumber obeys k2 ≈ 2k2
x , as explained in paragraph (iii) of Section 5.

It is customary to obtain approximate analytic solutions to Equation (38) as marginally
bound states of an associated Schrödinger equation, � ′′ − Ũ (R)� = 0, via the transforma-
tion

�(R) = √
R V (z), R(z) = v2

A0

u2
rmsβ

2
p

ez/Hρ , (40)

where ρ = ρ0 e−z/Hρ is used as mean density profile, vA0 = B0/
√

ρ0 is the Alfvén speed
based on the averaged density, and

Ũ (R) = k2
x

R

[
H 2

ρ

R
+ a

(
1 − qp0

(1 + R)2

)]
(41)

is the potential with

a = u2
rms β

2
p

λ2
(42)
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Figure 12 Growth rates obtained by solving Equation (38) for B0/Beq0 = 0.1 as a function of kx for the
case ηt = 0 (dashed lines) compared with cases with different values of ηt (dotted lines). The solid line applies
to the case ηt = ηt0.

Figure 13 tanh Ũ (R) for a = 0.24 (dash–triple–dotted line, λ̃ = 0.034, R1 = R2 = 0.735), a = 0.3 [dash–
dotted line, λ̃ = 0.030, (R1,R2) = (0.32,1.5)], a = 0.4 [dashed line, λ̃ = 0.026, (R1,R2) = (0.19,1.9)],
a = 0.56 [solid line, λ̃ = 0.022, (R1,R2) = (0.12,2.4)], and a = 1 [dotted line, λ̃ = 0.017,
(R1,R2) = (0.06,2.8)].

being a new eigenvalue. The potential [Ũ (R)] has the following asymptotic behavior:
Ũ (R → 0) = k2

⊥H 2
ρ /R2 and Ũ (R → ∞) = a/R. For the existence of the instability, the

potential Ũ (R) should have a negative minimum. For example, for a long wavelength insta-
bility (k2

⊥H 2
ρ  1) and when qp0 > 1, the potential Ũ (R) has a negative minimum, and the

instability can be excited.
When the potential Ũ (R) has a negative minimum and since Ũ (R → 0) > 0 and Ũ (R →

∞) > 0, there are two points R1 and R2 (the so-called turning points) at which Ũ (R) = 0.
We have computed Ũ (R) for several values of a/Hρ ; see Figure 13, were we plot tanh Ũ (R)

to show more clearly the position of the turning points. Here we quote the nondimensional
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values of λ̃ ≡ λHρ/cs. It turns out for a ≈ 0.241Hρ the turning points collapse to R1 = R2 ≈
0.735. The numerically computed maximum value of λ corresponds to a ≈ 0.56Hρ , where
the turning points are R1 ≈ 0.735 and R2 ≈ 2.4. Using the equations Ũ (R1,2) = 0 together
with Equations (41) and (42), we obtain the growth rate of the instability as

λ = β	 urms

Hρ

[R1R2(2 + R1 + R2)]1/2

(1 + R1)(1 + R2)
, (43)

where we have used β	 = βp
√

qp0. Note that Equation (43) is consistent with the simple
estimate (12). In the critical case where R = R1 = R2, we find an upper bound of λ ≤√

2β	 urmsR/Hρ(1 + R)3/2.
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