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ABSTRACT

Using one-dimensional models, we show that a helical magnetic field with an appropriate sign of helicity can
compensate the Faraday depolarization resulting from the superposition of Faraday-rotated polarization planes
from a spatially extended source. For radio emission from a helical magnetic field, the polarization as a function
of the square of the wavelength becomes asymmetric with respect to zero. Mathematically speaking, the resulting
emission occurs then either at observable or at unobservable (imaginary) wavelengths. We demonstrate that rotation
measure (RM) synthesis allows for the reconstruction of the underlying Faraday dispersion function in the former
case, but not in the latter. The presence of positive magnetic helicity can thus be detected by observing positive RM
in highly polarized regions in the sky and negative RM in weakly polarized regions. Conversely, negative magnetic
helicity can be detected by observing negative RM in highly polarized regions and positive RM in weakly polarized
regions. The simultaneous presence of two magnetic constituents with opposite signs of helicity is shown to possess
signatures that can be quantified through polarization peaks at specific wavelengths and the gradient of the phase
of the Faraday dispersion function. Similar polarization peaks can tentatively also be identified for the bi-helical
magnetic fields that are generated self-consistently by a dynamo from helically forced turbulence, even though the
magnetic energy spectrum is then continuous. Finally, we discuss the possibility of detecting magnetic fields with
helical and non-helical properties in external galaxies using the Square Kilometre Array.
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1. INTRODUCTION

For many decades, polarized radio emission from external
galaxies has been used to infer the strength and structure of
their magnetic field. This emission is caused by relativistic
electrons gyrating around magnetic field lines and producing
the polarized synchrotron emission. The plane of polarization
gives an indication about the electric (and thus magnetic) field
vectors at the source of emission. The line-of-sight component
of the field can be inferred through the Faraday effect that leads
to a wavelength-dependent rotation of the plane of polarization.
The resulting change of the angle of the polarization plane
over a certain wavenumber interval gives the rotation measure
(RM), whose variation across different positions within external
galaxies gives an idea about the global structure of the magnetic
fields of these galaxies (Sofue et al. 1986; Beck et al. 1996,
2005; Fletcher 2010; Beck & Wielebinski 2013).

In practice, an observer will always see a superposition of
different polarization planes from different depths, which can
lead to a reduction in the degree of polarization. First, the ori-
entation of the magnetic field changes, causing different polar-
ization planes at different positions. Second, Faraday rotation
causes the plane of polarization to rotate. The decrease in po-
larized emission resulting from this superposition is referred to
as Faraday depolarization. This was regarded as a problem that
can be alleviated partially by restricting oneself to observations
at shorter wavelengths (Soida et al. 2011). This situation has
changed with the advent of new generations of radio telescopes
that can measure polarized emission over a broad and continu-
ous range of wavelengths. This allows one to apply the method
of Burn (1966) that utilizes the wavelength-dependent depo-
larization to determine the distribution of radio sources with

respect to Faraday depth (Brentjens & de Bruyn 2005; Heald
et al. 2009; Gießübel et al. 2013; Frick et al. 2011). However,
the interpretation of distributed magnetic fields still remains a
challenge (Beck et al. 2012; Bell & Enßlin 2012).

Of particular interest to the present study is the possibility
of detecting helicity of the magnetic field. The helicity of the
magnetic field reflects the linkage of the magnetic field (Moffatt
1978). In the context of the large-scale magnetic field in galaxies,
one can think of the linkage between the poloidal and toroidal
magnetic field components. Three-dimensional visualizations
of these two components together, such as Figure 5 of Donner
& Brandenburg (1990), show that the magnetic field lines
describe a spiraling pattern. Another manifestation of a helical
field is the rotation of a magnetic field vector perpendicular to
the line of sight. Determining the presence of such swirling
magnetic field patterns would be an important step toward
understanding the nature of the underlying dynamo process that
is needed to achieve better agreement between observations and
theory of astrophysical dynamos. A promising result for probing
magnetic helicity in the interstellar medium has been obtained
by Volegova & Stepanov (2010), who have shown that a helical
turbulent magnetic field produces a nonzero cross-correlation
of RM and the degree of polarization. The sign of the cross-
correlation coefficient permits one to define the sign of the total
magnetic helicity. However, the theoretical background of this
approach was not clearly understood. Subsequent attempts by
Junklewitz & Enßlin (2011) and Oppermann et al. (2011) did
not clarify this effect either, because they excluded the effect
of Faraday depolarization from the beginning. To explain the
results of Volegova & Stepanov (2010), we stress the fact that,
if the magnetic field is helical, i.e., the magnetic field lines
spiral toward or away from the observer, the resulting Faraday
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depolarization can be either enhanced or reduced, depending
on the relative signs of magnetic helicity and the line-of-sight
component of the magnetic field and thus RM. In a related
paper by Horellou & Fletcher (2014), this effect was used to
study the polarized intensity in selected wavelength ranges for
both signs of helicity. The exploitation of this effect, which
was first discussed by Sokoloff et al. (1998) as an anomalous
depolarization due to a twisted magnetic field, is an important
motivation behind the present paper.

While the effect of a helical magnetic field is easily un-
derstood for simple magnetic spirals, it becomes less obvious
in the case of more complicated fields. We are here partic-
ularly interested in helical magnetic fields consisting of con-
stituents that have large and small length scales with opposite
signs of magnetic helicity. Such fields are called bi-helical and
are of central importance in dynamo theory (for a review, see
Brandenburg & Subramanian 2005) and have also been detected
in the solar wind (Brandenburg et al. 2011) and on the solar sur-
face (Zhang et al. 2014). There is now also some evidence for
helical magnetic fields in the jets emanating from active galactic
nuclei (Reichstein & Gabuzda 2012). We first discuss the obser-
vational signatures of singly helical fields and turn then to the
case of bi-helical magnetic fields. Next, we discuss a method
referred to as cross-correlation analysis using magnetic field
configurations similar to those studied in the first part of the
paper. Those fields are used to mimic the effects of turbulence
consisting of randomly oriented patches with singly helical or
bi-helical fields oriented randomly in the sky. Finally, we present
preliminary results from more realistic magnetic field configura-
tions generated by a turbulent dynamo in the presence of shear.
We conclude with a discussion of the possibilities of detecting
helical and bi-helical magnetic fields in external galaxies using
the Square Kilometre Array.

2. COMPENSATING DEPOLARIZATION

The synchrotron emission of magnetized interstellar or inter-
galactic media is commonly observed through its total intensity,

I (λ2) =
∫ ∞

0
ε(z, λ) dz, (1)

and through the Stokes Q and U parameters combined into a
complex polarization as

P (λ2) ≡ Q + iU = p0

∫ ∞

0
ε(z, λ)e2i(ψ(z)+φ(z)λ2) dz, (2)

at a given point in the sky. Here p0 is the intrinsic polariza-
tion (depending on the energy spectrum of the cosmic rays),
ε(z, λ) ∝ nc(z)Bσ

⊥(z)f (λ) is the polarized emissivity with σ ≈
1.9 being an exponent related to the spectral index (Ginzburg
& Syrovatskii 1965), nc is the cosmic-ray electron density, B⊥
is the strength of the magnetic field perpendicular to the line of
sight, f (λ) ∝ λσ−1 is a wavelength-dependent factor, ψ(z) is
the intrinsic polarization angle, K = 0.81 m−2 cm3 μG−1 pc−1

is a constant (Pacholczyk 1970), λ is the wavelength,

φ(z) = −K

∫ z

0
ne(s)B‖(s) ds (3)

is the Faraday depth, ne is the electron density (dominated by
thermal electrons), B‖ is the magnetic field along the line of

Figure 1. Sketch illustrating position of source and observer.

sight, and z is a coordinate along the line of sight in a Carte-
sian coordinate system, (x, y, z). Note that Equation (3) im-
plies that the Faraday depth is positive when the mean mag-
netic field points toward the observer at z = 0; see Figure 1
and the Appendix for alternative conventions concerning
Equations (1)–(3). Variations across the sky are here ignored, so
there is no dependence on x and y; see Donner & Brandenburg
(1990), Elstner et al. (1992), Brandenburg et al. (1993), and
Urbanik et al. (1997) for early applications to mean-field dy-
namos where this restriction was relaxed. Note that ε also de-
pends on λ through a factor f (λ), but this term can be moved
outside the integral, so it does not constitute a principle problem
(Brentjens & de Bruyn 2005; Bell & Enßlin 2012), and we shall
ignore this complication here. The observed polarization angle is

χ (λ2) = 1

2
arctan(U,Q), (4)

where arctan returns all angles in the range from −π to π , whose
tangent yields U/Q. It is not to be confused with the intrinsic
polarization angle ψ(z).

Since B is assumed independent of x and y, the divergence-
free condition implies that B‖ = Bz = const ≡ B‖0. While the
assumed independence of x and y may be justified for large-scale
fields, it is certainly problematic for small-scale fields. This will
be addressed in Section 6. We write the perpendicular magnetic
field B⊥ = (Bx, By, 0) in complex form

B(z) ≡ Bx(z) + iBy(z) = B⊥(z) eiψB (z) (5)

with its phase ψB = arctan(By, Bx). The intrinsic polarization
angle ψ is related to ψB by

ψ = ψB − π/2. (6)

Here the π/2 term comes from the fact that the plane of
polarization is parallel to the electric field and perpendicular to
the magnetic field of the radio wave, which, in turn, is parallel to
the ambient field B⊥. (Note that this term is sometimes omitted;
see Waelkens et al. 2009 for such an example. Sokoloff et al.
1998 included it, but dropped the resulting minus sign after
their Equation (16).) Due to the factor two in the exponent
of Equation (2), which is a consequence of the definition of
the Stokes parameters being essentially squared quantities, the
phase of the magnetic field has a π ambiguity. This is a serious
restriction, because it means that the underlying magnetic field
cannot be determined fully without additional assumptions.

We now want to determine a condition on the structure of
the magnetic field under which the integral in Equation (2)
gives maximum contribution, that is, for which the Faraday
depolarization is minimal. As was already shown by Sokoloff
et al. (1998), this is the case when, for a certain value of λ,
the phase 2(ψ(z) + φ(z)λ2) is a constant. For the purpose of
the present discussion we assume constant values of B⊥, ne,
and nc, denoted by B⊥0, ne0, and nc0, respectively. Therefore,
φ(z) = −Kne0B‖0z is linear in z, and so the (half) phase under
the integral in Equation (2) is given by

ψ(z) + φ(z)λ2 = ψ(z) − Kne0B‖0λ
2z, (7)
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Figure 2. Sketch illustrating the combined effects of Faraday rotation and
a helical magnetic field. For a uniform magnetic field, contributions from
different depths lead to different angles of the polarization plane. Thus, Faraday
rotation alone would lead to Faraday depolarization (sum of the phases of all
contributions from the first row), but when B⊥ is a helical field rotating properly
about the z-axis (second row), the contributions from different depths lead to
the same observed polarization angle (last row) and Faraday depolarization is
thus compensated.

which becomes independent of z and equal to a constant ψ0,
giving thus maximum contribution to the integral, when

ψB(z) = ψ0 − kz, (8)

where ψ0 is an arbitrary phase shift and

k = −Kne0B‖0λ
2 (9)

is the required wavenumber of the magnetic field. A similar
condition was also derived by Arshakian & Beck (2011), without
however explicitly making reference to the helical nature of the
magnetic field.

Equation (8) implies that we have a unique solution for the
magnetic field that gives maximum contribution to the integral in
Equation (2) by essentially canceling the Faraday depolarization
from the exp(2iφλ2) term, as illustrated in Figure 2. Inserting
Equation (8) into Equation (5) and assuming B⊥ = const, we
have

B = (B⊥0 cos(kz − ψ0),−B⊥0 sin(kz − ψ0), B‖0). (10)

Such a twisted magnetic field with ψB(z) ∝ z is a Beltrami
field and has been considered by Sokoloff et al. (1998) for the
demonstration of anomalous depolarization.

As motivated above, we are interested in the magnetic helicity
of the field. It is defined as 〈A·B〉, where angular brackets denote
volume averaging and A is the magnetic vector potential with
B = ∇ × A and components A = (Bx/k, By/k + xB‖0, 0).
Here the linearly varying component xB‖0 is needed to give the
constant B‖ = B‖0, but this contribution averages out in the
calculation of the magnetic helicity,

〈A · B〉 = k−1B2
⊥0. (11)

Another quantity of interest, which is based on the current
density J = ∇× B/μ0 with μ0 being the vacuum permeability,
is the current helicity, 〈J · B〉 = kB2

⊥0/μ0. In the present
example, it has the same sign as 〈A · B〉 and is positive
(negative) for positive (negative) values of k. Note also that
ψB decreases (increases) with z when the magnetic helicity is
positive (negative). Somewhat surprisingly, this implies that the
tips of the magnetic field vectors describe a left-handed (right-
handed) spiral when magnetic helicity is positive (negative).

For a given magnetic field, that is, prescribed k and B‖0,
|P (λ2)| as a function of λ becomes maximal if Equation (9)
holds, that is, λ2 = −k/Kne0B‖0. Obviously, only λ2 > 0 is

observable, so only negative (positive) helicities can be detected
via the observation of a maximum of |P (λ2)| if B‖0 is positive
(negative), i.e., the field points away from (toward) the observer.

To give an example for typical values of the radio wavelength
expected from magnetic fields in the interstellar medium and in
external galaxies, let us take k = 2π/kpc for the wavenumber
of a field of 1 kpc scale, ne0 = 0.03 cm−3 (Taylor & Cordes
1993), and B‖0 = 3 μG; then |P (λ2)| peaks at λ ≈ 30 cm. To
probe fields with larger (smaller) length scales, one would need
shorter (longer) wavelengths of the radio emission.

3. FARADAY DISPERSION FUNCTION

To characterize the observational signature of a helical mag-
netic field, we compute the corresponding complex polarization
as a function of λ2 using Equation (2). For the purpose of further
analysis the polarization can be expressed as a Fourier integral,

P (λ2) =
∫ ∞

−∞
F (φ) e2iφλ2

dφ, (12)

where
F (φ) = f (φ) e2iψ(φ) (13)

is called the Faraday dispersion function (Burn 1966) with
f (φ) = |F (φ)|. Provided that Equation (3) defines a strictly
monotonous function φ(z), we have dφ/dz �= 0 and can change
variables from z to φ in Equation (2), and we write

f (φ) = −p0ε(φ)/Kne(φ)B‖(φ), (14)

where the denominator is just dφ/dz resulting from the
transformation from z to φ. The factor two in the exponent
of Equation (13) results in the π ambiguity. It is therefore useful
to characterize signatures of helical magnetic fields directly in
terms of F (φ). This is particularly important, because there is,
at least in principle, the chance to reconstruct F (φ) from P (λ2)
using Fourier transformation with respect to the conjugate vari-
able 2λ2 (Burn 1966). Given the lack of any information about
P (λ2) for λ2 < 0, we define the synthesized Faraday dispersion
function (Burn 1966; Brentjens & de Bruyn 2005),

Fsyn(φ) = 1

2π

∫ ∞

0
P (λ2) e−2iφλ2

d(2λ2), (15)

which is supposed to be a reasonable approximation of the actual
F (φ), which would be obtained if the integral in Equation (15)
were from −∞ to ∞.

We now consider a concrete example using Equation (10) with
k = k1 to construct a magnetic field in a slab of thickness L with
0 � z < L. In the following, we take |k1| = 2π/L, i.e., we have
within the slab just two nodes in each of the two components
of B⊥. Outside this range, we assume B⊥ = 0, but we keep
B‖ = B‖0 everywhere. The Faraday depth, φ = −Kne0B‖0z, is
a uniformly varying coordinate, and R ≡ φ(L) = −Kne0B‖0L
is the equivalent intrinsic Faraday RM or simply the Faraday
thickness of the slab. Then ε(φ) �= 0 is the range 0 � φ/R � 1.
For normalization purposes we introduce here the wavelength
λ1. It is given by

λ2
1 = −k1/Kne0B‖0 (16)

and determines the peak of the modulus of the resulting complex
polarization,

P (λ2) = p0I P̂
(
R(λ2 − λ2

1)
)
, (17)
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where
P̂ (ξ ) = (1 − e2iξ )

/
2iξ (18)

is Burn’s non-dimensional depolarization function, indicated by
a hat. It applies in the absence of magnetic helicity to a uniform
slab of Faraday thickness R. Note that in our normalization,
P̂ (0) = −1, where the minus sign is a consequence of the π/2
term in Equation (6). Note also that d arg(P̂ )/dξ = 1, in spite
of the factor two in the exponential function in Equation (18).

The resulting polarization P (λ2) is characterized by two
independent parameters of the magnetic field, k1 and B‖0, which
are represented by λ2

1 and R in Equation (17). To analyze the
form of P (λ2), we consider its modulus and half-phase χ (λ2)
and compare the corresponding functions F (φ) and Fsyn(φ) for
a helical magnetic field with positive helicity (k1 > 0) and
different signs of λ2

1 (Figure 3 for λ2
1 > 0 and Figure 4 for

λ2
1 < 0). We see that, as expected, |P (λ2)| shows a peak at

λ2 = λ2
1, and the sign of λ2

1 depends only on that of the product
of k1 and B‖0. The polarization angle increases (decreases) with
λ2 for k1 > 0 as shown in Figure 3(b) (Figure 4(b)). This means
that the observed RM, RM = dχ/dλ2, is positive (negative).
Indeed, the case λ2

1k1 > 0 corresponds to RM > 0 (B‖0 < 0, B‖
toward the observer), while λ2

1k1 < 0 corresponds to RM < 0
(B‖0 > 0, B‖ points away from the observer).

We note that RM does not depend on λ2 and that its value
is half the Faraday thickness of the slab, i.e., RM = R/2.
As mentioned above, the reason for the 1/2 factor lies in
the mathematical fact that the gradient of the phase of P̂ in
Equation (18) is 1 and not 2. It is in agreement with the
interpretation that for |F (φ)| = const, RM is the average value
of φ across the source with 0 � φ/R � 1.

Looking at Figures 3(b) and 4(b), we confirm that at the
position of the peak at λ2 = λ2

1 the value of χ (λ2) is π/2. Again,
this is a consequence of the π/2 term in Equation (6) resulting
from the phase shift between magnetic and electric fields of the
radio wave and the resulting effect on the plane of polarization.
Note also that χ (λ2) jumps by π/2 when P (λ2) = 0, which is
the case when λ2−λ2

1 is a non-vanishing half-integer multiple of
|λ2

1|. Unlike the jump at λ2 = λ2
1 by π because of π ambiguity,

the π/2 jumps are physical singularities in the polarization angle
as a function of λ2. These π/2 discontinuities were also noted
by Burn (1966) and are a natural consequence of decomposing a
complex function with zeros such as Equation (18) into modulus
and phase.

Since the product of k1 and RM is positive in Figure 3,
polarized emission occurs now in the range 0 < λ2 < ∞ and
would therefore be observable. As expected, the synthesized
Fsyn(φ) agrees therefore fairly well with the original F (φ);
compare the black with the red dashed lines in Figure 3. Real
and imaginary parts of F (φ) and Fsyn(φ) are phase-shifted by
π/2 relative to each other, which is indicative of a helical field;
see Equation (10). Note also that |F (φ)| is constant and ψ(φ) is
decreasing with increasing φ, as seen from Equation (8). Again,
the agreement between F (φ) and Fsyn(φ) is rather good.

If k1RM < 0, the peak occurs at negative values of λ2 and
is thus unobservable. In that case, there would be essentially
no polarized emission and the RM-synthesized Faraday dis-
persion function is very poor; see Figures 4(c)–(e). A quanti-
tative analysis of the reconstruction of the Faraday dispersion
function for different wavelength ranges and radio telescopes is
given by Horellou & Fletcher (2014). The width of the polar-
ization peaks depends on R. It is sharper for a thicker emitting

(a)

(b)

(c)

(d)

(e)

Figure 3. (a) |P (λ2)|, (b) χ (λ2) = arg(P )/2, (c) real and imaginary parts of
F (φ), (d) |F (φ)|, and (e) ψ(φ) for a magnetic field with positive helicity k1 > 0
and positive λ2

1 > 0. In panels (a) and (b), the unobservable range λ2 < 0 is
marked in gray. In panels (c)–(e), the quantities for the synthesized Faraday
dispersion function are overplotted as red dashed lines.

(A color version of this figure is available in the online journal.)

region and broader for a thinner one. In the limit of an in-
finitely thick slab, P (λ2) becomes a δ function with no side
lobes, so the remaining discrepancy between F (φ) and Fsyn(φ)
in Figures 3(c)–(e) would disappear. Perfect reconstruction of a
non-helical magnetic field in a slab can be achieved only with
additional assumptions about the symmetry of the source (Frick
et al. 2010).

4. BI-HELICAL MAGNETIC FIELDS

In galaxies, magnetic fields are thought to be produced
and maintained by a turbulent dynamo involving a so-called
α effect. This leads to helical large-scale magnetic fields
(e.g., Moffatt 1978). However, since magnetic helicity is an
invariant in ideal magnetohydrodynamics (Woltjer 1958), no
net magnetic helicity can be produced. Instead, a bi-helical
magnetic field is generated, which has an additional small-scale
constituent of opposite magnetic helicity. This is an idealized
situation, because in reality there will be magnetic helicity fluxes
(Kleeorin et al. 2000) that influence the local helicity balance.
Nevertheless, to study this idealized case in more detail, we
consider as a simple example the following one-dimensional,
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(a)

(b)

(d)

(e)

(c)

Figure 4. Same as Figure 3, but for λ2
1 < 0, keeping however k1 > 0.

(A color version of this figure is available in the online journal.)

bi-helical magnetic field:

B =
(

B1 cos k1z + B2 cos(k2z + ϕ)
−B1 sin k1z − B2 sin(k2z + ϕ)

B‖0

)
, (19)

where k1 is the wavenumber of the constituent with amplitude
B1, k2 is that of the constituent with amplitude B2, and ϕ is an
arbitrary phase shift between the two constituents. The magnetic
and current helicities of the total field are respectively given by

〈A · B〉 = k−1
1 B2

1 + k−1
2 B2

2 , μ0〈J · B〉 = k1B
2
1 + k2B

2
2 . (20)

Thus, the field has zero magnetic helicity when −k2/k1 =
B2

2/B2
1 and zero current helicity when B2

2/B2
1 is −k1/k2, which

is just the inverse scale ratio. The latter situation is realized
in a periodic domain after a resistive timescale (Brandenburg
2001), while the former is expected to hold on short timescales
(Field & Blackman 2002; Blackman & Brandenburg 2002). As
alluded to above, in reality there are magnetic helicity fluxes.
In practice, they tend to lead to a situation that is between these
two extreme cases (Brandenburg et al. 2009).

We emphasize that the sign of ki (with i = 1 or 2)
determines also the sign of the helicity of the corresponding
field constituent. In the following we take k1 > 0 and k2 < 0
with |k2| > k1, so the field with amplitude B1 is a large-scale

field with positive helicity, and that with amplitude B2 is a
small-scale one with negative helicity. This is also the situation
expected to be applicable to the upper disk plane of galaxies,
i.e., where the angular velocity vector points in the opposite
direction as gravity.

We vary k1 and k2 to identify features in the results for P (λ2)
and F (φ) that can be related to these wavenumbers. We define
corresponding wavenumbers in Faraday space

λ2
i = −ki/Kne0B‖0, (21)

which we use to define the two quantities

λ2
p = (

λ2
1 + λ2

2

)
/2 and Δλ2 = (

λ2
1 − λ2

2

)
/2. (22)

Note that, even though each of the two constituents of the bi-
helical field has a constant modulus, the modulus of the sum
is not constant. Instead, it is seen from the example shown in
Figure 6 that it varies periodically like

|B̂|2 ∼ cos(2φΔλ2 − ϕ). (23)

Under the assumption that the exponent of the polarized emis-
sivity is σ = 2, an analytic solution Equation (2) can be given
in terms of Burn’s depolarization function (18) as

P (λ2)/p0I = ε1P̂
(
R

(
λ2 − λ2

1

))
+ ε2P̂

(
R

(
λ2 − λ2

2

))
+ εpP̂

(
R

(
λ2 − λ2

p

))
, (24)

where ε1 = B2
1/B2

∗ , ε2 = B2
2/B2

∗ , and εp = 2B1B2/B
2
∗ , with

B2
∗ = B2

1 +B2
2 + 2B1B2 sinc(2Δλ2), are normalization constants.

There are three peaks of P (λ2): two peaks are located at λ2
1

and λ2
2, and a third one appears at λ2

p. They are shown in
Figure 5 for the case B2/B1 = 1. As is clear from Equation (24),
the separation between adjacent peaks is given by |Δλ2|. This
solution is independent of the phase shift ϕ between the two
constituents.

To understand the signatures of a bi-helical magnetic field in
the Faraday dispersion function, let us recall that the wavenum-
bers of each of the two constituents contribute to the gradient
dψ/dφ. It is therefore plausible that in the case B1 = B2 the
result is just the average of the two, i.e.,

dψ/dφ = −λ2
p. (25)

This property of dψ/dφ is preserved regardless of the π
ambiguity. To demonstrate this, we compare in Figure 6 both
ψB ≡ arctan(By, Bx) (all angles in the range from −π to π that
yield By/Bx) and ψ ′

B = arctan(By/Bx), which is confined to
the range from −π/2 to π/2. As stated in Section 2, dψB/dφ
is negative when the product kB‖0 is positive. This is indeed in
agreement with Figure 6.

Interestingly, ψ ′
B is simpler than ψB in that the former has no

phase jumps other than those required for ψ ′
B to remain in the

range from −π/2 to π/2. By contrast, ψB shows phase jumps
by π at all locations where |B| vanishes; compare Figures 6(a)
and (b). Ignoring these phase jumps, i.e., reconstructing the field
from |B| and ψ ′

B , instead of ψB , would render the underlying
magnetic field discontinuous.

Our statements can be confirmed by evaluating Equation (24)
or by computing numerically examples for different combina-
tions of k1 and k2; see also Figure 5. Thus, we can summarize

5



The Astrophysical Journal, 786:91 (12pp), 2014 May 10 Brandenburg & Stepanov

Figure 5. |P (λ2)| for different values of k1 and k2 and B2/B1 = 1 using
RM > 0. The unobservable range λ2 < 0 is marked in gray.

that a bi-helical magnetic field with wavenumbers k1 and k2 re-
sults in a clear signature in the Faraday dispersion function in
that the frequency of its modulus is given by 2Δλ2 (Figure 6(a)),
while indeed dψ/dφ = −λ2

p (Figure 6(b)).
To appreciate the features of a bi-helical magnetic field in the

complex polarization P, let us note that a Fourier transformation
of the complex function B, defined in Equation (5) and now ap-
plied to the bi-helical field defined in Equation (19), would pro-
duce peaks at wavenumbers k1 and k2. However, in the Fourier
transformation defined through Equation (12), wavenumbers
correspond to the Fourier variable 2λ2. Thus, if the Faraday dis-
persion function was given by B(φ), the corresponding Fourier
transform B̂(2λ2) shows peaks at 2λ2/λ2

1 = 1 and k2/k1 = −5;
see Figure 6(c). In reality, the Faraday dispersion function is
given by B2 (assuming here σ = 2). A Fourier transformation
of such a squared function has a peak at k1 + k2 and side lobes
at k1 + k2 ± |k1 − k2| = 2k1 or 2k2. Thus, the corresponding
Fourier transform, which we can now call P (2λ2), has peaks at
2λ2/λ2

1 = 2 and 2k2/k1 = −10, together with a larger one in
between; see Figure 6(d).

The above considerations assume that the amplitudes of the
two constituents are approximately equal. When B2/B1 is either
very small or very large, the type of the resulting polarization

(a)

(b)

(c)

(d)

Figure 6. (a) |B|2(φ), (b) ψB (φ) and ψ ′
B (φ), (c) B̂(2λ2), and (d) P (2λ2) for

a bi-helical magnetic field with k2/k1 = −5 using RM > 0. In panel (b), the
dashed blue lines correspond to π/2 − φ|λ2

1| and 3π/2 − φ|λ2
1| and mark the

points where the phase of ψB (φ) jumps.

(A color version of this figure is available in the online journal.)

signal will be determined by the dominating one of the two
constituents. Figure 7 confirms that the peak at λ2 = λ2

p

diminishes when B2/B1 becomes either much larger than unity
or much smaller than unity. Not surprisingly, a peak at λ2 = λ2

2
begins to emerge when B2 becomes large (bottom panels of
Figure 7), and one at λ2 = λ2

1 emerges when B1 becomes large
(top panels of Figure 7). In the latter case, however, most of the
polarized emission occurs formally for λ2 < 0.

Figure 7 suggests that two of the peaks have a similar height
when 〈J · B〉 = 0 (second row of Figure 7) or when 〈A · B〉 = 0
(fourth row of Figure 7). While this is not a general result, there
is, however, a tendency for those two peaks to survive even in
the limits of very large or very small ratios of |k1/k2|.

Our considerations of helical and bi-helical magnetic fields
have shown that the distributions of P (λ2) are asymmetric with
respect to λ = 0. This underlines again that the reconstruction
of missing data for negative values of λ2 from symmetry
arguments, e.g., that P (−λ2) = P ∗(λ2), would be impossible
when the magnetic field is helical and the helicity is of unsuitable
sign (i.e., k1RM < 0) for a given sign of RM. This is because the
phase of the Faraday dispersion function shows then significant
dependence on Faraday depth, so the term ψ(z) cannot be
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Figure 7. Dependence of |P (λ2)| for different values of B1/B2 and k2/k1 = −5 using RM > 0 (left column) and RM < 0 (right column). The region with λ2 < 0 is
marked in gray. The analytic solutions with σ = 2 are shown as red dotted lines, while the numerical one for σ = 1.9 is shown as a black solid line. For B2/B1 = 0.45
in the second row we have 〈J · B〉 = 0, while for 2.24 in the fourth row we have 〈A · B〉 = 0.

(A color version of this figure is available in the online journal.)

pulled outside the integral of Equation (2), which is a critical
assumption often made in this connection (Burn 1966).

It is remarkable that in all cases with helical magnetic
fields, there is a particular value λ2 for which the polarization
approaches the maximum value of |P |/p0I = 1. Depending
on the relative strengths of B1 and B2, this peak can be either
at λ2 = λ2

1, λ2
2, or at λ2

p = (λ2
1 + λ2

2)/2; see Figure 7 and
Equation (24).

5. CROSS-CORRELATION ANALYSIS
OF |P | VERSUS RM

Our present investigations have implications that help un-
derstand earlier work in the field. Recent surveys of polarized
emission in the interstellar medium have provided continuous
distributions of Q and U on the sky for certain ranges of wave-
lengths. Due to finite beam size, only a small number of inde-
pendent lines of sight are available for analysis. Probing mag-

netic helicity with a cross-correlation analysis between RM and
the polarization degree P ≡ |P |/p0I had been suggested by
Volegova & Stepanov (2010) using simulated data. While the
numerical demonstration of the method was convincing, no the-
oretical proof or explanation had been available yet.

To study this idea further, we imagine turbulence being
approximated by a set of cells possessing locally a homogeneous
helical magnetic field as in Equation (10). The dominating scale
of the turbulence can be attributed to the size of the cells.
The direction of each helix is taken to be random, but for a
large number of cells there are always some for which it is
almost parallel to the line of sight (top right panel of Figure 8).
Only such cells are considered in the following. In Volegova
& Stepanov (2010), the cross-correlation coefficient between
synthetic maps of RM and the polarization degree P was found
to be positive (negative) when the total magnetic helicity in the
domain was prevailingly positive (negative). Since the direction
of B‖ is random, the average value of RM over all cells is

7
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Figure 8. Set of cells each with a singly helical magnetic field of positive helicity. The tips of the vectors describe a left-handed spiral.

(A color version of this figure is available in the online journal.)

zero. Then the cross-correlation coefficient is determined by the
average value of the product RMP , which can be considered
as a weighted average of RM with the weight P . Having in
mind Equation (11), we recall that the maximum polarization
corresponds to cells with positive helicity and positive RM
or, alternatively, negative helicity and negative RM. Minimum
polarization comes from cells with opposite sign of helicity and
RM. Thus, if the number of cells with positive and negative
helicity is about the same, then positive and negative RMs are
weighted equally and the cross-correlation is zero. If the cells
with positive (negative) helicity are dominant, then 〈RMP〉 is
positive (negative).

In the following, another test is suggested for the cross-
correlation diagnostics. We consider the averaged polarization
〈|P |/p0I 〉 by averaging over λ2, using, however, only one cell.
In Figure 9 we show first the dependence of 〈|P |/p0I 〉 on
RM for different wavenumbers using a singly helical magnetic
field. Here we have averaged over wavelengths in the range
0 < λ2 � λ2

1. We see that, for positive (negative) helicities, the
averaged polarization is largest for positive (negative) values of
RM.

Next, in Figure 10 we show correlation plots using data from
Figure 7 for the case of a bi-helical field, where we take the
average value of |P (λ2)|/p0I for 0 < λ2/λ2

1 � 10. We also
compute the corresponding results for 1/2 and 1/10 of the
reference value of RM, namely, RM/RM0 = 1, 0.5, and 0.1,

Figure 9. Dependence of 〈P/p0I 〉 on RM for different wavenumbers k
(relative to a reference wavenumber k1) and cases with positive and negative
current helicities (positive and negative values of k) using an average over
0 < λ2/λ2

1 � 10.

where RM0λ
2
1 = π . In the cases shown in Figure 7, the current

helicity 〈J · B〉 is negative, so the resulting polarized emission
is small for positive values of RM, but large for negative values
of RM. This results in a negative correlation (see right-hand
panel of Figure 10), as expected from the analysis of Volegova
& Stepanov (2010). Conversely, when we change the signs
of k1 and k2, which corresponds to positive current helicity,
the correlation is positive. Thus, our present results support
the findings of Volegova & Stepanov (2010) at a qualitative
level and demonstrate, furthermore, that for bi-helical magnetic

8
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Figure 10. Correlation between RM and 〈P/p0I 〉 for cases with positive and
negative current helicities. The size of the symbols reflects the value of B2/B1
in Figure 7.

fields their method is more sensitive to current helicity than to
magnetic helicity, which has the opposite sign in the example
considered in Figure 10.

6. TURBULENCE-GENERATED MAGNETIC FIELDS

In this paper we have analyzed an extremely simple model
of astrophysical magnetic fields. One potential problem is the
fact that the actual magnetic field possesses not just two scales,
but there is a continuous spectrum of scales. The other problem
is that the line-of-sight magnetic field is not constant, so φ(z)
becomes nonlinear and is different for each line of sight. To
assess how the results from our idealized models are affected
by these issues, we now analyze a snapshot from a turbulence
simulation exhibiting large-scale dynamo action.

In our model, turbulence is driven through helical forcing, as
was also done in Brandenburg (2001), where the forcing acts
only in a narrow band of wavenumbers with an average value
kf that is five times larger than the smallest wavenumber that
fits into the computational domain, |k1|. Thus, k2/|k1| = 5. The
resulting kinetic energy spectrum is, however, continuous for
k > kf and extends until the dissipative cutoff wavenumber,
whose value depends on the Reynolds number; see Figure 1(b)
of Brandenburg et al. (2012) for a higher resolution simulation.
To model the effects of a significant line-of-sight magnetic field
in a physically meaningful way, we include shear. Our model
is thus similar to that of Käpylä & Brandenburg (2009), where

dynamo waves are found to travel in the span-wise direction.
The boundary conditions are (shearing) periodic, and the kinetic
helicity has the same sign throughout the computational domain,
so there is no equator in this model.

Our simulation has been carried out using the Pencil Code5

with a resolution of 1923 mesh points and is characterized by the
magnetic Reynolds and Prandtl numbers, Rm ≡ urms/ηkf = 120
and PrM ≡ ν/η = 1, respectively, as well as the shear parameter
Sh = S/urmskf = 0.16. Here urms is the rms velocity of the
turbulence, η is the magnetic diffusivity, ν is the kinematic
viscosity, and S = |∇U | is the shear rate of the mean flow U .

It turns out that the nonlinearity of φ(z) is a much more
serious problem than the existence of a continuous spectrum of
scales. To demonstrate this, we begin with the best-case scenario
assuming B‖ = const, so φ(z) is linear in z. As in Figure 6, we
consider first the complex variable B, which characterizes the
perpendicular magnetic field component in the projected plane
of the sky; see left column of Figure 11. Its Fourier transform
along the line of sight, B̂(2λ2), averaged over all points in the
plane, shows clearly the small-scale magnetic field with positive
helicity at 2λ2/|λ2

1| = +5 and the large-scale magnetic field with
negative magnetic helicity at 2λ2/|λ2

1| = −1, corresponding to
the lowest wavenumber of the domain. For B‖ = const and
σ = 2, we can compute |P (2λ2)| as the Fourier transform
of B2. Its average over all points in the plane shows peaks at
2λ2/|λ2

1| = −3 (which is slightly lower than the expected value
−2) and at +9 (which is slightly below the expected value of
+10). Thus, we may tentatively conclude that the presence of a
continuous spectrum of scales in the magnetic field has a less
serious effect on the polarization peaks than the nonlinearity of φ
that will be discussed next. There is, however, a peak at λ2 = 0,
which we have not seen in the two-scale model. A more detailed
inspection shows that the overall depolarization is generally
rather strong when the field is turbulent. This weakens the
compensation of depolarization by helicity (Section 2), leaving
behind the finite polarization at λ2 = 0 due to the contribution
of a mean B⊥ along the line of sight. We have verified that the
removal of a mean B⊥ by replacing B⊥ → B⊥ − 〈B⊥〉‖ can
reduce the peak at λ2 = 0 in most cases.

5 http://pencil-code.googlecode.com/

Figure 11. B̂(2λ2) (upper row) and P (2λ2) (lower row) for turbulence-generated magnetic fields with k2/|k1| = 5, ignoring line-of-sight variations of B‖ (left column),
and including variations, shown in regions where R is positive (middle column) and negative (right column). The arrows with numbers indicate particular peaks that
are discussed in the text.
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Figure 12. Three-dimensional magnetic energy and rescaled helicity spectra for
the snapshot analyzed in Figure 11. The red plus signs indicate positive helicity
and the blue asterisks negative helicity.

(A color version of this figure is available in the online journal.)

Next, we consider the effect of the nonlinearity of φ(z). It
results in regions in the plane of the sky where R is now either
positive or negative. Therefore, we present the results for B̂
and P by averaging over only those points where Rλ2

1 is in a
certain interval (2π ± 0.6 and −2π ± 0.6; which is the case for
about 6% of all lines of sight); see middle and last columns of
Figure 11. In those points the rms value of the mean magnetic
field is about 2.5 times larger than that of the fluctuating field.
The resulting spectrum still shows some of the characteristic
peaks, but those corresponding to the large-scale field now
occur at longer wavelengths (−2 or +4 for R ≷ 0) and those
corresponding to the small-scale field at shorter wavelengths
(+7.5 or −7 for R ≷ 0). Thus, the overall result is much less
clear than in the idealized model, but some basic features of a
bi-helical field can still be identified.

In Figure 12 we show the three-dimensional magnetic energy
and helicity spectra, EM (k) and HM (k), respectively. These
spectra are normalized such that

∫
EM (k) dk = (1/2)〈B2〉 and∫

HM (k) dk = 〈A · B〉. The relative magnetic helicity is defined
as rM = kHM (k)/2EM (k), whose modulus is between −1
and +1 (Moffatt 1978; Brandenburg & Subramanian 2005). As
expected, the field is bi-helical with negative magnetic helicity
at k = |k1| and a positive one at k = kf = 5|k1|, but rM is
only about ∓0.1, respectively. Contributions from k > kf are
not expected to be important because of the rapid decline of
spectral power proportional to k−2. However, unlike the case
without shear (Figure 1(b) of Brandenburg et al. 2012), there
is no clear separation of scales and the local peak at k = kf is
barely noticeable.

Based on the results of this section, we can conclude that the
reason for the departure of |P (λ2)| from the ideal case is partly
the low degree of relative magnetic helicity. However, another
important reason is the occurrence of a polarization peak at zero
wavelength. It can interfere with the other peaks and thereby
contaminate the polarization signal also at other wavelengths.

7. CONCLUSIONS

Our present investigations have shown that a helical magnetic
field with a suitable sign of helicity can compensate Faraday de-
polarization and shift the polarized emission into the observable
range. In practice, the magnetic field has contributions from a
superposition of magnetic fields with different wavenumbers

and helicities. For bi-helical magnetic fields, the bulk of the po-
larized emission is shifted to wavelengths whose value depends
on the average wavenumber of the magnetic field. Thus, even
though one of the two constituents in isolation might not be
detectable (see, e.g., the top right panel of Figure 7), it could
become observable because the signature of its presence would
have been carried into the observable range (rows 3–5 on the
right of Figure 7). However, it is equally well possible that most
of the polarized emission would have been shifted out of the
observable range (lower panels on the left of Figure 7). In that
case, very little polarized emission can be expected.

When a galaxy is viewed edge-on, one can expect that its
toroidal magnetic field can provide the line-of-sight component
needed to detect helicity of field vectors in the perpendicular
components. Dynamo theory predicts that this toroidal field has
the same orientation above and below the midplane (Beck et al.
1996). However, the magnetic helicities of both large-scale and
small-scale fields would change sign about the equatorial plane.
Thus, it is conceivable that signatures of bi-helical magnetic
fields would be detectable on only one of the two sides around
the midplane for a fixed direction of B‖. For edge-on galaxies,
this would correspond to two opposite quadrants of detectability
in the projection on the sky.

Radio emission at long (short) wavelengths would give infor-
mation about magnetic fields with large (small) wavenumbers,
corresponding to small (large) length scales. In galaxies, the
typical scales of large-scale and small-scale magnetic fields are
1 kpc and �0.1 kpc, respectively. The corresponding wavenum-
bers are 6 kpc−1 and �60 kpc−1, respectively. With the numbers
given at the end of Section 2, the corresponding radio wave-
lengths would be λ1 = 30 cm for the large-scale field and
λ2 � 1 m for the small-scale field; see Horellou & Fletcher
(2014) for more detailed estimates. However, to resolve P (λ2)
sufficiently well, it is necessary to sample both shorter and
longer wavelengths. With the Square Kilometre Array, we ex-
pect to obtain polarization measurements in the range from 2 cm
to 6 m. With our estimate of λ1 = 30 cm for k1 = 6 kpc−1, this
would allow access to λ2/λ2

1 from 0.004 to 400, correspond-
ing to k from 0.03 kpc−1 to 2400 kpc−1 (= 2.4 pc−1) and thus
spatial scales between 240 kpc and 3 pc. This would well be
compatible with the requirements for the detection of magnetic
fields with helical and bi-helical properties in external galaxies
by a safe margin. On the other hand, our estimates are still quite
rough and not yet based on actual turbulent dynamo simula-
tions such as those of Gressel et al. (2008). For example, if the
value of neB‖ was smaller by a factor of 10 or more, this would
easily necessitate access to the longer wavelength range. More
importantly, contributions of the small-scale magnetic field to
B‖ would substantially weaken the dependence of polarization
on λ2. Preliminary turbulence simulations suggest that this is
indeed the case, although the basic features of the bi-helical
magnetic field resulting from a turbulent dynamo can still be
identified even then. Further studies of such more realistic mod-
els will be needed to assess the critical value of small-scale
contributions that can still be tolerated in B‖. There are also
constraints from limited sensitivity and confusion of the signal
due to turbulence affecting all spatial scales corresponding to
radio wavelengths above λ2. One might speculate that this might
have a tendency of reducing the radio wavelength of the peak
resulting from the small-scale magnetic field and enhancing the
wavelength of the peak resulting from the large-scale field.

An alternative diagnostic for the presence and sign of he-
licity in the case of a continuous spectrum of scales is the
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cross-correlation analysis of Volegova & Stepanov (2010). Sur-
veys of polarized emission from diffuse turbulent sources in the
magnetized interstellar medium could provide appropriate data.
The presence of positive current helicity can be detected by ob-
serving positive RM in highly polarized regions in the sky and
negative RM in weakly polarized regions. Conversely, negative
magnetic helicity can be detected by observing negative RM in
highly polarized regions and positive RM in weakly polarized
regions. The cross-correlation coefficient between the degree of
polarization and RM provides the relevant statistical diagnos-
tics. Alternatively, polarization can be used instead of polariza-
tion degree. However, in that case a nonzero cross-correlation
coefficient would be harder to distinguish.

Other possible targets where one can search for helical mag-
netic fields include the ejecta from active galactic nuclei, where
evidence for swirling magnetic fields has been presented re-
cently (Reichstein & Gabuzda 2012), and supernova remnants,
which can accelerate cosmic-ray protons across the shock, lead-
ing to a current with a component parallel to the magnetic field,
which drives current helicity and an α effect (Rogachevskii et al.
2012). The typical radio wavelengths associated with helical
magnetic fields can be estimated based on their estimated Fara-
day depths. For the supernova remnant G296.5+10.0, Harvey-
Smith et al. (2010) found regions with RM = −14 rad m−2

and 28 rad m−2, corresponding to λ = √
N/2πRM ≈ 8–10 cm,

where we have assumed N = 2 for the number of nodes in
the slab. However, RM can show large variations, and values of
130 rad m−2 have been suggested for G152.4-2.1 (Foster et al.
2013), which would correspond to λ = 3.4 cm. This would still
be within the limits of what is feasible with present and future
facilities.
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APPENDIX

CONCERNING EQUATIONS (1)–(3)

The purpose of this appendix is to clarify alternative defini-
tions of Equations (1)–(3) in the literature. They are related to

the position of the observer, the direction of the line-of-sight
magnetic field, and the sign of the Faraday depth. We discuss
three variants, referred to as I, II, and III. A commonly adopted
variant is to place the observer at z → ∞ and write Equation (2)
as (e.g., Donner & Brandenburg 1990; Brandenburg et al. 1993;
Sokoloff et al. 1998)

P (λ2) = p0

∫ ∞

−∞
ε(z)e2i(ψ(z)+φ(z)λ2) dz (variant I). (A1)

Another convenient variant is to place the observer at z = 0 and
write Equation (2) instead as

P (λ2) = p0

∫ ∞

0
ε(z)e2i(ψ(z)+φ(z)λ2) dz (variants II and III).

(A2)
A second more crucial point concerns definition of the Faraday
depth φ(z). For variant I (e.g., Donner & Brandenburg 1990;
Brandenburg et al. 1993; Sokoloff et al. 1998), the choice is
obvious:

φ(z) = K

∫ ∞

z

ne(s)B‖(s) ds (variant I). (A3)

However, when the observer is at z = 0, one can define

φ(z) = K

∫ z

0
ne(s)B · k ds (variants II and III), (A4)

where k is a unit vector pointing either toward the source (Burn
1966) or toward the observer (Frick et al. 2001). Thus, we have
either (Burn 1966; Frick et al. 2010, 2011)

φ(z) = K

∫ z

0
ne(s)B‖(s) ds (variant II) (A5)

or, as in the present paper and in many others (Frick et al. 2001;
Brentjens & de Bruyn 2005; Heald et al. 2009),

φ(z) = K

∫ 0

z

ne(s)B‖(s) ds

= − K

∫ z

0
ne(s)B‖(s) ds (variant III). (A6)

This formulation is also equivalent to the now-common notation
where one writes (e.g., Heald 2009; Braun et al. 2010; Gießübel
et al. 2013)

φ(z) = K

∫ observer

source
ne B · d l (variant III), (A7)

because B · d l is the same as our B‖(s) ds, while source and
observer correspond to z and 0, so the integral goes from
z to 0.

Concerning the definition of φ(z), we emphasize that Faraday
rotation of the polarization plane is a physical process that does
not depend on the coordinate system or the position of the ob-
server. Apparently, the sense of clockwise or counterclockwise
rotation depends on the position of the observer with respect to
the polarization plane. Consider two observers, Observer A at
z = 0 looking in the direction of +∞ and Observer B at z = +∞
looking toward z = 0. The Faraday rotation corresponds then
to an increase (decrease) of the polarization angle in the (x, y)

11



The Astrophysical Journal, 786:91 (12pp), 2014 May 10 Brandenburg & Stepanov

plane with increasing (decreasing) z, i.e., for a wave approach-
ing Observer B (Observer A). However, both observers will
see counterclockwise rotation of the polarization plane of the
waves. A common convention is that positive RM means that the
line-of-sight magnetic field between the source and the observer
points toward the observer. This is the case for Equation (A3)
and Equation (A6) with RM = dχ/dλ2. On the other hand, with
Equation (A5) one would need to write RM = −dχ/dλ2, which
is mathematically correct, but not recommended in view of RM
synthesis techniques where Faraday depth is used with the same
convention as RM. We conclude therefore that the only mean-
ingful definitions are either Equation (A1) with Equation (A3)
(variant I) or Equation (A2) with Equation (A6) (variant III).
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