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ABSTRACT

Using direct numerical simulations of three-dimensional hydromagnetic turbulence, either with helical or
non-helical forcing, we show that the kinetic-to-magnetic energy dissipation ratio always increases with the
magnetic Prandtl number, i.e., the ratio of kinematic viscosity to magnetic diffusivity. This dependence can always
be approximated by a power law, but the exponent is not the same in all cases. For non-helical turbulence, the
exponent is around 1/3, while for helical turbulence it is between 0.6 and 2/3. In the statistically steady state, the
rate of energy conversion from kinetic into magnetic by the dynamo must be equal to the Joule dissipation rate.
We emphasize that for both small-scale and large-scale dynamos, the efficiency of the energy conversion depends
sensitively on the magnetic Prandtl number, and thus on the microphysical dissipation process. To understand this
behavior, we also study shell models of turbulence and one-dimensional passive and active scalar models. We
conclude that the magnetic Prandtl number dependence is qualitatively best reproduced in the one-dimensional
model as a result of dissipation via localized Alfvén kinks.
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1. INTRODUCTION

One of the central paradigms of hydrodynamic turbulence
is the equivalence of large-scale energy injection and small-
scale dissipation into heat through viscosity—regardless of
how small its value. This is believed also to apply under
conditions of astrophysically large Reynolds numbers, when
the microphysical viscosity becomes very small compared with
the product of the physical scales and velocities of the system.
Dramatic examples are quasars, whose luminosities are equal
to that of a hundred galaxies and this emission is caused just
by the dissipation of turbulence, even though the microphysical
viscosity is extremely small. The detailed physical processes are
not well understood, but it is now generally believed that they
also involve magnetic fields (Shakura & Sunyaev 1973; Balbus
& Hawley 1998).

Indeed, magnetic fields provide an additional important path-
way for dissipating turbulent energy through Joule heating. The
heating rates for both viscous and Joule dissipation are propor-
tional to the microphysical values of viscosity ν and magnetic
diffusivity η, respectively. The ratio of these coefficients is the
magnetic Prandtl number, PrM = ν/η. As these coefficients are
decreasing, the velocity and magnetic field gradients sharpen
just enough so that the heating rates remain independent of these
coefficients. For the magnetic case of Joule heating, the inde-
pendence of the magnetic Reynolds number was demonstrated
by Galsgaard & Nordlund (1996) and Hendrix et al. (1996)
in connection with the coronal heating problem. Over a range
of magnetic Reynolds numbers, the approximate constancy of
Joule dissipation has also been seen in turbulent dynamo simu-
lations (Candelaresi et al. 2011).

While this picture is appealing and seemingly well confirmed,
at least in special cases such as for fixed values of PrM ,
questions have arisen in those cases when the magnetic and
fluid Reynolds numbers are changed in such a way that their
ratio changes. Hydromagnetic turbulence simulations exhibiting
dynamo action have shown that the values of energy dissipation

are then no longer constant, and that their ratio scales with PrM
(Mininni 2007; Brandenburg 2009, 2011a, 2011b). Given that all
of the energy that is eventually dissipated comes from the forcing
in the momentum equation, a change in the dissipation ratio can
only be a consequence of a change in the conversion of kinetic
to magnetic energy through the dynamo process. Therefore, the
dynamo process would be intimately linked to Joule dissipation
and one must therefore be concerned that it is also linked to the
physical or even numerical nature of energy dissipation. This
would be surprising, because dynamo action has frequently
been modeled in many astrophysical turbulence simulations
by focusing on the so-called ideal equations with numerical
dissipation only where no PrM can be defined. Examples in
the context of local accretion disk dynamo simulations can be
found in the papers by Brandenburg et al. (1995), Hawley et al.
(1996), and Stone et al. (1996). This leads to an ignorance that is
potentially dangerous if such simulations are employed to make
predictions concerning energy deposition in accretion disks (see
discussion by Bisnovatyi-Kogan & Lovelace 1997).

There is some concern that the numerical results of
Brandenburg (2009, 2011a) may not yet be in the asymptotic
regime and that the PrM dependence might disappear at suffi-
ciently large values of Re. However, two arguments against this
possibility have now emerged. First, there are analytic results
in two-dimensional magnetohydrodynamics (MHD) by Tran
et al. (2013) that demonstrate the boundedness of the mean-
squared current density and mean-squared vorticity in the limits
of large and small values of PrM , respectively. In fact, Tran et al.
(2013) also produce numerical scalings similar to the results of
Brandenburg (2011a, 2011b). Second, MHD shell models of
turbulence by Plunian & Stepanov (2010) for PrM > 1 show
a similar PrM dependence, which is remarkable because those
models can be extended to much larger values of ReM than what
is currently possible with DNS.

Thus, there is now mounting evidence for a genuine depen-
dence of the macroscopic properties of MHD turbulence on PrM .
Another such dependence has been discussed for some time in
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connection with non-helical turbulence exhibiting small-scale
dynamo action in the kinematic regime. Note, however, that this
no longer applies in the non-kinematic regime (Brandenburg
2011a). For a kinematic small-scale dynamo, the magnetic en-
ergy spectra grow in an approximately shape-invariant fashion
with an approximate k3/2 spectrum at small wavenumbers. This
spectrum was first predicted by Kazantsev (1968) in the case of
a smooth flow. This case corresponds to an idealized represen-
tation of turbulence at large values of PrM (Schekochihin et al.
2002), but this spectrum is apparently also found at small values
of PrM near unity (see Figure 4 of Haugen et al. 2004). Depend-
ing on the value of PrM , the magnetic energy spectrum peaks at
wavenumbers either within the inertial range of the turbulence
or in the viscous subrange. This has implications for the criti-
cal magnetic Reynolds number for the onset of dynamo action
(Rogachevskii & Kleeorin 1997). As explained by Boldyrev
& Cattaneo (2004), the velocity field is rough in the inertial
range. This interpretation has been successfully applied when
clarifying the reason for an apparent divergence (Schekochihin
et al. 2005) of the critical Reynolds number above which dy-
namo action is possible (Iskakov et al. 2007; Schekochihin et al.
2007).

There has been a similar debate regarding the onset of
magneto-rotational instability in local simulations of accretion
disks (Fromang & Papaloizou 2007; Fromang et al. 2007), where
the instability was found not to be excited for small values of
PrM . However, these examples are restricted to the physics of
small-scale magnetic fields only. If one allows large-scale fields
to develop, e.g., by relaxing the restriction to closed or periodic
boundary conditions, this PrM dependence disappears (Käpylä
& Korpi 2011).

In the following, we will be concerned with the fully dynamic
case where kinetic and magnetic energies are comparable. The
purpose of the present paper is to illuminate the problem of the
PrM dependence of the dissipation ratio through a combination
of different approaches to MHD turbulence ranging from direct
numerical simulations (DNS) of the MHD equations in three
dimensions and shell models of the turbulence capturing aspects
of the spectral cascade, to a simple one-dimensional model of
MHD (see Thomas 1968; Pouquet 1993; Basu et al. 2014). This
leads us to suggest that the PrM dependence found in turbulent
dynamo simulations is caused by the dominant influence of
dissipative structures on the turbulent cascade at larger scales.
These dissipative structures can be thought of as local Alfvén
kinks whose width is determined by the algebraic mean of
kinematic viscosity and magnetic diffusivity.

2. SIMULATIONS OF TURBULENT DYNAMOS

2.1. Governing Equations

In this section, we consider forced MHD turbulence of a gas
that can be described by an isothermal equation of state, i.e.,
the gas pressure p is proportional to the gas density ρ with
p = ρc2

s , where cs = const is the isothermal sound speed.
We apply a forcing function f that is either fully helical or
non-helical. In both cases, there is initially just a weak seed
magnetic field, which is then amplified by dynamo action. In the
former case with helicity, we obtain large-scale magnetic fields,
as were studied previously with similar setups (Brandenburg
2001, 2009; Mininni 2007), while in the latter case only small-
scale dynamo action is possible (Cho & Vishniac 2000; Haugen
et al. 2003, 2004; Schekochihin et al. 2004; Brandenburg 2011a).
In some cases, we also include the Coriolis force to study the

effects of rotation. We solve the governing equations in the form

D ln ρ

Dt
= −∇ · u, (1)

Du
Dt

= − c2
s ∇ ln ρ − 2� × u + f

+ ρ−1 [ J × B + ∇ · (2νρS)] , (2)

∂ A
∂t

= u × B − ημ0 J, (3)

where D/Dt = ∂/∂t + u ·∇ is the advective derivative, u is the
velocity, B = ∇ × A is the magnetic field, A is the magnetic
vector potential, J = ∇ × B/μ0 is the current density, μ0 is
the vacuum permeability, and

Sij = 1

2
(ui,j + uj,i) − 1

3
δij∇ · u (4)

is the traceless rate-of-strain tensor. It is useful to note that

ρ−1∇ · (2ρS) = 4
3∇∇ · u − ∇ × ∇ × u + 2S · ∇ ln ρ, (5)

where we call attention to the presence of the 4/3 factor which
will be relevant for irrotational flows.

We consider a triply periodic domain, so that the kinetic and
magnetic energy balance is described by

d

dt
〈ρu2/2〉 = 〈p∇·u〉+〈u·( J ×B)〉+〈ρu· f 〉−〈2ρνS2〉, (6)

d

dt
〈B2/2μ0〉 = −〈u · ( J × B)〉 − 〈ημ0 J2〉, (7)

where S2 = Sij Sji . The total (kinetic plus magnetic) energy is
sourced by 〈ρu · f 〉 and dissipated by the sum of viscous and
Joule dissipation, εT = εK + εM , with

εK = 〈2ρνS2〉 and εM = 〈ημ0 J2〉. (8)

The terms 〈p∇ · u〉 and 〈u · ( J × B)〉 characterize the work
done by gas expansion and Lorentz force, respectively.

A sketch showing the transfers in and out of the two energy
reservoirs, EK = 〈ρu2/2〉 and EM = 〈B2/2μ0〉, is given in
Figure 1. From this it is clear that in the steady state, the quantity
−〈u · ( J × B)〉 must be positive and equal to 〈ημ0 J2〉.

2.2. The Model

We solve Equations (1)–(3) with periodic boundary condi-
tions using the Pencil Code,1 which employs sixth-order finite
differences and a third-order accurate time stepping scheme. For
most of our runs, we choose a resolution of 5123 meshpoints.

In all cases, the amplitude of the forcing function is f0 = 0.02,
which results in a Mach number urms/cs of around 0.1. Here,
urms is the rms value of the resulting velocity. The simulations
are further characterized by the fluid and magnetic Reynolds
numbers,

Re = urms/νkf, ReM = urms/ηkf, (9)

so PrM = ReM/Re. In cases with rotation, we also specify the
Coriolis number:

Co = 2Ω/urmskf . (10)

1 http://pencil-code.googlecode.com/
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Figure 1. Sketch showing the flow of energy injected by the forcing 〈ρu · f 〉 and
eventually dissipated viscously and resistively via the terms εK and εM . Note
that in the steady state, εM must be balanced by −〈u · ( J × B)〉.

The energy supply for a helically driven dynamo is provided by
the forcing function f = f (x, t), which is random in time and
defined as

f (x, t) = Re{N f k(t) exp[ik(t) · x + iφ(t)]}, (11)

where x is the position vector. The wavevector k(t) and the
random phase −π < φ(t) � π change at every time step, so
f (x, t) is δ-correlated in time. Therefore, the normalization
factor N has to be proportional to δt−1/2, where δt is the
length of the time step. On dimensional grounds, we choose
N = f0cs(|k|cs/δt)1/2, where f0 is a non-dimensional forcing
amplitude. We use f0 = 0.02, which results in a maximum Mach
number of about 0.3 and an rms value of about 0.085. At each
timestep, we randomly select one of many possible wavevectors
in a certain range around a given forcing wavenumber with an
average value kf . Transverse helical waves are produced via
(Brandenburg & Subramanian 2005)

f k = R · f (nohel)
k with Rij = δij − iσεijkk̂k√

1 + σ 2
, (12)

where σ is a measure of the helicity of the forcing and σ = 1
for positive maximum helicity of the forcing function, and

f (nohel)
k = (k × ê)/

√
k2 − (k · ê)2 (13)

is a non-helical forcing function, where ê is an arbitrary unit
vector that is not aligned with k; note that | f k|2 = 1 and

f k · (ik × f k)∗ = 2σk/(1 + σ 2), (14)

so the relative helicity of the forcing function in real space is
2σ/(1+σ 2); see Candelaresi & Brandenburg (2013). In the cases
mentioned below, we choose kf/k1 = 3.1 when σ = 1, so as
to allow sufficient scale separation for the large-scale field to
develop, and kf/k1 = 1.5 when σ = 0, where the issue of scale
separation is presumably less critical.

2.3. Results

In Table 1, we present a summary of the runs discussed in this
paper. As in Brandenburg (2011a), εK and εM are normalized
by their sum, εT = εK + εM , which in turn is expressed in terms

Figure 2. Dependence of the ratio EK/EM on PrM for large-scale (LS) dynamos
(solid blue line, Runs A1–C3) and small-scale (SS) dynamos (dashed orange
and red lines, Runs X1–Y7).

(A color version of this figure is available in the online journal.)

Figure 3. Dependence of the dissipation ratio εK/εM on PrM for large-scale
dynamos (solid blue line) and small-scale dynamos (dashed orange and red
lines). The red filled symbols and black plus signs correspond to the results of
Sahoo et al. (2011) for forced and decaying turbulence, respectively, referred to
as SPP11 in the legend.

(A color version of this figure is available in the online journal.)

of the non-dimensional quantity Cε = αεT /〈ρu3
rmskf〉, where

α = 9π
√

3/4 ≈ 12.2 is a coefficient. First of all, note that in
all cases, the energy ratio EK/EM is roughly independent of
PrM but it varies with ReM , as was demonstrated previously
for the small-scale dynamo (Haugen et al. 2003). For large-
scale dynamos, the ratio EK/EM is essentially equal to k1/kf
(Brandenburg 2001), which is around 0.3 in the present case
(see Figure 2). In Figure 3, we show the PrM dependence of
εK/εM for σ = 1 and 0. The simulations show that for both
σ = 1 and 0, the ratio εK/εM scales with PrM ,

εK/εM ∝ PrqM, (15)

but the exponent is not always the same. For σ = 1, we find
q ≈ 2/3 for both small and large values of PrM , while for σ = 0,
we find q ≈ 0.6 for PrM < 1 with Re ≈ 80 and q ≈ 0.3 for
PrM > 1 with Re ≈ 460. For large-scale dynamos (σ = 1),
a similar scaling was first found for PrM � 1 (Mininni 2007;
Brandenburg 2009), and later also for PrM � 1 (Brandenburg
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Table 1
Summary of Runs with Co = 0

Run νk1/cs ηk1/cs Re ReM PrM σ urms/cs brms/cs εK/εT εM/εT Cε kν/k1 kη/k1 res.

A1 5.0 × 10−4 2.5 × 10−5 56 1123 20.00 1 0.087 0.158 0.81 0.19 1.83 38 247 10243

A2 5.0 × 10−4 5.0 × 10−5 57 568 10.00 1 0.088 0.157 0.76 0.24 1.80 37 156 5123

A3 5.0 × 10−4 1.0 × 10−4 57 284 5.00 1 0.088 0.157 0.69 0.31 1.82 36 99 5123

A4 5.0 × 10−5 5.0 × 10−5 587 587 1.00 1 0.091 0.128 0.39 0.61 1.75 179 201 5123

A5 5.0 × 10−5 2.5 × 10−4 606 121 0.20 1 0.094 0.155 0.21 0.79 1.46 150 63 5123

A6 5.0 × 10−5 5.0 × 10−4 594 59 0.10 1 0.092 0.149 0.15 0.85 1.60 139 38 5123

A7 5.0 × 10−5 1.0 × 10−3 581 29 0.05 1 0.090 0.149 0.10 0.90 1.72 125 23 5123

B1 5.0 × 10−5 5.0 × 10−5 587 587 1.00 1 0.091 0.128 0.39 0.61 1.75 179 201 5123

B2 2.5 × 10−4 5.0 × 10−5 117 587 5.00 1 0.091 0.159 0.67 0.33 1.57 60 168 5123

B3 5.0 × 10−4 5.0 × 10−5 57 568 10.00 1 0.088 0.157 0.76 0.24 1.80 37 156 5123

B4 1.0 × 10−3 5.0 × 10−5 27 542 20.00 1 0.084 0.155 0.84 0.16 2.09 23 141 5123

C1 2.0 × 10−5 1.0 × 10−4 1548 310 0.20 1 0.096 0.155 0.19 0.81 1.30 287 124 5123

C2 2.0 × 10−5 2.0 × 10−4 1532 153 0.10 1 0.095 0.149 0.14 0.87 1.41 268 76 5123

C3 2.0 × 10−5 4.0 × 10−4 1516 76 0.05 1 0.094 0.140 0.10 0.90 1.47 248 46 5123

X1 5.0 × 10−4 5.0 × 10−4 56 56 1.00 0 0.113 0.043 0.46 0.54 0.35 28 29 2563

X2 3.5 × 10−5 3.5 × 10−4 864 86 0.10 0 0.121 0.039 0.18 0.82 0.26 159 41 2563

X3 7.0 × 10−6 3.5 × 10−4 4179 84 0.02 0 0.117 0.041 0.08 0.92 0.28 422 42 5123

Y1 1.0 × 10−3 5.0 × 10−5 55 1093 20.00 0 0.082 0.070 0.44 0.56 2.35 16 164 5123

Y2 5.0 × 10−4 5.0 × 10−5 121 1213 10.00 0 0.091 0.066 0.40 0.60 1.79 27 168 5123

Y3 2.5 × 10−4 5.0 × 10−5 245 1227 5.00 0 0.092 0.066 0.38 0.62 1.64 44 167 5123

Y4 1.0 × 10−4 5.0 × 10−5 647 1293 2.00 0 0.097 0.065 0.33 0.67 1.42 85 171 5123

Y5 5.0 × 10−5 5.0 × 10−5 1293 1293 1.00 0 0.097 0.062 0.28 0.72 1.32 135 171 5123

Y6 2.5 × 10−5 5.0 × 10−5 2533 1267 0.50 0 0.095 0.063 0.21 0.79 1.34 210 173 5123

Y7 1.0 × 10−5 5.0 × 10−5 6400 1280 0.20 0 0.096 0.059 0.12 0.88 1.20 356 174 5123

2011b). For PrM � 1, this scaling was also found for small-
scale dynamos (Brandenburg 2011a), but now we see that for
PrM � 1 the slope is smaller.

Our results for PrM > 1 are compatible with those of Sahoo
et al. (2011), who listed the kinetic and magnetic dissipation
scales, �K = (ν3/εK)1/4 and �M = (η3/εM)1/4, respectively,
for their decaying and forced hydromagnetic simulations at
different values of PrM . Computing the dissipation ratio from
their Table 1 as εK/εM = Pr3

M (�K/�M )−4, we find that their data
for non-helical decaying turbulence are well described by the
formula εK/εM ≈ 0.6 Pr0.55

M . For non-helically forced turbulence
with 0.01 � PrM � 10, their data agree perfectly with our fit
εK/εM ≈ 0.4 Pr1/3

M (red filled symbols in Figure 3). In their case,
ReM increases with PrM , but its value is generally much larger
than our values for PrM < 1. This suggests that the 1/3 scaling
occurs for large enough magnetic Reynolds numbers and that
our steeper fit for PrM � 1 and the mismatch at PrM = 1 is a
consequence of small values of ReM .

We emphasize that in view of Figure 1, the fraction of energy
that is being diverted to magnetic energy through dynamo action
depends on the term −〈u · ( J × B)〉, and that this must be
equal to εM in the statistically steady state. This fraction is
therefore εM/εT and we may call it the efficiency of the dynamo.
Remarkably, Figure 3 shows that there is a PrM dependence
of the dynamo efficiency both with and without helicity. The
presence of helicity in the forcing function can lead to magnetic
field generation at the largest scale of the system. It is therefore
also referred to as a large-scale dynamo. Non-helical forcing
leads to magnetic fields on scales that are typically somewhat
smaller than the energy-carrying scale of the turbulent motions.

One might be worried that these results are artifacts of the
Reynolds numbers still being too small and not yet in the
asymptotic regime in which a true PrM -independence might
be expected. However, by comparing the energy spectra in

Figure 4. Comparison of compensated kinetic (dashed) and magnetic (solid)
energy spectra for PrM = 0.2, 0.1, and 0.05 for helically forced turbulence.

(A color version of this figure is available in the online journal.)

at least some of the cases indicates that there is indeed a
short wavenumber range in which both magnetic and kinetic
spectra show an approximate k−5/3 scaling with wavenumber
k (see Figure 4). On the other hand, however, the presence of
a residual slope may also be regarded as evidence that none
of the present simulations are yet in the asymptotic regime.
Therefore, higher resolution simulations at larger Reynolds
numbers remain essential.

The positive slope of the graph of εK/εM versus ν/η indicates
that a decrease of viscosity ν is not sufficiently compensated
by a sharpening of velocity gradients. Likewise, a decrease of
η is not fully compensated by a corresponding increase of J2.
In other words, as η decreases, and thus PrM (	1) is further
increased, εM still decreases and does not remain independent
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Figure 5. Compensated time-averaged kinetic and magnetic energy spectra for
shell models at three values of PrM .

(A color version of this figure is available in the online journal.)

of η, as would be the case for PrM = 1 (Hendrix et al. 1996). This
therefore leads to a residual increase of εK/εM . This behavior
was partially explained by the findings of Brandenburg (2009,
2011a) that for small values of PrM = ν/η, i.e., for η 	 ν,
most of the spectral energy is dissipated through the magnetic
channel, leaving only a reduced amount of kinetic energy to be
dissipated, and therefore velocity gradients are not as sharp as
in the hydrodynamic case, εK is reduced, and εK/εM decreases
with decreasing values of PrM .

Before closing the discussion on the PrM dependence in three-
dimensional MHD turbulence, let us comment on the work term
due to fluid expansion. In all of the cases discussed here, 〈p∇·u〉
turns out to be strongly fluctuating, although its time average is a
very small fraction of the total energy (0.02%) for our low Mach
number runs (Mach numbers around 0.1). There are indications,
however, that 〈p∇ · u〉 is negative for PrM < 1 and positive for
PrM > 1.

Given that there is currently no phenomenological explana-
tion for the scaling of εK/εM given by Equation (15), we must
consider the possibility that this scaling behavior is not generic
and that different scalings can be found in different situations.
To shed more light on the possible mechanisms that can explain
these scalings, we consider the results of an MHD shell model
of turbulence.

3. SHELL MODELS

Shell models represent the dynamics of turbulence using
scalar variables for velocity and magnetic field along logarith-
mically spaced wavenumbers. The governing equations resem-
ble the original ones with diffusion and forcing terms, as well

Figure 6. PrM dependence of the dissipation ratio for the present shell models
(open squares), compared with the shell model results of Plunian & Stepanov
(2010), overplotted in red (filled circles).

(A color version of this figure is available in the online journal.)

as quadratic nonlinearities that conserve the same invariants as
the original equations: total energy, cross helicity, and a proxy
of magnetic helicity. For a recent review of such models, see
Plunian et al. (2013). The resulting set of equations can be
written as

∂un

∂t
= ikn [Nn(u, u) − Nn(b, b)] − νk2

nun + Fn, (16)

∂bn

∂t
= ikn [Mn(u, b) − Mn(b, u)] − ηk2

nbn, (17)

where u = (u1, u2, ..., uN ) and b = (b1, b2, ..., bN ) are time-
dependent complex vectors representing the state of the system
at wavenumbers kn = 2n with n = 1, 2, ..., N . The nonlinear-
ities are given by (Brandenburg et al. 1996; Frick & Sokoloff
1998)

Nn(x, y)=x∗
n+1y

∗
n+2 − 1

4
x∗

n−1y
∗
n+1 − 1

8
x∗

n−2y
∗
n−1, (18)

Mn(x, y)= 1

6

(
x∗

n+1y
∗
n+2 − x∗

n−1y
∗
n+1 − x∗

n−2b
∗
n−1

)
. (19)

These equations preserve total energy, cross helicity, and a proxy
of magnetic helicity. The only difference between Brandenburg
et al. (1996) and Frick & Sokoloff (1998) is a 12/5 scaling factor
in front of both nonlinear terms. Models with these coefficients
have been used to study the possibility of an inverse cascade in
the early universe (Brandenburg et al. 1996, 1997) and the onset
properties of small-scale dynamos (Frick & Sokoloff 1998),
as well as the possibility of growing dynamo modes from the
velocity field of a saturated nonlinear dynamo (Cattaneo &
Tobias 2009). Even the PrM dependence of the dissipation ratio
has already been studied (Plunian & Stepanov 2010; Plunian
et al. 2013). Their results show the inverse dissipation ratio
in semi-logarithmic form, so the scaling for large PrM cannot
be accurately assessed, but their results are consistent with a
constant dissipation ratio for small PrM and show a sub-linear
increase at large PrM .

To assess the scaling more quantitatively, we now repeat
their calculations using an independent method. The time
integration is performed using an Adams-Bashforth scheme with
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Figure 7. Schmidt number dependence for the passive scalar case.

an integrating factor to treat the diffusion term (Brandenburg
et al. 1997). We use N = 30 shells for Re = u0/νk0 of up to
109 and PrM in the range from 10−6 to 106. Forcing is applied by
setting F1 in Equation (16) to a complex random number at each
time step, so this forcing is δ-correlated, just like in the DNS.
Compensated time-averaged spectra are shown in Figure 5 for
three values of PrM . For PrM = 1, the magnetic and kinetic
energy spectra are similar, while for large (small) values of PrM ,
the kinetic (magnetic) energy spectrum is prematurely truncated,
as is also the case in the DNS of Brandenburg (2009) for
small PrM .

As mentioned above, the PrM dependence of the dissipation
ratio has already been calculated by Plunian & Stepanov (2010),
and our present results agree at least qualitatively with theirs. In
Figure 6, we show the PrM dependence of the dissipation ratio
εK/εM , where

εK = 2ν

N∑
n=1

k2
n|un|2, εM = 2η

N∑
n=1

k2
n|bn|2. (20)

The present shell models predict the dissipation ratio to be
independent of PrM for PrM < 1, which is in conflict with
the DNS of Brandenburg (2009) where this trend was found to
continue down to PrM = 10−3. On the other hand, the results of
Plunian & Stepanov (2010), which are overplotted in Figure 6,
suggest a constant dissipation ratio for PrM � 0.01 only, which
is already outside the plot range of the present DNS shown
in Figure 3, but still in conflict with the DNS of Brandenburg
(2009) down to PrM = 10−3.

For small values of PrM , the present shell models show that the
kinetic energy cascade proceeds essentially independently of the
magnetic field, just like in ordinary hydrodynamic turbulence.
As explained in the Introduction, this is also what one might have
naively expected, and it is perhaps even more surprising that this
is not borne out by the DNS. On the other hand, for large values
of PrM , there is actually a fairly strong PrM dependence, which
is a direct consequence of εM decreasing for large ReM rather
than a consequence of εK increasing. Similar results have also
been found for a one-dimensional passive scalar model, which
will be discussed next and compared with a one-dimensional
MHD model, which is an active scalar.

4. DISSIPATION RATIO IN DRIVEN
ONE-DIMENSIONAL MODELS

The purpose of this section is to explore the possible be-
haviors of simple models in which the spatial extent is fully

Figure 8. Profiles of c(x) (solid) and u(x) (dashed) for different values of Sc.
Note that the x range decreases with increasing values of Sc so as to have a
similar coverage of the c(x) profiles in all cases. Note that we have scaled x by
u0/ν, so the hydrodynamic kink always has the same width.

resolved, at least in one dimension. Hydrodynamics in one di-
mension usually involves shocks, such as the Burgers shock.
The pressureless idealization of the hydrodynamic equations is
known as the Burgers equation, and solutions can be found in
closed form using the Cole-Hopf transformation. Before turn-
ing to the magnetic case, we should note that the evolution of
a passive scalar field in the presence of a Burgers shock was
already considered by Ohkitani & Dowker (2010), who found
similar scaling to ours in the limit of a large Schmidt number as
Sc = ν/κ , where κ is the passive scalar diffusivity.

4.1. Passive Scalar Model for a Burgers Shock

The passive scalar equation is a simple advection-diffusion
equation given by

Dc

Dt
= κ∇2c, (21)

where c is the passive scalar concentration and a relevant
passive scalar dissipation is defined as εC = 〈κ(∇c)2〉. For

6
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Figure 9. Magnetic Prandtl number dependence in the MHD model.

Sc 	 1, Ohkitani & Dowker (2010) found εK/εC ∝ Sc1/2,
which is in remarkable agreement with the earlier findings for
hydromagnetic turbulence (Brandenburg 2009).

Specifically, the equations considered by Ohkitani & Dowker
(2010) are

∂u/∂t = − uu′ + ν̃u,′′ (22)

∂c/∂t = − uc′ + κc,′′ (23)

where primes denotes differentiation with respect to x. The
solution to Equation (22) decouples and possesses a shock. In
a frame of reference moving with the shock, the solution is
stationary and given by

u(x) = −u0 tanh x/w, (24)

where u0 is the velocity jump and wu = 2ν̃/u0 is the width of the
shock with ν̃ = 4ν/3 as a rescaled viscosity. These equations
can be obtained from the hydrodynamic version (i.e., B = 0)
of Equation (2) after setting cs = 0, so the density gradient
does not enter, and therefore we can ignore Equation (1) and
set ρ = 1. The 4/3 factor in the expression for ν̃ comes from
the fact that, owing to compressibility, the viscous acceleration
term includes a (1/3)∇∇ · u term in addition to the usual ν∇2u
term; see Equation (5) for a corresponding reformulation of the
dissipation terms. The viscous dissipation εK = ν̃

∫
(u′)2 dx/L,

using ∂u/∂x ∝ 1/ cosh2(x/w), is then

εK = ν̃
w

L

∫
dx/w

cosh4(x/w)
= 4

3

ν̃u2
0

wL
= 2

3

u3
0

L
, (25)

but here the 4/3 factor comes from the fact that
∫

dξ/ cosh4 ξ =
4/3. It is important to note that εK is constant and independent
of ν.

On physical grounds, the passive scalar concentration is
positive definite. Mathematically, however, Equation (23) is
invariant under the addition of a constant. We can therefore
formulate the same boundary conditions for c as for u, i.e.,
c = ±c0 and u = ±u0 for x → ∓∞, which is truncated
here at finite boundary positions x = x∓ that are chosen to be
sufficiently far away from the shock, i.e., |x±| 	 w.

However, for Sc � 1, one finds εK/εC ≈ const. The
dependence of εK/εC as a function of Sc is shown in Figure 7,
where we present the results from numerical integration. There
are clearly two different scalings for Sc � 1 and Sc 	 1. The
profiles of c(x) are shown in Figure 8 for different values of Sc
and are compared with the profile of u(x). Not surprisingly, for
small values of Sc, the width of the kink of c(x) becomes wider.

Figure 10. Profiles of b(x) (solid) and u(x) (dashed) for different values of PrM .
Note that the x range is the same for all panels and that we have normalized x
by 2u0/(ν + η).

4.2. MHD Model for Alfvén Kinks

An extension of the Burgers equation to MHD was already
studied by Thomas (1968) and Pouquet (1993), but unlike
their cases which try to model the effects of three-dimensional
dynamos, here we employ just a one-dimensional reduction
of the three-dimensional equations to one dimension, which
results in equations equivalent to those of Basu et al. (2014).

7
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Table 2
Summary of Runs with Co �= 0 and PrM = 0.1

Run νk1/cs ηk1/cs Re ReM Co urms/cs brms/cs εK/εT εM/εT Cε kν/k1 kη/k1 res.

RA1 1 × 10−3 1 × 10−2 30 3 0.1 0.090 0.066 0.30 0.70 1.71 17 4 163

RA2 1 × 10−3 1 × 10−2 30 3 0.1 0.089 0.064 0.30 0.70 1.68 17 4 163

RA3 1 × 10−3 1 × 10−2 29 3 0.3 0.088 0.065 0.29 0.71 1.66 17 4 163

RA4 1 × 10−3 1 × 10−2 29 3 0.6 0.088 0.065 0.29 0.71 1.63 17 4 163

RA5 1 × 10−3 1 × 10−2 32 3 1.0 0.096 0.063 0.35 0.65 1.31 18 4 163

RA6 1 × 10−3 1 × 10−2 40 4 2.1 0.121 0.053 0.58 0.42 0.77 21 3 163

RB1 5 × 10−4 5 × 10−3 56 6 0.1 0.084 0.092 0.16 0.84 2.10 25 7 323

RB2 5 × 10−4 5 × 10−3 57 6 0.6 0.085 0.094 0.17 0.83 2.03 25 7 323

RB3 5 × 10−4 5 × 10−3 83 8 2.0 0.124 0.073 0.34 0.67 0.62 30 6 323

RC1 2 × 10−4 2 × 10−3 150 15 0.6 0.090 0.117 0.13 0.87 1.74 48 14 643

RC2 2 × 10−4 2 × 10−3 205 21 2.0 0.123 0.100 0.20 0.80 0.66 52 13 643

RC3 2 × 10−4 2 × 10−3 353 35 4.7 0.212 0.019 0.89 0.11 0.07 65 7 643

RD1 1 × 10−4 1 × 10−3 310 31 0.5 0.093 0.119 0.13 0.87 1.56 80 23 1283

RD2 1 × 10−4 1 × 10−3 410 41 2.0 0.123 0.127 0.15 0.85 0.69 83 23 1283

RD3 1 × 10−4 1 × 10−3 613 61 5.4 0.184 0.037 0.69 0.31 0.12 105 16 1283

RE1 5 × 10−5 5 × 10−4 647 65 0.5 0.097 0.123 0.14 0.86 1.44 137 39 2563

RE2 5 × 10−5 5 × 10−4 833 83 2.0 0.125 0.134 0.14 0.86 0.69 138 39 2563

RE3 5 × 10−5 5 × 10−4 1160 116 5.8 0.174 0.099 0.39 0.61 0.17 160 32 2563

RF1 2 × 10−5 2 × 10−4 2033 203 2.0 0.122 0.116 0.11 0.89 0.59 243 74 2563

RF2 2 × 10−5 2 × 10−4 2950 295 5.6 0.177 0.106 0.24 0.76 0.14 272 65 2563

RF3 2 × 10−5 2 × 10−4 3917 392 10.6 0.235 0.084 0.42 0.58 0.06 318 62 2563

RG1 1 × 10−5 1 × 10−4 7600 760 10.9 0.228 0.091 0.29 0.71 0.07 501 111 5123

RG2 1 × 10−5 1 × 10−4 6933 693 24.0 0.208 0.089 0.32 0.68 0.09 496 107 5123

This essentially implies a different sign in front of what
corresponds to the stretching term in MHD, i.e., the B · ∇B
and B · ∇u non-linearities in the momentum and induction
equations, respectively. Unlike the case of a passive scalar, the
magnetic field is an active (vector) field which therefore back-
reacts on the flow via the Lorentz force, which in this case is just
the magnetic pressure. As before, the gas pressure is neglected
(cs = 0), so the governing equations therefore reduce to

∂u/∂t = − uu′ − bb′ + ν̃u,′′ (26)

∂b/∂t = − ub′ − bu′ + ηb′′. (27)

These equations obey similar conservation equations as the full
MHD equation, except that here the energy input comes from
non-vanishing inflow at x → −∞ and is equal to u3

0/3L. Note,
however, that there is no net Poynting flux, because ub2 = 0 on
both boundaries.

The magnetic cases are quite different from the passive scalar
case in that the magnetic field exerts a magnetic pressure. One
can therefore produce a stationary state where the ram pressure
of the flow from the left (x → −∞) can be balanced by
the magnetic pressure of a magnetic kink when b → u0 for
x → +∞ and b → 0 for x → −∞. Indeed, the stationary state
must obey the following system of two ordinary differential
equations:

∂u/∂x = (
u2 + b2 − u2

0

)
/2ν̃, (28)

∂b/∂x = ub/η. (29)

In practice, however, it was more straightforward to obtain
solutions using direct time integration in x− � x � x+ rather
than solving a two-point boundary value problem. The resulting

scaling in Figure 9 confirms Equation (15) with q ≈ 0.55 for
PrM > 1 and q ≈ 0.95 for PrM < 1.

Let us now discuss the profiles of b(x) and u(x) in the
magnetic case, shown in Figure 10. Here, we find scalings that
are broadly similar to those for turbulent large-scale dynamos
as well as small-scale dynamos for PrM < 1, namely, a slope
between 0.6 and 0.7. For PrM = 1, the profiles of b(x) and u(x)
are similar and resemble the tanh x/w profile of u in the passive
scalar case. However, for both PrM � 1 and 	1, the profiles
of b(x) and u(x) become asymmetric, which is also the reason
why we chose to integrate in a domain where −x− > x+. For
small values of PrM , i.e., when η 	 ν, the magnetic field begins
to ramp up slowly and quite far away from x = 0. This leads
to a corresponding decline of u(x). On the other hand, for large
values of PrM , the value of ν (	 η) is so large that a certain
imbalance of u2 + b2 − u2

0 in Equation (28) implies only a small
slope in u(x), so |u′| must be small.

The crucial point for the magnetic case is that the widths of
the magnetic and velocity kinks are never very different from
each other. Therefore, as a zeroth approximation, we can say
that 〈2S2〉/〈u2〉 is approximately as large as 〈μ0 J2〉/〈B2〉 or,
in our one-dimensional case, 〈(u′)2〉/〈u2〉 is approximately as
large as 〈(b′)2〉/〈b2〉. Given that in all cases EK ≈ EM, this
would imply that εK/εM ∝ ν/η ≡ PrM , i.e., we would expect
linear scaling with PrM . In this case, as we have emphasized
before, the usual phenomenology of hydrodynamic turbulence,
in which a decrease of ν implies a corresponding increase of
dissipation, is not obeyed.

5. EFFECT OF ROTATION

The conversion of kinetic into magnetic energy is of obvious
astrophysical significance. In stars with outer convection zones,
a certain fraction of the kinetic energy flux is converted into
magnetic energy and is observable as X-ray flux (for example,
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Figure 11. Energy dissipation ratio as a function of the Coriolis number for
helically forced turbulence.

(A color version of this figure is available in the online journal.)

(Vilhu 1984)). This leads to a scaling law that has been verified
over many orders of magnitude (Christensen et al. 2009). As we
have seen, this scaling law must be affected by PrM , although the
value of PrM is approximately the same for all late-type stars, so
this cannot easily be observationally checked. However, what
has not been checked is whether the conversion also depends on
the rotation rate.

In the work discussed in Section 2, there was no explicit
rotation. Note, however, that Plunian & Stepanov (2010) did
already study the effect of rotation in their shell model calcula-
tions. To check whether rotation influences our results, we have
performed a series of simulations with Co �= 0 using PrM = 1,
and have varied ReM (= Re) between 4 and 400, and Co be-
tween 0.2 and 20. The parameters of our runs are listed in Table 2
and the result is shown in Figure 11, where we plot εK/εM as
a function of Co. The values of ReM are indicated by different
symbols.

We see that for a given value of ReM , there is a certain value
of Co = Co∗ below which εK/εM is roughly unaffected by
rotation. As the value of ReM is increased, Co∗ also increases,
thereby extending the range over which εK/εM remains roughly
independent of Co. In astrophysical applications, Re is usually
large enough so that we should not expect to see any rotational
dependence of εK/εM . This explains why the scaling result
of Christensen et al. (2009) follows the expected scaling of
εK + εM ≈ u3

rms/L with some length scale L over a huge range.

6. CONCLUSIONS

In the present work, he have extended earlier findings of a PrM
dependence of the kinetic-to-magnetic energy dissipation ratio,
εK/εM , to the regime of small-scale and large-scale dynamos
for PrM > 1 and at higher resolution than what was previ-
ously possible (Brandenburg 2011b). In most cases, our results
confirm earlier results that for large-scale dynamos, the ratio
εK/εM is proportionate to Pr0.6

M . Furthermore, we have shown
that a similar scaling with PrM can be obtained for a simple
one-dimensional Alfvén kink, where ram pressure locally bal-
ances magnetic pressure. Interestingly, in these cases, kinetic
energy dissipation is accomplished mainly by the irrotational
part of the flow rather than the solenoidal part, as in the tur-
bulence simulations presented here. We note in this connec-
tion that the kinetic energy dissipation, which is proportional to

〈2S2〉 = 〈(∇× u)2〉 + 〈(4/3)(∇ · u)2〉, has similar contributions
from vortical and irrotational parts.

We have also shown that for fixed values of PrM , the ratio
εK/εM is not strongly dependent on the presence of rotation,
provided the magnetic Reynolds number is not too close to
the marginal value for the onset of dynamo action. In the
simulations with Co �= 0 presented here, the runs were often
not very long and therefore the error bars large, but the number
of similar results support our conclusions that εK/εM is roughly
independent of Co.

For many astrophysical systems, the microscopic energy
dissipation mechanism is not of Spitzer type, as assumed here.
It is not obvious how this would affect our results. Nevertheless,
it is clear that conclusions based on the kinetic-to-magnetic
energy ratio itself do not have much bearing on the energy
dissipation ratio. This became clear some time ago in connection
with local accretion disk simulations driven by the magneto-
rotational instability, where magnetic energy strongly dominates
over kinetic. However, as it turned out, most energy is dissipated
viscously rather than resistively (Brandenburg et al. 1995).

Unfortunately, the question of energy dissipation is not
routinely examined in astrophysical fluid dynamics, nor is it
always easy to determine energy dissipation rates, because many
astrophysical fluid codes ignore explicit dissipation and rely
entirely on numerical prescriptions needed to dissipate energy
when and where needed. Our present work highlights once again
that this can be a questionable procedure, because it means that
even non-dissipative aspects, such as the strength of the dynamo
which is characterized by 〈u · ( J × B)〉, are then ill-determined.
The reason why this has not been noted earlier is that most
previous work assumed PrM to be of the order of unity. An
exception is the work of Brandenburg (2009), where dynamo
simulations for values of PrM as small as 10−3 were considered.
One reason why such extreme values of PrM have been possible
is the fact that at very small values of PrM , most of the energy
is dissipated resistivity and there is not much kinetic energy
left at the end of the turbulent kinetic energy cascade. As a
consequence, it is then possible to decrease the value of ν further
and still dissipate the remaining kinetic energy, which implies
that the nominal value of the fluid Reynolds number can become
much larger than what is usually possible when there is no
additional resistive dissipation. However, one may wonder how
a large-scale dynamo can depend on PrM . We expect that this
is only possible if most of the energy transfer comes ultimately
from small scales.

It is also noteworthy that there is now some evidence for the
non-universal behavior of the scaling of the kinetic-to-magnetic
energy dissipation ratio with PrM . Although some of the earlier
results with slightly different exponents could be explained by
inaccuracies and other physical effects, there are now examples
such as one-dimensional simulations and the passive scalar
analogy that display different exponents which cannot easily
be explained through artifacts. Also, the result that for large
enough magnetic Reynolds numbers the dissipation ratio scales
differently in the presence of helicity (q ≈ 0.7) than without
(q ≈ 1/3) is surprising. It would therefore be interesting to
revisit the viscous-to-magnetic dissipation ratios over a broader
range of circumstances.
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