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Eulerian and Lagrangian tools are used to detect coherent structures in the velocity and
magnetic fields of a mean-field dynamo, produced by direct numerical simulations of
the three-dimensional compressible magnetohydrodynamic equations with an isotropic
helical forcing and moderate Reynolds number. Two distinct stages of the dynamo
are studied: the kinematic stage, where a seed magnetic field undergoes exponential
growth; and the saturated regime. It is shown that the Lagrangian analysis detects
structures with greater detail, in addition to providing information on the chaotic
mixing properties of the flow and the magnetic fields. The traditional way of detecting
Lagrangian coherent structures using finite-time Lyapunov exponents is compared with
a recently developed method called function M. The latter is shown to produce clearer
pictures which readily permit the identification of hyperbolic regions in the magnetic
field, where chaotic transport/dispersion of magnetic field lines is highly enhanced.
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1. Introduction
The description of chaotic and turbulent flows by means of embedded coherent

structures is a topic of great interest in the study of transport and mixing in fluids,
since these structures act as organizing units in the flow, defining attracting and
repelling directions, transport barriers and regions of high or low dispersion of passive
scalars. There is no standard way of defining what a coherent structure is, but from
the Eulerian point of view, they are often defined based on some measure related
to vorticity. An example is the highly popular Q-criterion, first introduced by Hunt,
Wray & Moin (1988) (see also Weiss 1991) to identify vortex cores based on the
difference between the rate of strain and vorticity. Some other criteria define coherent
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structures or vortices based on local pressure minima (Jeong & Hussain 1995) or on
quantities involving the eigenvalues of the gradient tensor of the velocity field (Chong,
Perry & Cantwell 1990; Zhou et al. 1999; Chakraborty, Balachandar & Adrian 2005;
Varun, Balasubramanian & Sujith 2008). From a Lagrangian point of view, coherent
structures are seen as material surfaces that form the boundaries between regions of
the flow with different behaviour, such as vortex surfaces. In Haller & Yuan (2000),
these material surfaces are simply called Lagrangian coherent structures (LCSs) and
are distinguished from other material surfaces in that an LCS exhibits locally the
strongest attraction, repulsion or shearing in the flow. Repelling LCSs are responsible
for generating stretching, attracting LCSs for folding, and shear LCSs for swirling
and jet-type tracer patterns (Haller 2011). They are found by following trajectories of
fluid particles, while computing quantities such as the maximum rate of divergence
of neighbouring trajectories (Haller 2001; Shadden, Lekien & Marsden 2005) or the
arclength of the trajectory (Madrid & Mancho 2009). Lagrangian tools are naturally
suited for unsteady flows, since they take into account the temporal variations of
the vector field, not just instantaneous snapshots. For recent lists of applications,
see Peacock & Dabiri (2010) and Shadden (2011). We roughly define coherent
structures for the purposes here as the objects organizing phase space transport.
Specific definitions are given later in terms of the operators used to compute them.

Most works on LCSs have focused on hydrodynamic turbulence, mainly
in two-dimensions. A few papers have computed LCSs for three-dimensional
magnetohydrodynamic (MHD) systems in the conservative (Leoncini et al. 2006)
and dissipative (Rempel, Chian & Brandenburg 2011, 2012) regimes. In the
aforementioned dissipative cases, only velocity field (kinetic) structures were explored.
Here, we expand our previous results by computing the kinetic and magnetic coherent
structures in a MHD model of mean-field dynamo. Dynamo action consists in the
amplification of magnetic field by the motion of an electrically conducting fluid, being
the mechanism responsible for the equipartition-strength magnetic fields observed in
planets and stars (Brandenburg & Subramanian 2005). Initially, a weak magnetic
field B undergoes an exponential growth in the ‘kinematic dynamo’ phase until B
is strong enough to impact the fluid velocity u, and eventually the magnetic energy
saturates. The saturation process is believed to be closely related to the suppression
of Lagrangian chaos in the velocity field; a comparison between the chaoticity of
the velocity field during the growth and saturation phases of the dynamo has been
performed in previous works (Brandenburg, Klapper & Kurths 1995; Cattaneo, Hughes
& Kim 1996; Zienicke, Politano & Pouquet 1998). In this paper, the emphasis is on
the detection of coherent structures and the transport of passive scalars and magnetic
field lines in the transition from the kinematic to the saturated phase. Eulerian
structures are detected using the Q-criterion and, for the detection of LCSs, the
traditional technique of finite-time Lyapunov exponents (FTLEs) is compared with the
recently proposed function M (Madrid & Mancho 2009).

This paper is organized as follows. In § 2 we describe the dynamo model adopted.
The numerical results are presented in § 3, where the Eulerian coherent structures and
LCSs are computed for the velocity and magnetic fields. The conclusions are given
in § 4.

2. The model
The model is the prototype of an α2 dynamo used by Brandenburg (2001), where

a compressible isothermal gas is considered, with constant sound speed cs, constant
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dynamical viscosity µ, constant magnetic diffusivity η and constant magnetic
permeability µ0. The following set of compressible MHD equations is solved

∂t ln ρ + u ·∇ ln ρ +∇ ·u= 0, (2.1)

∂tu+ u ·∇u=−∇p/ρ + J × B/ρ + (µ/ρ) (∇2u+∇∇ ·u/3)+ f , (2.2)

∂tA= u× B− ηµ0J, (2.3)

where ρ is the density, u is the fluid velocity, A is the magnetic vector potential,
J = ∇ × B/µ0 is the current density, p is the pressure, f is an external forcing and
∇p/ρ = c2

s∇ ln ρ, where c2
s = γ p/ρ is assumed to be constant. Non-dimensional units

are adopted by setting k1 = cs = ρ0 = µ0 = 1, where ρ0 = 〈ρ〉 is the spatial average of
ρ and k1 is the smallest wavenumber in the box, which has sides L = 2π and periodic
boundary conditions. Thus, the time unit is (csk1)

−1, space is measured in units of k−1
1 ,

u in units of cs, B in units of (µ0ρ0)
1/2cs, ρ in units of ρ0 and the unit of viscosity

ν ≡ µ/ρ0 and magnetic diffusivity η is cs/k1. Equations (2.1)–(2.3) are solved with
the PENCIL CODE (http://pencil-code.googlecode.com), which employs an explicit
sixth-order finite differences scheme in space and a third-order Runge–Kutta scheme
for time integration.

The initial conditions are ln ρ = 0, u = 0, and A is a set of normally distributed,
uncorrelated random numbers with zero mean and standard deviation equal to 10−3.
The forcing function f is given by

f (x, t)= Re{Nfk(t) exp[ik(t) · x+ iφ(t)]}, (2.4)

where k(t) = (kx, ky, kz) is a time-dependent wavevector, x = (x, y, z) is position and
φ(t), with |φ| < π, is a random phase. On dimensional grounds the normalization
factor is chosen to be N = f0cs(kcs/δt)

1/2, where f0 is a non-dimensional factor, k = |k|
and δt is the length of the integration time step. We focus on the case where |k| is
around kf = 5 and randomly select, at each time step, one of 350 possible vectors in
4.5< |k|< 5.5. The operator fk is given by

fk = ik× (k× e)− |k|(k× e)

k2
√

2(1− (k · e)2)/k2
, (2.5)

where e is an arbitrary unit vector needed in order to generate a vector k × e
that is perpendicular to k. Note that |fk|2 = 1 and the helicity density satisfies
f · ∇ × f = |k|f 2 > 0, which is an important condition for the production of a
mean-field dynamo (Moffatt 1978). The forcing function is delta-correlated in time,
i.e. all points of f are correlated at any instant in time but are different at the
next time step. Following run 3 of Brandenburg (2001), the control parameters are
set as f0 = 0.07, ν = η = 0.002 and the numerical resolution is 1283. Note that (2.5)
differs from the corresponding equation of Brandenburg (2001) by a

√
2 factor, so

that our value f0 = 0.07 corresponds to f0 = 0.1 in the work of Brandenburg (2001).
The Kolmogorov dissipation scale for the hydrodynamical turbulence (B = 0) in this
case is ηk = (ν3/ε)

1/4 ≈ 0.035, where ε is the average rate of energy dissipation,
which for homogeneous turbulence is ε ≈ ν〈ω2〉, where ω = ∇ × u (Donzis, Yeung &
Sreenivasan 2008). Since the numerical spatial grid scale is 1x = 2π/128= 0.049, we
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FIGURE 1. Time series of Brms (light line) and urms (dark line) of MHD dynamo simulations
for η = ν = 0.002. The arrows indicate the kinematic phase at t = 100 and the saturated
nonlinear regime at t = 1700, respectively. The growth rate during the kinematic phase is
γ ∼ 0.064.

have 1x/ηk ≈ 1.4, which is a reasonable value, since the standard practice is to use
1x/ηk < 2. Therefore, the numerical resolution employed is adequate.

3. Results
3.1. Mean-field dynamo

Figure 1 shows the time series of Brms ≡ 〈B2〉1/2 (light line) and urms ≡ 〈u2〉1/2 (dark
line), where B ≡ |B| and u ≡ |u|. During the first time units up to t ∼ 150, the
magnetic energy is too week to significantly impact the velocity field and urms quickly
jumps from the initial state at urms = 0 to urms ∼ 0.28, thus the Reynolds number is
Re = urms/νkf ∼ 28. During this ‘kinematic phase’, Brms increases exponentially, with
a growth rate γ ∼ 0.064 ± 2 × 10−5 obtained from the fitted line (dashed line). After
t ∼ 150, urms starts to decay due to the contribution of the Lorentz force (second term
on the right-hand side of (2.2)). Eventually, the root-mean-square (r.m.s.) quantities
saturate due to nonlinear effects, with urms ∼ 0.18 while the magnetic field reaches
a super-equipartition value Brms ∼ 0.37 > urms. The arrows indicate the times t = 100
and t = 1700, respectively, which will be used later to represent the kinematic and
saturated phases. In turnover time units (1/kf urms), the referred times are urmskf t ∼ 140
and urmskf t ∼ 1530, respectively, and the growth rate is γ /urmskf ∼ 0.046.

During the kinematic stage, the magnetic field displays low-amplitude stochastic
fluctuations, as shown in figure 2(a). As Brms grows, small-scale velocity and
magnetic field fluctuations combine to produce a robust large-scale mean-field pattern
(figure 2b). The physics behind the rise of this mean-field is related to the so-called
α-effect (Moffatt 1978) and has been explored in this model by Brandenburg (2001).
The α-effect generates an inverse transfer of magnetic energy, as seen in the spectra
of magnetic energy depicted as dashed lines in figure 3. The solid lines represent the
spectra of kinetic energy. At t = 100 (figure 3a) the magnetic energy is evenly spread
throughout several wavenumbers around k = 5, with lower energy for low and high k.
At t = 1700 (figure 3b) the magnetic energy has reached equipartition with the kinetic
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FIGURE 2. Intensity plot of magnetic field components at t = 100 (a) and t = 1700 (b).
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FIGURE 3. (Colour online) Spectra of magnetic (dashed lines, shown in red online) and
kinetic (solid lines, shown in black) energies at times t = 100 (a) and t = 1700 (b).

energy for k > 5, but the field at the largest possible scale (k = 1) has much higher
energy, resulting in the large-scale magnetic structures shown in figure 2(b).

3.2. Eulerian coherent structures
Eulerian coherent structures can be extracted from the velocity field by decomposing
the gradient tensor ∇u as

∇u= S+Ω , (3.1)

where S = [∇u + (∇u)T]/2 and Ω = [∇u − (∇u)T]/2 are the symmetric and
antisymmetric parts of ∇u, respectively. The symmetric part is the rate-of-strain tensor



314 E. L. Rempel and others

126.0

126
126

94.5

63.0

63
63

31.5

0

0

126.0

94.5

63.0

31.5

126
126

63
63

0

0

(a) (b)

FIGURE 4. Eulerian coherent structures in the velocity field, detected by instantaneous
isosurfaces of the Q-criterion. The isosurfaces are defined using 15 % maximum Q:
(a) t = 100; (b) t = 1700.

and the antisymmetric part is the vorticity tensor. One way to define an Eulerian
coherent structure is by finding regions of u where vorticity dominates over strain,
which can be measured by the Q-criterion (Hunt et al. 1988; Zhong, Huang & Adrian
1998; Haller 2005; Lawson & Barakos 2010)

Q= 1
2 [|Ω |2 − |S|

2]. (3.2)

Thus, an Eulerian coherent structure or vortex is defined as a region where Q> 0.
Figure 4 shows the isosurfaces of the Q-criterion, using 15 % maximum Q (contour

surfaces enclose high Q values). These plots are highly dependent on the threshold
chosen for Q, but it is possible to see that the fluid is more intermittent at the
kinematic dynamo phase (t = 100) than after saturation (t = 1700), since in figure 4(b)
the coherent structures fill the space in a more homogeneous way. There are fewer
regions for t = 100 where Q is much higher than the average, thus the presence of
fewer vortices for this threshold in figure 4(a) than in figure 4(b), where local values
of Q are closer to the average Q. Figure 5 shows the corresponding plots of Q for
the magnetic field, where the coherent structures represent magnetic vortices or current
structures (Brandenburg et al. 1996).

In figure 6, intensity plots of the Q-criterion are shown for two-dimensional slices of
the box at planes z= 0 (a,c) and x= 0 (b,d) at times t = 100 (a,b) and t = 1700 (c,d),
respectively. Coherent structures with strong vorticity are observed as bright spots,
such as that highlighted by a box in figure 6(a). Note that at t = 1700 a large number
of bright spots is seen in the xy-plane, but they are rare in the yz-plane, revealing a
preferential alignment of coherent structures in the vertical direction in the saturated
regime. A similar plot is shown for the magnetic field in figure 7, where some of
the same coherent structures found in the velocity field can be observed, reflecting the
strong coupling between B and u in (2.2) and (2.3).

Although some coherent structures are clearly detected by this Eulerian technique,
the Q-criterion relies on a user defined threshold to determine their boundaries. In
order to precisely identify the boundaries and the main transport barriers in the flow,
the next section proceeds with a Lagrangian analysis.
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FIGURE 5. Eulerian coherent structures in the magnetic field, detected by isosurfaces of the
Q-criterion. The isosurfaces are defined using 15 % maximum Q: (a) t = 100; (b) t = 1700.
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FIGURE 6. Eulerian coherent structures in the velocity field, detected by the Q-criterion at
t = 100 (a,b) and t = 1700 (c,d).

3.3. LCSs

This section describes two tools that can be employed to define/detect coherent
structures in the Lagrangian frame, the FTLEs and the recently proposed function M.



316 E. L. Rempel and others

x

y

x

yy

z

0.25

0.20

0.15

0.10

0.05

0

–0.05

–0.10

–0.15

–0.20

0.15

0.10

0.05

0

–0.05

–0.10

–0.15

–0.20

2.0

1.5

1.0

0.5

0

–0.5

–1.0

1.5

1.0

0.5

0

–0.5

–1.0

(a)

(b)

(c)

(d)

FIGURE 7. Eulerian coherent structures in the magnetic field, detected by the Q-criterion at
t = 100 (a,b) and t = 1700 (c,d).

3.3.1. FTLEs
Attracting LCSs have commonly been associated with local maximizing curves

(ridges) in the backward-time FTLE field and repelling LCSs to ridges in the forward-
time FTLE field (Shadden et al. 2005; Green, Rowley & Haller 2007; Beron-Vera,
Olascoaga & Goni 2010). There are limitations in such a definition, as pointed out
by Haller (2011) and Farazmand & Haller (2012), e.g. a ridge in the FTLE field may
indicate the presence of a shear LCS or no LCS at all. Still, ridges in the FTLE fields
have been employed extensively as a reasonably good approximation to the true LCSs
of the flow.

Let D ⊂ R3 be the domain of the fluid to be studied, let x(t0) ∈ D denote the
position of a passive particle at time t0 and let u(x, t) be the velocity field defined on
D. The motion of the particle is given by the solution of the initial value problem

dx
dt
= u(x(t), t), x(t0)= x0. (3.3)

Let the flow map for u be defined as φt0+τ
t0 : x(t0) 7→ x(t0 + τ). Thus,

x(t0 + τ)= φt0+τ
t0 (x0). (3.4)

Now, consider the evolution of the perturbed point x̂(t0) = x0 + δx(t0), where δx(t0)

is infinitesimal. After a time interval τ , this perturbation becomes

x̂(t0 + τ)= φt0+τ
t0 (x0 + δx(t0)). (3.5)
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By taking the Taylor series expansion of the flow about point x0 one obtains

x̂(t0 + τ)= φt0+τ
t0 (x0)+ Dφt0+τ

t0 (x)δx(t0)+ O(‖δx(t0)‖2), (3.6)

where

Dφt0+τ
t0 (x)≡ ∂xi(t0 + τ)

∂xj(t0)
(3.7)

is the deformation gradient, with x1 ≡ x, x2 ≡ y and x3 ≡ z. Using (3.6), the
perturbation vector after τ time units is

δx(t0 + τ)= x̂(t0 + τ)− x(t0 + τ)
= x̂(t0 + τ)− φt0+τ

t0 (x0)

= Dφt0+τ
t0 (x)δx(t0)+ O(‖δx(t0)‖2). (3.8)

The growth of linearized perturbations is obtained by dropping the O(‖δx(t0)‖2)

terms and using the standard Euclidean norm. The magnitude of the perturbation is
given by

‖δx(t0 + τ)‖ =
√
〈Dφt0+τ

t0 (x)δx(t0),Dφt0+τ
t0 (x)δx(t0)〉

=
√
〈δx(t0), [Dφt0+τ

t0 (x)]∗Dφt0+τ
t0 (x)δx(t0)〉 (3.9)

where [Dφt0+τ
t0 (x)]∗ denotes the adjoint (transpose) of the deformation gradient and the

angle brackets denote inner product. The matrix

1=
[
Dφt0+τ

t0 (x)
]∗

Dφt0+τ
t0 (x) (3.10)

is a finite-time version of the (right) Cauchy–Green deformation tensor.
The initial value problem (3.3) is solved for a Cartesian grid of initial conditions

xi,j,k(t0) = (xi,j,k, yi,j,k, zi,j,k)(t0) to provide final locations xi,j,k(t0 + τ). Neighbouring
grid points can be considered for computing a finite difference approximation of
the deformation gradient. Using second-order accurate centred differences for interior
points, the entries in this matrix are given as follows

Dφt0+τ
t0 (x)

=



xi+1,j,k(t0 + τ)− xi−1,j,k(t0 + τ)
xi+1,j,k(t0)− xi−1,j,k(t0)

xi,j+1,k(t0 + τ)− xi,j−1,k(t0 + τ)
yi,j+1,k(t0)− yi,j−1,k(t0)

xi,j,k+1(t0 + τ)− xi,j,k−1(t0 + τ)
zi,j,k+1(t0)− zi,j,k−1(t0)

yi+1,j,k(t0 + τ)− yi−1,j,k(t0 + τ)
xi+1,j,k(t0)− xi−1,j,k(t0)

yi,j+1,k(t0 + τ)− yi,j−1,k(t0 + τ)
yi,j+1,k(t0)− yi,j−1,k(t0)

yi,j,k+1(t0 + τ)− yi,j,k−1(t0 + τ)
zi,j,k+1(t0)− zi,j,k−1(t0)

zi+1,j,k(t0 + τ)− zi−1,j,k(t0 + τ)
xi+1,j,k(t0)− xi−1,j,k(t0)

zi,j+1,k(t0 + τ)− zi,j−1,k(t0 + τ)
yi,j+1,k(t0)− yi,j−1,k(t0)

zi,j,k+1(t0 + τ)− zi,j,k−1(t0 + τ)
zi,j,k+1(t0)− zi,j,k−1(t0)


. (3.11)

When δx(t0) is aligned with one of the eigenvectors of 1, one obtains from (3.9)

‖δx(t0 + τ)‖ =
√
λi(1)‖δx(t0)‖, i= 1, 2, 3, (3.12)

where λ1 > λ2 > λ3 are the eigenvalues of 1. Equation (3.12) can be written as

‖δx(t0 + τ)‖ = eσ
t0+τ
i (x)|τ |‖δx(t0)‖, i= 1, 2, 3, (3.13)

where

σ
t0+τ
i (x)= 1

|τ | ln
√
λi, i= 1, 2, 3 (3.14)
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are the FTLEs or direct Lyapunov exponents of the trajectory. A positive σ1 is the
signature of chaotic streamlines in the velocity field, being a measure of the stretching
of fluid elements (although it also incorporates shear; Haller 2011).

3.3.2. Function M
Madrid & Mancho (2009) proposed a function to identify ‘distinguished trajectories’

(DTs) which, in aperiodic time-dependent flows, have similar topological importance
as hyperbolic fixed points in stationary flows. In stationary flows, hyperbolic fixed
points are responsible for particle dispersion and non-hyperbolic fixed points for
particle confinement. Invariant stable and unstable manifolds of hyperbolic fixed points
often behave as separatrices and divide the phase space in regions with qualitatively
different behaviours. The proposed function, named ‘function M ’, can reveal both
hyperbolic and non-hyperbolic flow regions of time-dependent flows. Moreover, M is
also useful in detecting the stable and unstable manifolds of distinguished hyperbolic
trajectories (DHTs), defined as the set of points such that trajectories passing through
these points at t = t0 will approach the DHTs at an exponential rate as time goes to
infinity or minus infinity, respectively (Branicki, Mancho & Wiggins 2011). The stable
and unstable manifolds of DHTs correspond to the repelling and attracting LCSs,
respectively, as defined in the § 3.3.1.

Consider the system given by (3.3), where x = {x1, x2, x3}. For all initial conditions
x0 in D at a given time t0, let us define the function M(x0, t0) : (D, t)→ R as

M(x0, t0)τ =
∫ t0+τ

t0−τ

(
3∑

i=1

(dxi(t)/dt)2
)1/2

dt. (3.15)

Thus, the function M is a measure of the arclength of the curve traced by x0. Local
minima of M represent trajectories that ‘move less’, being related either to hyperbolic
or non-hyperbolic DTs. The manifolds of DHTs are also visible in the M field, since
one expects a sharp distinction in the lengths of trajectory curves for particles in
regions with different behaviours, separated by stable and unstable manifolds, as noted
by Mendoza & Mancho (2010). The technique has been successfully applied to the
detection of DTs and manifolds in oceanic (Mendoza & Mancho 2010; Mendoza,
Mancho & Rio 2010) and stratospheric (de la Cámara et al. 2012) flows.

3.3.3. Velocity field structures and chaotic mixing
The FTLEs are computed from a series of fully three-dimensional snapshots of the

velocity field taken at different times from t0 to t0 + τ . Linear interpolation in time and
third-order splines in space are used to obtain the continuous vector fields necessary
to obtain the particle trajectories. Figure 8 depicts the probability density functions
(p.d.f.s) of the three FTLEs at t0 = 100 (a) and t0 = 1700 (b) computed for 643 particle
trajectories from (3.14) with a value of τ corresponding to 9 turnover time units,
where urms ∼ 0.28 for the kinematic phase and urms ∼ 0.18 for the saturated regime.
Therefore, τ = 9/(kf urms) ∼ 6.4 time units for the kinematic phase and τ ∼ 10 time
units for the saturated phase. One can see a clear reduction of Lagrangian chaos in the
velocity field at t0 = 1700, with the p.d.f. of σ1 being shrunk and shifted to the left.
There are also fewer regions with two or three positive exponents. Overall, chaotic
mixing is diminished due to the growth of Brms and the action of the Lorentz force.
The asymmetry in the distributions is typical of heterogeneous mixing, where both
regular and irregular trajectories coexist (in finite-time), which means that trajectories
cannot uniformly sample the phase space (see, e.g., Beron-Vera, Olascoaga & Goni
2010).
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FIGURE 8. Probability density functions of the FTLEs of the velocity field at the kinematic
(t = 100, a) and saturated (t = 1700, b) regimes. The solid line represents σ1, the dotted line,
σ2, and the dashed line, σ3.

From figure 8 it is clear that most trajectories display two positive Lyapunov
exponents. Zel’dovich et al. (1984) and Chertkov et al. (1999) state that in such a case,
the total magnetic energy in a kinematic dynamo should behave as B2 ∝ exp[(σ1−σ2)t],
therefore, one has for the growth rate

γ = d ln〈B2〉1/2
dt

= d ln {exp[(σ1 − σ2)t/2]}
dt

= σ1 − σ2

2
. (3.16)

At t0 = 100, 〈σ1〉 ∼ 0.339 and 〈σ2〉 ∼ 0.143, which from (3.16) provides γ = 0.098 (or
γ = 0.07 in dimensional units), which agrees to within an order of magnitude with the
fitted value γ ∼ 0.064, given in figure 1.

The remainder of this paper focuses on the backward-time maximum FTLE field,
since they reveal the attracting LCSs, which correspond to structures seen using flow
visualization in experiments (Voth, Haller & Gollub 2002; Green et al. 2007). Figure 9
shows the backward-time maximum FTLE field computed for τ corresponding to 9
turnover time units at t0 = 100 (a) and t0 = 1700 (b) from a grid of initial conditions
with 512 × 512 particles. The bright lines represent the attracting LCSs. While the
LCSs at t0 = 100 reveal no preferred direction, consistent with an isotropic forcing, at
t0 = 1700 there is a clear vertical alignment of LCSs in the xy-slice (figure 9b). This is
due to the super-equipartition magnetic field at t0 = 1700, which develops a large-scale
vertical pattern in this plane (see figure 2), affecting the alignment of velocity field
vectors.

A comparison between figures 6 and 9 shows that the FTLE field provides a
clearer depiction of the objects organizing fluid transport, with finer details and more
precise detection of structure boundaries. Moreover, some coherent structures are only
apparent in the FTLE field, such as the large eddy indicated in figure 9(d).

From our experience, one of the problems with FTLE plots in turbulent flows is
that pictures usually become increasingly complex for larger τ , with material lines
‘growing’ and filling the entire phase space. In that sense, it is easier to use function
M to detect the main coherent structures of the flow. Figure 10 is a plot of function
M with τ = 9 in turnover time units, for the same velocity fields as in figure 9.
Note that the M field is really showing both the attracting and repelling LCSs, since
both backward and forward time integrations are performed. For the kinematic phase
at t0 = 100 (a,b) the eddies are marked by regions with strong colour distinction in
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FIGURE 9. Attracting LCSs in the velocity field, given by the backward-time FTLE at
t0 = 100 (a,b) and t0 = 1700 (c,d).

relation to their surroundings. At t0 = 1700 (c,d) the borders between regions are
not so sharp and there are wide smooth regions in the flow. Smoothness in the M
field indicates that trajectories in those regions do not reach nearby hyperbolic regions
during ±9 turnover times, since the hyperbolic trajectories are those responsible for
dispersion and for producing sharp changes in M (Mendoza & Mancho 2010). For
larger τ , the boundaries become sharper and more foldings of manifolds are seen, but
we keep τ = 9 in all of our pictures to facilitate the comparison between both methods
in different regimes. Overall, the function M seems to be less sensitive to the choice of
τ than the FTLE.

3.3.4. Magnetic field structures and transport of field lines
Our simulations reveal that the magnetic field displays smooth and complex regions

(see figure 7). If one applies the Lagrangian techniques discussed in the previous
section to the magnetic field, the identification of magnetic LCSs provides the main
barriers to the transport of field lines, a topic of great interest in magnetic reconnection
studies (Evans et al. 2004; Grasso et al. 2010; Borgogno et al. 2011; Yeates &
Hornig 2011). Another possible application is the transport of solar energetic particles
perpendicular to the mean magnetic field in space plasmas, which can be explained in
terms of topological trapping of field lines by magnetic islands that inhibit field line
transport, and consequently particle transport (Ruffolo, Matthaeus & Chuychai 2003;
Chuychai et al. 2005; Seripienlert et al. 2010).
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FIGURE 10. (Colour online) LCSs in the velocity field, given by the function M at t0 = 100
(a,b) and t0 = 1700 (c,d).

To obtain the magnetic LCSs, the magnetic field at a fixed dynamic time t0 is used
and the maximum FTLE field is computed by integrating

dx
ds
= B(x(s), t0), x(s0)= x0, (3.17)

where the parameter (position) s along the field line is seen as an effective time,
or field line time (Borgogno et al. 2011). The flow map for B is defined as
φs0+τ

s0
: x(s0)→ x(s0 + τ). Equation (3.17) is integrated from s0 to s0 + τ with t

fixed at t0. Lagrangian chaos in the magnetic field is responsible for the transport of
magnetic field lines between different regions of the box. Here, the term ‘transport’ is
used to refer to motion of field lines in field line time, not in dynamic time. Therefore,
the maximum FTLE provides a measure of the exponential separation between two
neighbouring field lines after a finite field line time τ , i.e. after a finite distance along
the field line.

Figure 11 shows the backward-time maximum FTLE field for the kinematic (a)
and saturated (b) regimes. The high-intensity lines represent attracting magnetic LCSs
which act as barriers to field line transport. No transport of magnetic field lines occurs
across invariant LCSs and large-scale transport is possible only through homoclinic
and heteroclinic crossings of attracting and repelling LCSs, where a lobe dynamics
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FIGURE 11. Attracting LCSs in the magnetic field, given by the backward-time maximum
FTLE at t = 100 (a,b) and t = 1700 (c,d).

mechanism takes place (Grasso et al. 2010; Borgogno et al. 2011; Yeates & Hornig
2011; Rempel et al. 2012). Numerically, when LCSs are computed from an FTLE
field, Shadden et al. (2005) showed that in most cases maximizing curves are
advected as material surfaces. Under appropriate conditions (Haller 2011) this can
break down for the FTLE measure, but these conditions are not typically encountered
in conservative flows. Both FTLE fields are obtained by fixing the evolution (dynamic)
time (t0 = 100 for (a,b) and t0 = 1700 for (c,d)) and setting τ = 9/Brms, where
Brms = 0.014 for t0 = 100 and Brms = 0.37 for t0 = 1700. In the kinematic regime
(t0 = 100) the LCSs display no preferred direction, and randomly fill the simulation
box. Note that, at least for this value of τ , it is difficult to identify the coherent
structure marked in the box in figure 11(a) due to the many foldings of attracting
lines. After growth and saturation of Brms (t0 = 1700), the randomness of field line
orientation is diminished and there is a preferential direction of alignment of field lines
which, as mentioned before, directly affects the velocity field.

Once again, to obtain a clearer picture of magnetic coherent structures, we plot in
figure 12 the function M for τ = 9/Brms. It is easier to spot coherent structures from
this field, such as that in the box in figure 12(a). Function M seems to be better than
the FTLE field in highlighting the main coherent structures, filtering out spurious lines
that are not so important for mixing (Mendoza & Mancho 2010). Nevertheless, the M
function does not automatically detect the transport barriers, and one has to rely on
thresholds to extract the boundaries between regions.
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FIGURE 12. (Colour online) LCSs in the magnetic field, given by the function M at t = 100
(a,b) and t = 1700 (c,d).

As mentioned before, another feature of function M plots is that they provide both
the stable and unstable manifolds of DHTs in the same picture. In order to illustrate
this feature, three distinct regions are marked in figure 12(d). Regions A and B are
located in smooth parts of the M field and region C in a region where manifolds
are crossing. Smoothness of M in regions A and B indicates that initial conditions
in these regions do not perceive nearby hyperbolic regions for t ∈ (t0 − τ, t0 + τ)
(Mendoza & Mancho 2010). An enlargement of region C is shown in figure 13, where
the presence of manifolds indicates that field lines in this region either were dispersed
in t0 − τ or will disperse in t0 + τ . We define three sets of initial conditions inside
the small white squares A, B and C in figure 12(d), with each square containing 25
initial conditions. The result of integrating (3.17) with each set of initial conditions
for τ = 9/Brms field-line-time units is shown in figure 14. Figure 14(a,b) show the
trajectories of initial conditions in regions A and B, respectively, where it can be seen
that all magnetic field lines stay close to each other, forming a magnetic flux tube that
is not dispersed in this field line time interval. The apparent discontinuities in field
lines are due to the periodic boundary conditions. In figure 14(c) the trajectories of
initial conditions at region C are shown and one can see that there is great chaotic
dispersion of field lines due to the crossings of manifolds in this region.
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We conclude that function M can efficiently detect strong dispersion regions in a
magnetic field.

3.3.5. Statistical analysis
A quantitative comparison between the statistical distributions for the velocity and

magnetic fields at the kinematic and saturated dynamo regimes is shown in table 1.
The statistics are computed for 1283 initial conditions uniformly spread in the box.
Table 1 shows the mean values for the Q-criterion, 〈Q〉, the backward-time FTLE,
〈σ t0−1

1 〉, as well as the kurtosis of the M function distribution, defined as

K(M)= 1
N

N∑
i=1

(
Mi − 〈M〉
σM

)4

− 3, (3.18)

where N is the number of grid points and σM is the standard deviation of M. A
Gaussian distribution has K = 0, K < 0 represents a distribution with weaker tails
than Gaussian (platykurtic) and K > 0 a distribution with stronger tails (leptokurtic).
One can see that there is an increase of 〈Q〉 from t = 100 to t = 1700 for both the
velocity and magnetic fields. This reflects the increase in the number of (instantaneous)
Eulerian coherent structures after the dynamo saturation, as seen in figures 4 and
5. The statistics of LCSs, on the other hand, reflect a contrast between the velocity
and magnetic field structures when time is taken into account, which is not seen in
the Eulerian statistics. The dynamo saturation leads to a decrease in 〈σ t0−1

1 〉 for the
velocity field accompanied by an increase in 〈σ t0−1

1 〉 for the magnetic field, which
coincides with the loss of kinetic energy and gain of magnetic energy in the system.
The value of K(M) provides a measure of the intermittency in the spatial distribution
of LCS in the M function plots, where a leptokurtic distribution implies greater
intermittency. For the velocity field, the distribution of M switches from platykurtic at
t0 = 100 to leptokurtic at t0 = 1700, whereas for the magnetic field it switches from
leptokurtic (t = 100) to platykurtic (t = 1700). Thus, K(M) can clearly quantify the
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FIGURE 14. Magnetic field lines produced by advecting a small blob of initial conditions in
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figure 12(d).

Statistics for u 〈Q〉 〈σ t0−1
1 〉 K(M)

t = 100 −0.0224 0.989 −0.138
t = 1700 −0.0109 0.592 0.458

Statistics for B 〈Q〉 〈σ t0−1
1 〉 K(M)

t = 100 −0.0237 0.024 4.61
t = 1700 4.05× 10−5 0.22 −0.12

TABLE 1. Statistical quantities for the velocity and magnetic fields.

difference between the kinematic and saturated dynamo phases from an LCS point of
view.

4. Conclusions
MHD coherent structures have been identified in direct numerical simulations of

a nonlinear dynamo. It was shown that both Eulerian and Lagrangian tools are able
to extract vortices from velocity and magnetic field data. Although the Eulerian tool
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adopted is less computationally expensive, Lagrangian plots show finer details and
can better locate the boundaries of vortices. In addition, the Lagrangian analysis
provides important information about the mixing properties of the flow. Regarding the
numerical tools employed to detect LCSs, the function M seems to be less sensitive
to the choice of the integration time τ in comparison with the maximum FTLE. Thus,
pictures obtained with the FTLE can become increasingly ‘noisy’ with increasing τ

due to the complex folding of material lines. Although function M provides ‘cleaner’
pictures, the manifolds (transport barriers) are often not as clearly traced as in a FTLE
field, so we suggest the use of both tools. In future works, we plan to compare them
with the recently developed technique based on the variational theory of hyperbolic
LCSs (Farazmand & Haller 2012; Haller & Beron-Vera 2012).

Both tools reveal the strong impact of the magnetic field on the mixing properties
of the velocity field when the system moves from the kinematic to the saturated
dynamo phase. After the appearance of a strong mean field, the kinetic and magnetic
coherent structures are shown to align in a preferred direction, revealing the anisotropy
developed in the vector fields. Function M is also shown to be useful to detect
manifolds of hyperbolic trajectories in the magnetic field, where intense transport
of magnetic field lines takes place, a feature that can be further explored to
study magnetic reconnection phenomena in plasmas. In relation to this, LCSs in
photospheric velocity fields have been shown to be associated with quasi-separatrix
layers in the magnetic field (Yeates, Hornig & Welsch 2012), which are regions of
strong gradients in stretching and squashing of magnetic flux tubes, being identified as
the preferential regions for magnetic reconnection (Démoulin 2006; Santos et al. 2008).
Magnetic reconnection is an important phenomenon in nonlinear dynamos, since it
is believed that it can reduce the backreaction of the Lorentz force on the velocity
field (Blackman 1996). Essentially, turbulent motions can cause the stretching, twisting
and folding of weak magnetic field lines in such a way as to produce the growth of
magnetic flux. After the magnetic field reaches equipartition with the velocity field,
the field lines can restrict fluid motions and transport of material is significantly
reduced. This suppression of motions may also inhibit the dynamo. However, if there
is rapid reconnection between magnetic flux tubes, this could prevent the tube from
backreacting. Rapid reconnection can naturally occur in MHD turbulence, where a
broad range of reconnection rates can be found, as shown by (Servidio et al. 2010)
in the context of two-dimensional MHD turbulence by measuring the electric field at
hyperbolic X-points. For other works on the role of magnetic reconnection in dynamo
models, see Archontis, Dorch & Nordlund (2003) and Baggaley et al. (2009).
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