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ABSTRACT

Hydromagnetic turbulence affects the evolution of large-scale magnetic fields through mean-field effects like
turbulent diffusion and the α effect. For stronger fields, these effects are usually suppressed or quenched, and
additional anisotropies are introduced. Using different variants of the test-field method, we determine the quenching
of the turbulent transport coefficients for the forced Roberts flow, isotropically forced non-helical turbulence, and
rotating thermal convection. We see significant quenching only when the mean magnetic field is larger than the
equipartition value of the turbulence. Expressing the magnetic field in terms of the equipartition value of the
quenched flows, we obtain for the quenching exponents of the turbulent magnetic diffusivity about 1.3, 1.1, and 1.3
for Roberts flow, forced turbulence, and convection, respectively. However, when the magnetic field is expressed in
terms of the equipartition value of the unquenched flows, these quenching exponents become about 4, 1.5, and 2.3,
respectively. For the α effect, the exponent is about 1.3 for the Roberts flow and 2 for convection in the first case,
but 4 and 3, respectively, in the second. In convection, the quenching of turbulent pumping follows the same power
law as turbulent diffusion, while for the coefficient describing the Ω × J effect nearly the same quenching exponent
is obtained as for α. For forced turbulence, turbulent diffusion proportional to the second derivative along the mean
magnetic field is quenched much less, especially for larger values of the magnetic Reynolds number. However, we
find that in corresponding axisymmetric mean-field dynamos with dominant toroidal field the quenched diffusion
coefficients are the same for the poloidal and toroidal field constituents.
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1. INTRODUCTION

Many astrophysical objects possess turbulent convection,
and the dynamo mechanisms based on it are believed to be
responsible for the generation and maintenance of the observed
magnetic fields. The study of the dynamo mechanism in the
solar convection zone using simulations of turbulent convection
in spherical shells began in the 1980s with the works of Gilman
& Miller (1981), Gilman (1983), and Glatzmaier (1985), and
has recently been pursued further by many more authors (Brun
et al. 2004; Racine et al. 2011; Käpylä et al. 2012, 2013; Karak
et al. 2014). However, under stellar conditions the dimensionless
parameters governing magnetohydrodynamics attain extreme
values, which are far from being accessible through numerical
models. So we do not know to what extent feasible models at
temperate parameter regimes reflect properties of convection
and dynamos in real stars. An alternative approach to studying
the dynamo problem is mean-field theory, which began with
the pioneering works of Parker (1955), Braginsky (1964), and
Steenbeck et al. (1966). This approach is computationally
less expensive because one does not need to resolve the
full dynamical range of the small-scale turbulence, which
is instead parameterized. In recent years, there have been
significant achievements of mean-field MHD in reproducing
various aspects of magnetic and flow fields in the Sun (e.g.,
Chatterjee et al. 2004; Rempel 2006; Käpylä et al. 2006;
Choudhuri & Karak 2009, 2012; Karak 2010; Charbonneau
2010; Pipin & Kosovichev 2011).

In this context, an important task is to determine the mean
electromotive force E , which results from the correlation be-

tween the fluctuating constituents of velocity and magnetic field,
in terms of the mean field B. There is no accurate theory to
accomplish this task from first principles, except for some lim-
iting cases, in particular those of small Strouhal and magnetic
Reynolds number, Rm. Therefore, suitable assumptions are re-
quired in determining E . When B varies slowly in space and
time, we may write

E i = αijBj + βijk

∂Bj

∂xk

. (1)

The diagonal components of αij are usually the most important
terms for dynamo action, but in the presence of shear, the Ω × J
(Krause & Rädler 1980) and shear-current (Rogachevskii &
Kleeorin 2003) effects, both covered by βijk , can also enable it.
Many components of βijk , however, describe dissipative effects.

Doubts can be raised regarding the explanatory and predictive
power of mean-field dynamo models given that the tensors
αij and βijk are often chosen to some extent arbitrarily or
are even tuned to obtain results resembling features of the
Sun. Therefore, methods to measure these coefficients from
simulations have been developed. At present the most accurate
method is the so-called test-field method (Schrinner et al. 2005,
2007; Brandenburg et al. 2008b, 2013). In this method, one
selects an adequate number of independent mean fields, the “test
fields,” and solves for each of them the corresponding equation
for the fluctuating magnetic field (in addition to the main
simulation). Finally, via computing the mean electromotive
force, the transport coefficients are calculated.

There are different variants of the test-field method. The best
established one is based on the average over two spatial (the
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“horizontal”) coordinates. This method has been applied to a
large variety of setups, e.g., isotropic homogeneous turbulence
(Sur et al. 2008; Brandenburg et al. 2008b), homogeneous shear
flow turbulence (Brandenburg et al. 2008a), with and without
helicity (Mitra et al. 2009), turbulent convection (Käpylä et al.
2009a), and supernova-driven interstellar turbulence (Gressel
et al. 2013). Another variant is based on Fourier-weighted hor-
izontal averages and allows us to determine also the coeffi-
cients that multiply horizontal derivatives of the mean field.
This method has been applied to forced turbulence (Brandenburg
et al. 2012) and to cosmic-ray-driven turbulence (Rogachevskii
et al. 2012; Bykov et al. 2013).

In dynamo models based on thin flux tubes, forming the
major alternative to distributed turbulent dynamos, the magnetic
field strength in the deep parts of the solar convection zone
is believed to exceed its value at equipartition with velocity
(Choudhuri & Gilman 1987; D’Silva & Choudhuri 1993; Weber
et al. 2011). On the other hand, it is well known that turbulent
transport becomes less efficient when the mean magnetic field’s
strength is comparable to or larger than the equipartition value.
Therefore, precise knowledge of this “quenching” is needed.
Mean-field dynamo models of the αΩ type often employ an
“ad hoc” algebraic or dynamical α-quenching (Jepps 1975;
Covas et al. 1998), while largely ignoring the quenching of the
turbulent diffusivity ηt despite its importance in determining
the cycle frequency. Indeed, in the absence of quenching, the
standard estimate of ηt for the Sun (∼1012–1013 cm2 s−1) yields
a rather short cycle period of 2–3 yr (Köhler 1973). However, by
considering the quenching of ηt , a reasonable value of the cycle
period can easily be obtained (Rüdiger et al. 1994; Guerrero
et al. 2009; Muñoz-Jaramillo et al. 2011). In fact, measuring the
cycle frequency in a simulation has been one way of determining
the quenching of ηt (Käpylä & Brandenburg 2009).

Early work by Moffatt (1972) and Rüdiger (1974) showed that
under the Second Order Correlation Approximation (SOCA),
α is quenched inversely proportional to the third power of
the magnetic field. Following Vainshtein & Cattaneo (1992),
several investigations have suggested that α is beginning to be
quenched noticeably when the mean field becomes comparable
to R−1

m times the equipartition value (Cattaneo & Hughes
1996), i.e., for extremely weak magnetic fields. This behavior
is also called “catastrophic quenching.” However, it is now
understood as an artifact of having defined volume-averaged
mean fields (Brandenburg 2001; Brandenburg et al. 2008b)
combined with the usage of perfectly conducting or periodic
boundary conditions and is not expected to be important in
astrophysical bodies where magnetic helicity fluxes can alleviate
catastrophic quenching (e.g., Kleeorin et al. 2000; Del Sordo
et al. 2013). The actual value of α shows a much weaker
dependence on Rm even when B is comparable with the
equipartition value (Brandenburg et al. 2008b). This work also
shows that the Rm dependence of α and ηt is such that in
a saturated state their contributions to the growth rate nearly
balance, with a residual matching the microscopic resistive
term. Consequently, the saturated mean electromotive force
is proportional to R−1

m , which is sometimes misinterpreted as
catastrophic quenching.

Once catastrophic quenching is alleviated, the magnetic field
can grow to equipartition field strengths, when other quenching
mechanisms that are not Rm dependent might become important
and can therefore be studied already for smaller values of Rm.

Sur et al. (2007) found that α is quenched proportional to 1/B
2

and 1/B
3

for time-dependent and steady flows, respectively.
Their latter result was based on analytic theory and appeared to
be confirmed by numerical simulations using a steady forcing
proportional to the ABC-flow. However, subsequent work by
Rheinhardt & Brandenburg (2010) demonstrated quenching

proportional to B
−4

for a steady forcing proportional to the
flow I of Roberts (1972), hereafter referred to as Roberts flow.
They also noted that for ABC-flow forcing the quenching is
indeed better described when setting the power also to 4 instead
of 3. More recently, in supernova-driven turbulent dynamo
simulations, Gressel et al. (2013) find α ∼ (B/Beq)−2, where
Beq is the local equipartition value.

For the turbulent diffusivity, Kitchatinov et al. (1994) and
Rogachevskii & Kleeorin (2000) obtained that ηt is quenched
inversely proportional to B. In the two-dimensional case,
Cattaneo & Vainshtein (1991) have found catastrophic quench-
ing of ηt . However, this is a special situation connected with
the fact that in two dimensions the mean square vector poten-
tial is a conserved quantity. This is no longer the case in three
dimensions. Quenching similar to Kitchatinov et al. (1994) has
been confirmed by simulations (Brandenburg 2001; Blackman
& Brandenburg 2002; Gressel et al. 2013). In particular, making
the ansatz ηt ∼ 1/

(
1 + p(B/Beq)q

)
, Gressel et al. (2013) find

q ≈ 1 in supernova-driven simulations of the turbulent interstel-
lar medium. On the other hand, Yousef et al. (2003) find q ≈ 2
in simulations of forced turbulence with a decaying large-scale
magnetic field. However, Käpylä & Brandenburg (2009) found
that their results depend on the strength of shear with q ≈ 1 for
weak shear while q ≈ 2 for strong shear.

In the present work we measure the quenching of these
transport coefficients as a function of the mean magnetic field
strength for three different background simulations: (1) forced
Roberts flow, (2) forced turbulence in a triply periodic box, and
(3) convection in a bounded box. In all these simulations, we
impose a uniform and constant external mean field. However,
this induces a preferred direction that causes the statistical
properties of the turbulence to be axisymmetric with respect
to the direction of the magnetic field. In the following, we refer
to such flows as axisymmetric turbulence, for which the number
of independent components of the α and η tensors is reduced
to only nine, simplifying also their determination (Brandenburg
et al. 2012).

2. CONCEPT OF TURBULENT TRANSPORT IN
MEAN-FIELD DYNAMO

The evolution of the magnetic field B in an electrically
conducting fluid is governed by the induction equation

∂ B
∂t

= ∇ × (U × B − η J), (2)

where U is the fluid velocity. Here, η is the microphysical
magnetic diffusivity, while the magnetic permeability of the
fluid has been set to unity. Thus, the current density J is given
by J = ∇ × B. In mean-field MHD, we consider the fields as
sums of “averaged” and small-scale “fluctuating” fields, with the
assumption that the averaging satisfies (at least approximately)
the Reynolds rules. Denoting averaged fields by overbars and
fluctuating ones by lowercase letters, we write the equation for
the mean magnetic field B as

∂ B
∂t

= ∇ × (
U × B + E − η J

)
, (3)
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where E = u × b is the aforementioned mean electromotive
force, which captures the correlation of the fluctuating fields u
and b. The ultimate goal of mean-field MHD is to express E in
terms of B itself. There are several procedures for doing that.
When the mean magnetic field varies slowly in space and time
we can write E in the form of Equation (1). Our primary goal is
to measure the transport coefficients αij and βijk in the presence
of an imposed uniform magnetic field Bext and, in particular, to
measure the degree of their quenching and anisotropy.

Let us consider turbulence that is anisotropic and exhibiting
only one preferred direction ê, referring to an external magnetic
field, rotation axis, or the direction of gravity. Then following
Brandenburg et al. (2012), the general representation of E is
given by

E = α⊥ B + (α‖ − α⊥)(ê · B)ê + γ ê × B

− η⊥ J − (η‖ − η⊥)(ê · J)ê − δ ê × J

− κ⊥ K − (κ‖ − κ⊥)(ê · K )ê − μê × K (4)

with nine coefficients α⊥, α‖, . . ., μ. While J is given by the
antisymmetric part of the gradient tensor ∇B, K is defined by
K = ê · (∇B)S, with (∇B)S being the symmetric part of ∇B.
For homogeneous isotropic turbulence, α‖ = α⊥, η‖ = η⊥, and
the other coefficients vanish. We note that our sign convention
for α⊥, α‖, and γ follows that commonly used, but it differs
from that used in Brandenburg et al. (2012).

The μ term corresponds to a modification of turbulent
diffusion along the preferred direction. To understand this,
let us assume that only η⊥, η‖, and μ are non-vanishing
and independent of position. By introducing the quantities
ηT ≡ ηt + η, with ηt ≡ η⊥ − μ/2, and ε ≡ η‖ − η⊥ + μ/2, we
have

∂ B
∂t

= ηT ∇2 B + μ∇2
‖ B + ε

(
∇2

⊥ B⊥ + ∇⊥∇‖B‖
)
, (5)

which shows that positive values of μ correspond to an en-
hancement of turbulent diffusion along the preferred direction.
As Equation (5) reveals, η‖ and η⊥ do not characterize the dif-
fusion parallel and perpendicular to the preferred direction, as
their symbols might suggest.

An anisotropy similar to that of Equation (5) has been
considered in connection with the turbulent decay of sunspot
magnetic fields (Rüdiger & Kitchatinov 2000), where the mean
magnetic field defines the preferred direction. It has not yet
been used in mean-field dynamo models, where, however,
anisotropies of the turbulent diffusivity due to the simultaneous
influence of rotation and stratification have been taken into
account (Rüdiger & Brandenburg 1995; Pipin & Kosovichev
2014).

3. THE MODEL SETUP

We distinguish two basically different schemes of establish-
ing the background flow: by a prescribed forcing or by the
convective instability. In the first case, both laminar and turbu-
lent (artificially forced) flows will be considered. With respect to
the fluid, we generally think of an ideal gas with state variables
density ρ, pressure p, and temperature T, adopting, however,
different effective equations of state for the two schemes.

The continuity and induction equations are shared by both
schemes and take the form

D ln ρ

Dt
= −∇ · U, (6)

∂ A
∂t

= U × B + η∇2 A. (7)

Here D/Dt = ∂/∂t + U ·∇ is the advective time derivative and
A is the magnetic vector potential. The magnetic field includes
the imposed field, i.e., B = Bext + ∇ × A, and the microscopic
diffusivity η is constant.

3.1. Forced Flows

In these models, we assume the fluid to be isothermal, which
implies for its equation of state p = c2

s ρ, with the constant
sound speed cs. Hence, we solve Equations (6) and (7) together
with the momentum equation,

DU
Dt

= −c2
s ∇ ln ρ + ρ−1( J × B + ∇·2ρνS) + f . (8)

Here ν = const is the kinematic viscosity, and f is a forcing
function to be specified below. The traceless rate of strain tensor
S is given by

Sij = 1
2 (Ui,j + Uj,i) − 1

3δij∇ · U, (9)

where the commas denote partial differentiation with respect to
the coordinate j or i.

The simulation domain for this model is periodic in all
directions with dimension Lx × Ly × Lz. In the following we
always use Lx = Ly ≡ L and express lengths in units of the
inverse of the wavenumber k1 = 2π/L.

3.1.1. Roberts Forcing

First, we use a laminar forcing to maintain one of the flows
for which Roberts (1972) had demonstrated dynamo action,
namely, his flow I. It is incompressible, independent of z, and
all second-rank tensors obtained from it by xy averaging are
symmetric about the z-axis (Rädler et al. 2002). The flow is
defined by

u0 = −ẑ × ∇ψ + kf ψ ẑ , (10)

where

ψ = (u0/k0) cos k0x cos k0y , kf =
√

2 k0 , (11)

with constant u0 and k0. Note that this flow is maximally helical,
i.e., ∇ × u0 = kf u0. We define the forcing f such that for
B = 0, the flow (10) with ρ = ρ0 = const is an exact solution
of Equation (8):

f = νk2
0 u0 + u0 · ∇u0

(=νk2
0 u0 + 1

2∇u2
0

)
. (12)

We perform several simulations with different strengths of the
external magnetic field Bext with this forcing.

3.1.2. Forced Turbulence

Here we employ for f a random forcing function, namely,
a linearly polarized wave with wavevector and phase being
changed randomly between integration timesteps (Brandenburg
2001). The driven flow is non-helical and known to lack an α
effect (Brandenburg et al. 2008a). The averaged modulus of the
wavevector is denoted by kf , and the ratio kf /k1 is referred to
as the scale separation ratio. To achieve sufficiently large scale
separation, we would need to keep kf /k1 large. However, in
this case Rm = urms/ηkf becomes small. Therefore, we use
kf /k1 � 5 as a compromise.
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3.2. Convection

In this model the background flow is generated by convection
and consequently we employ p = (cp − cv)ρT for the equation
of state of the fluid, where cp and cv are the specific heats at
constant pressure and volume, respectively. Our model is similar
to many earlier studies in the literature (e.g., Brandenburg et al.
1996; Ossendrijver et al. 2001; Käpylä et al. 2008; Käpylä et al.
2009a, 2009b). Its computational domain is a rectangular box
consisting of three layers: the lower part (−0.85 � z/d < 0) is a
convectively stable overshoot layer, the middle part (0 � z/d �
1) is convectively unstable, and the upper part (1 < z/d � 1.15)
is an almost isothermal cooling layer. The overshoot layer was
made comparatively thick to guarantee that the overshooting is
not affected by the lower boundary. The box dimensions are
(Lx,Ly, Lz) = (5, 5, 2)d, where d is the depth of the unstable
layer. Gravity is acting in the downward direction (i.e., along
the negative z direction). By including rotation about the z-axis,
we can consider the simulation box as a small portion of a star
located at one of its poles. The mass conservation and induction
equations (6) and (7) are now complemented by a modified
momentum equation and an equation for the internal energy per
unit mass (Brandenburg et al. 1996)

DU
Dt

= −∇p

ρ
+ g − 2Ω × U +

1

ρ
( J × B + ∇ · 2νρS),

De

Dt
= −p

ρ
∇· U +

1

ρcv

∇·K(z)∇e + 2νS2 +
ημ0

ρ
J2 − e−e0

τ (z)
.

(13)

Here, g = −g ẑ, with g > 0, is the gravitational acceleration;
Ω = Ω0(− sin θ, 0, cos θ ) is the rotation vector, with θ its angle
against the z direction; and K is the heat conductivity with a
piecewise constant z profile to be specified below. The specific
internal energy is related to the temperature via e = cvT . In
the energy equation (13), the last term is of relaxation type
and regulates the internal energy to settle on average close to
e0 = const. As there is permanent heat input from the lower
boundary and from viscous heating, it effectively acts as a
cooling. The relaxation rate τ (z)−1 has a value of 75

√
g/d within

the cooling layer and drops smoothly to zero within the unstable
layer over a transition zone of width 0.025d.

The vertical boundary conditions for the velocity are chosen
to be impenetrable and stress free, i.e.,

Ux,z = Uy,z = Uz = 0, (14)

while for the magnetic field we use the vertical field boundary
condition Bx = By = 0. A steady influx of heat F0 =
−(K∂ze)(x, y,−0.85d)/cv at the bottom of the box and a
constant temperature, i.e., constant internal energy, at its top
are maintained, where the latter is specified to be just equal to
e0 occurring in the relaxation term. The x and y directions are
periodic for all fields.

The input parameters are now determined in the following
somewhat indirect way: Instead of prescribing K, it is assumed
that the hydrostatic reference solution coincides in the overshoot
and unstable layers with a polytrope, the index m of which is
prescribed. Here we choose m = 3 and m = 1, respectively.
As for a polytrope de/dz = −g/(m + 1)(γ − 1), γ = cp/cv ,
and at each z we have F0 = −(K/cv)de/dz = const, the heat
conductivity is obtained as K = cv(m + 1)(γ −1)F0/g, i.e., it is
also piecewise constant (for a physical motivation, see Hurlburt
et al. 1986). For simplicity it is assumed that in the cooling

layer, for which no polytrope exists, K has the same value
as in the unstable one. Within the ranges of the other control
parameters covered by our simulations, it is then guaranteed that
the relaxation to the quasi-isothermal state is dominated by the
term −e/τ .

The convection problem is governed by a set of dimensionless
control parameters comprising the Prandtl, Taylor, and Rayleigh
numbers

Pr = ν

χ (zm)
, Ta = 4Ω2d4

ν2
, (15)

Ra = gd4

νχ (zm)Hp(zm)
Δ∇(zm), (16)

along with the dimensionless pressure scale height at the top

ξ0 = (γ − 1)e0/gd. (17)

For the calculation of the Prandtl and Rayleigh numbers, the
values of the thermal diffusivity χ = K/ρcp, the superadiabatic
gradient Δ∇ = d(s/cP )/d ln p and the pressure scale height Hp
of the associated hydrostatic equilibrium solution are taken from
the middle of the convective layer at zm = d/2. The density
contrast within the unstable layer is

ρ(0)

ρ(d)
= 1 +

gd

2(γ − 1)e0
= 1 +

1

2ξ0
. (18)

Hence, the parameter ξ0 controls the density stratification in
our domain. We use ξ0 = 3/25 in all the simulations, which
results in a (hydrostatic) density contrast of 31/6; γ was fixed
to 5/3 throughout, and the different models have the same initial
density at z = zm.

Equation (18) assumes that e = e0 at the top of the convective
layer, which cannot be exactly true. In the simulations this error
is increased by the fact that the effect of the cooling reaches
somewhat below z/d = 1. This leads to a higher density contrast
(≈8) in the actual hydrostatic solution.

3.3. Diagnostics

As diagnostics we use the fluid and magnetic Reynolds
numbers

Re = urms

νkf

, Rm = urms

ηkf

, (19)

where for the convection setup kf = 2π/d is an estimate of
the wavenumber of the largest energy-carrying eddies. urms =
〈u2〉1/2 is the rms value of the velocity, with 〈·〉 denoting the
average over the whole box or, for the convection setup, over
the unstable layer only, i.e., 0 � z/d � 1. The urms values
for Bext = 0, i.e., for the unquenched state, are marked by
the subscript 0. For Rm we quote both the unquenched value,
denoted by Rm0, and the quenched value for the run with the
strongest field.

All simulations are performed using the Pencil Code,5 which
uses sixth-order finite differences in space and a third-order-
accurate explicit time stepping method.

5 http://pencil-code.googlecode.com

4

http://pencil-code.googlecode.com


The Astrophysical Journal, 795:16 (16pp), 2014 November 1 Karak et al.

3.4. Test-field Methods

The goal of the test-field method is to measure the turbulent
transport coefficients completely from given flow fields U ,
which can either be prescribed explicitly or produced by a
numerical simulation, called the main run. To accomplish this,
the equation for the fluctuating fields

∂aT

∂t
= U × bT + u × B

T
+ (u × bT )′ + η∇2aT (20)

is solved for a set of prescribed test fields B
T
. Here bT = ∇×aT

and the prime denotes the operation of extracting the fluctuation
of a quantity. Each aT results in a mean electromotive force

E T = u × bT , (21)

and if the test fields are independent and their number is
adjusted to that of the desired components in αij and βijk ,
they can be obtained unambiguously from the system (21).
For the truncated ansatz (1), test fields that depend linearly
on position are suitable. However, when truncation is to be
overcome, Equation (1) can be considered as the Fourier space
representation of the most general E–B relationship. Then αij

and βijk are functions of wavevector k and angular frequency
ω of the Fourier transform and it is natural to specify the test
fields to be harmonic in space (Brandenburg et al. 2008c) and
time (Hubbard & Brandenburg 2009). By varying their k and ω,
arbitrarily close approximations to the general E–B relationship
can be obtained (see, e.g., Rheinhardt & Brandenburg 2012;
Rädler 2014).

3.4.1. Test-field Method for Horizontal (z-dependent) Averages

We will employ two different flavors of the test-field method.
For the first one we define mean quantities by averaging over
all x and y. Then, necessarily, Bz = const and for homogeneous
turbulence it is sufficient to consider horizontal mean fields
B = (

Bx(z, t), By(z, t), 0
)

only. When restricting ourselves to
the limit of stationarity, our k-dependent test fields have the
following form:

B
1c = B0(cos kz, 0, 0), B

2c = B0(0, cos kz, 0),

B
1s = B0(sin kz, 0, 0), B

2s = B0(0, sin kz, 0), (22)

where k = kz and in most of the simulations we use k = k1.
The z component of E does not influence B; thus, only its x and
y components matter and we have

E i = αijBj − ηijJ j , (23)

with i, j = 1, 2 and ηi1 = βi23 and ηi2 = −βi13. That is,
we can derive eight coefficients (four α and four η) using the
above test fields. Our main interest is to compute the diagonal
components of αij and ηij . However, in some cases we also
study the off-diagonal components. Since the resulting turbulent
transport coefficients depend only on z (in addition to t), we call
this variant of the test-field method TFZ. It is implemented in
the Pencil Code and discussed in detail by Brandenburg et al.
(2008a).

It is convenient to discuss the results in terms of the quantities

α = 1

2
(α11+α22), γ = 1

2
(α21−α12),

ηt = 1

2
(η11+η22), δ = 1

2
(η21−η12), (24)

which cover an important subset of the eight coefficients.

3.4.2. Test-field Method for Axisymmetric Turbulence

Next, we turn to another variant of the test-field method that
allows us to calculate all nine coefficients in Equation (4) under
the restriction of axisymmetric turbulence. It is then necessary to
consider mean fields that depend on more than one dimension, as
otherwise the gradient tensor ∇B can be expressed completely
by the components of J and the coefficients κ⊥, κ‖, and μ
cannot be separated from η⊥, η‖, and δ. Hence, we now admit
mean fields depending on all three spatial coordinates and define
the mean by spectral filtering. We specify it such that only
field constituents whose components ∼ ∑

j cj (z) exp ikj · x⊥
contribute to the mean. Here x⊥ = (x, y) is the position vector
in horizontal planes and the sum is over all two-dimensional
wavevectors kj of the form (±kx,±ky) with fixed kx, ky > 0.
So averaging means here to perform the operation

f (x, y, z) = 1

A

∑
j

∫
A

f (x ′, y ′, z)eikj ·(x⊥−x′
⊥)dx ′dy ′, (25)

where A is the horizontal cross-section of the box. We call this
variant of the test-field method for axisymmetric turbulence TFA
and refer for further details to Brandenburg et al. (2012). In our
case, the preferred direction is given by that of the externally
imposed magnetic field.

As we will apply this method only with horizontally isotropic
periodic boxes with Lx = Ly = L, we may choose kx = ky =
k1 = 2π/L. In general, it does not make much sense to choose
kx or ky different from these smallest possible values for the
corresponding extents of a given box. Otherwise, possible field
constituents with smaller wavenumbers would be counted to the
“fluctuations,” which is hardly desirable. Even for our choice
kx, ky = k1 this could be a problem, namely, with respect to
constituents with horizontal wavenumber kx or ky equal to zero,
so their occurrence should be avoided. As we apply TFA only to
homogeneous turbulence (fully periodic boxes), this is granted.

Spectral filtering, being clearly useful for comparisons with
observations, is known to violate in general the Reynolds rule

Fg = 0. However, if in the k spectrum of the quantity G = G+g
there are “gaps” at kx, ky = 2k1 (for our choice) with vanishing
spectral amplitudes, this rule is granted.6 Such gaps, albeit
only in the form of amplitude depressions, can emerge in the
saturated stage of a turbulent dynamo; see Brandenburg (2001)
for examples, where this phenomenon was characterized as
“self-cleaning.” In the kinematic stage, on the other hand, gaps
cannot be expected and it remains unclear to what extent a
mean-field approach, based on spectral filtering, can then be
useful.

In this method, we use four test fields defined by

B
1c = (B0 cx cy cz, 0, 0), B

1s = (B0 cx cy sz, 0, 0),

B
2c = (0, 0, B0 cx cy cz), B

2s = (0, 0, B0 cx cy sz), (26)

where B0 is a constant and we have used the abbreviations

cx = cos kxx, cy = cos kyy,

cz = cos kzz, sz = sin kzz. (27)

Note the different roles of the wavenumbers: while kx and ky

are defining the mean, by kz a specific mean field out of the

6 To let Equation (20) hold, we need also U = 0, otherwise a term (U × B)′
would show up.
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Table 1
Summary of the Runs

Set Description B̂ext TFM Rm0 Rmin
m Pm Beq0 pα pγ pη pδ qα qγ qη qδ

RF1 Forced Roberts flow x̂ TFZ 0.88 0.0002 1.0 0.010 0.59 . . . 0.59 . . . 1.3 . . . 1.3 . . .

RF2 Forced Roberts flow x̂ TFZ 0.707 0.10 1.0 1.000 0.3 . . . 0.4 . . . 1.3 . . . 1.3 . . .

TBx Forced turbulence (kf = 5k1) x̂ TFZ 0.87 0.71 1.0 0.045 . . . . . . 0.38 . . . . . . . . . 1.1 . . .

TBz Forced turbulence (kf = 5k1) ẑ TFZ 0.87 0.71 1.0 0.045 . . . . . . 0.21 . . . . . . . . . 1.1 . . .

AT1 Forced turbulence (kf = 27k1) ẑ TFA 2.23 1.67 1.0 0.060 . . . . . . 0.66 . . . . . . . . . 1.2 . . .

AT2 Forced turbulence (kf = 27k1) ẑ TFA 18.2 15.8 1.0 0.100 . . . . . . 2.50 . . . . . . . . . 1.0 . . .

AT3 Forced turbulence (kf = 27k1), ẑ TFA 0.08 1.0 0.022 . . . . . . . . . . . . . . . . . . . . . . . .

Bext/Beq ≈ 4.3 fixed – 537a – 0.116b

CR0 Non-rotating convection ẑ TFZ 3.91 0.5 0.8 0.087 . . . 0.34 0.34 . . . . . . 1.2 1.2 . . .

CR1 Rotating convection x̂ TFZ 3.85 0.7 0.8 0.087 0.11 0.12 0.20 0.02 1.8 1.4 1.3 2.0
CR2 Rotating convection x̂ TFZ 11.7 0.2 5.0 0.054 0.14 0.11 0.10 0.06 1.8 1.3 1.3 1.8
CR3 Rotating convection x̂ TFZ 20.2 6.0 3.0 0.090 0.25 0.24 0.65 0.06 2.0 1.3 1.3 2.0
CR4 Rotating convection x̂ TFZ 29.1 3.3 5.0 0.065 0.17 0.15 0.16 0.07 2.0 1.3 1.3 1.8
CR5 Rotating convection x̂ TFZ 89.5 19.2 5.0 0.082 0.24 0.23 0.37 0.12 1.8 1.24 1.26 1.7
CR1Bz As CR1 ẑ TFZ 3.85 0.13 0.8 0.088 0.65 0.12 0.41 1.0 1.3 1.3 1.3 1.8
CR3Bz As CR3 ẑ TFZ 28.6 0.08 5.0 0.065 0.59 0.21 0.41 0.25 1.3 1.4 1.3 2.0
CR6 As CR1, uniform test fields x̂ TFZ 3.85 0.70 0.8 0.087 0.16 0.11 . . . . . . 2.0 1.4 . . . . . .

CR7 As CR2, uniform test fields x̂ TFZ 29.1 3.2 5.0 0.065 0.16 0.16 . . . . . . 2.0 1.3 . . . . . .

Notes. Data given for the stationary (Sets RF1 and RF2) or statistically saturated state, respectively. qα , qγ , qη , and qδ are the quenching exponents for α,
γ , ηt , and δ, respectively, according to Equation (32). For RF1: u0 = 0.01cs , η = 0.008cs/k1, RF2: u0 = 1.0cs , η = cs/k1, CR0: Ra, Pr = 3 × 105, 3.95, CR1:
Ta, Ra, Pr = 5.6×103, 3×105, 3.95, CR2: Ta, Ra, Pr = 6.4×105, 3×105, 4.94, CR3: Ta, Ra, Pr = 1.0×104, 4×105, 2.93, CR4: Ta, Ra, Pr = 2.6×106, 5×105, 2.44,
CR5: Ta, Ra, Pr = 1.6 × 107, 1 × 106, 0.97. Resolutions used are RF1: 963, RF2: 1443, TBx, TBz: 2563, AT1: 1283, AT2: 3603, AT3: 723 to 6723 CR0-CR7: 1283.
Rmin

m – minimal, i.e., maximally quenched Rm within a Set.
a Not the minimum, but the range of values of the individual runs.
b Beq instead of Beq0.

infinitude of possible ones is selected.7 Other than what could
be expected, three test fields are in general not sufficient to
calculate the wanted nine coefficients, as the linear system
from which they are obtained suffers from a rank defect. For
homogeneous turbulence, however, exploiting the orthogonality
of the harmonic functions, even only two test fields were
sufficient.

3.4.3. Computing Transport Coefficients via Resetting

At large Rm, we often find the solutions aT of the test prob-
lems (20) to grow rapidly due to the occurrence of unstable
eigenmodes of the test problems’ homogeneous parts. There-
fore, similar to earlier studies (Sur et al. 2008; Mitra et al. 2009;
Käpylä et al. 2009a; Hubbard et al. 2009), we reset aT to zero
after a certain time interval to prevent the unstable eigenmodes
from dominating and thus contaminating the coefficients. If the
growth rates are not too high, after an initial transient phase,
“plateaus” can be identified in the time series of the coef-
ficients, during which they are essentially determined by the
bounded solutions of the (inhomogeneous) problems (20). Even
for monotonically growing aT, sufficiently long plateaus occur
as the averaging in the determination of E T (Equation (21)) is
capable of eliminating the unstable eigenmodes. Typically we
use data from 10 such plateaus to compute the temporal aver-
ages of the transport coefficients and ensure by spot checks that
the results do not depend on the length of the resetting interval.

7 Horizontal averaging with TFZ is equivalent to spectral filtering with TFA
using kx = ky = 0. In that special case, all Reynolds rules are obeyed. In
Brandenburg et al. (2012), cx and cy were replaced by sin kxx and sin kyy,
respectively. This is equivalent to the former, except that then TFZ cannot be
recovered for kx = ky = 0.

4. RESULTS

4.1. Roberts Flow

We describe here results for Roberts flow forcing for two
different parameter combinations (Sets RF1 and RF2 in Table 1).
For RF1 we choose u0 = 0.01cs and η = ν = 0.008cs/k1,
whereas for RF2 u0 = cs and η = ν = cs/k1, using
k0 = k1 for both. With a vertical field, Bext = Bext ẑ, we have
∇ × (u0 × Bext) = Bext · ∇u0 = 0. Hence, there is no tangling
of the field and consequently no effect of Bext on the flow, that
is, no quenching. (Should, however, the flow have undergone a
bifurcation and thus deviate from Equation (10), this need no
longer be true. Yet, for the fluid Reynolds numbers considered
in this paper we have not noticed any bifurcations.) Therefore,
we choose a horizontal field Bext = Bext x̂. We apply the TFZ
procedure with test-field wavenumber k = k1 and normalize the
resulting αij and ηij by the corresponding SOCA results in the
limit of k → 0:

α0 = −u2
0/(2ηkf ) , ηt0 = u2

0/(2ηk2
f ) , (28)

see Rheinhardt et al. (2014).
We compute Beq0 = urms0〈ρ〉1/2 from a simulation without

external magnetic field or by virtue of Equation (12) directly
from the forcing amplitude. In Figure 1 we show the diagonal
components of αij and ηij for Set RF1 as functions of Bext/Beq0
and also of Bext/Beq, where Beq is derived from the actual urms
and hence dependent on Bext. The off-diagonal components are
zero to high accuracy while α11 and α22 as well as η11 and η22 are
very close to each other (to four digits). This apparent isotropy
of the quenched flow is somewhat surprising as the imposed field
is in general capable of introducing a new preferred direction.
So let us consider the second-order change in the flow, u(2), for
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Figure 1. Results of Set RF1, Rm0 = 0.88: Variations of η11, η22 (left) and α11,
α22 (right) with the external magnetic field in the x direction. Top: dependences
on Bext/Beq0 with fit (31). Bottom: dependences on Bext/Beq with fit (32). Fits
dashed.

(A color version of this figure is available in the online journal.)

small Bext. From Equation (7) we get for the first-order magnetic
fluctuation in the stationary case and with Rm � 1

b(1) = Bext

ηk0
(v0 sx sy, v0 cx cy,−w0 sx cy), (29)

and from this the solenoidal part of the second-order Lorentz
force

Bext ·∇b(1) = B2
ext

η
(v0 cx sy,−v0 sx cy,−w0 cx cy) ∼ u0.

(30)
A quadratic contribution from b(1) is not present as the Beltrami
property ∇×b(1) ∼ b(1) holds. That is, if the Reynolds numbers
(here � 0.88) as well as the modification of the pressure (and
thus density) by the magnetic contribution b(1) · Bext is small,
i.e., if the corresponding plasma beta is large, the flow geometry
is not changed by its second-order correction. This implies that
our argument continues to hold up to arbitrary orders in Bext,
if only the u · ∇u and ∇ × (u × b)′ terms can be neglected
and the pressure modification is small at any order. So for our
values of Rm and Re the quenched flow differs from the original
one mainly in amplitude and preserves essentially its horizontal
isotropy.

The condition for Re can be relaxed when rewriting the
advective terms in the second-order momentum equation in
the form

(
∇ × u(2)

) × u0 + (∇ × u0) × u(2) + ∇
(
u(2) · u0

)
.

A solution u(2) ∼ u0 can already exist (approximately), if the
sum of magnetic and dynamical pressure, b(1) · Bext +ρ0u(2) · u0,
is negligible compared to p0 = c2

s ρ0, more precisely and less
restricting, if the non-constant part of this sum is negligible. At
higher orders there is an increasing number of contributions to
be taken into account.

Therefore, following the definition (24), we have α ≈ α11 ≈
α22 and ηt ≈ η11 ≈ η22. The transport coefficients start to be
quenched when Bext exceeds Beq0 or Beq and seem to follow a
power law for strong fields. To compare with earlier works, it is

useful to consider the dependences on Bext/Beq0. Calculating the
quenched coefficients under SOCA by a power series expansion
with respect to Bext, only the even powers occur. Accordingly,
we find that our data fit remarkably well with

σ = σ0

1 + pσ1(Bext/Beq0)2 + pσ2(Bext/Beq0)4
, (31)

where σ stands for α or ηt and pσ1 = 0.51 and pσ2 = 0.12; see
upper panels of Figure 1. Therefore, our results are consistent
with those of Sur et al. (2007) and Rheinhardt & Brandenburg
(2010), who found asymptotically the power 4 for steady
forcing.8

Alternatively, we may consider the dependences on Bext/Beq,
which are weaker, because the actual Beq is itself quenched. We
find as an adequate model

σ = σ0

1 + pσ (Bext/Beq)qσ
(for σ = α or ηt ) (32)

with qα ≈ qη ≈ 1.3 and pα ≈ pη ≈ 0.59; see lower panels of
Figure 1. From now onward we shall consider the dependences
on Bext/Beq and stick to the fitting formula (32). We have
performed another set of simulations with different parameters
(RF2 in Table 1) and also at different wavenumbers of the test
fields. In all the cases we get the same quenching behavior.

The obtained isotropy of the quenched coefficients seems to
be in conflict with the results of Rheinhardt & Brandenburg
(2010), who detected strong anisotropy in αij for Roberts
forcing. However, the analytic consideration above makes clear,
that this was a consequence of their use of a simplified
momentum equation lacking the pressure term. Thus, the
ingredient just necessary to allow the flow keeping its geometry
while being influenced by the imposed field, was missing. One
may speculate, though, that for more compressive flows the
anisotropy may become visible.

4.2. Stochastically Forced Turbulence

Previous work using stochastically forced turbulence has
mainly focused on α using the imposed-field method
(Brandenburg et al. 1990; Cattaneo & Hughes 1996; Hubbard
et al. 2009). An exception is the work of Brandenburg et al.
(2008b), where α and ηt have been determined simultaneously
using TFZ for super-equipartition magnetic fields resulting
from saturated dynamo simulations in a triply periodic domain.
Here we employ the non-helical stochastic forcing described in
Section 3.1.2 with a strength adjusted such that the flow re-
mains subsonic (Mach number ≈ 0.1). We have performed
several simulations with different values of Rm0 and with dif-
ferent orientations of Bext. Both TFZ and TFA are applied to
measure the turbulent transport coefficients. For the latter we
considered the requirement of gaps in the spectra of the fields
(see Section 3.4.2) by choosing a high forcing wavenumber,
kf = 27k1.

Due to the imperfectness of isotropy and homogeneity caused
by finite scale separation of the forcing, the coefficients show
fluctuations in both space and time. We usually remove them by
averaging over the whole box and sufficiently long times. An
exception are the coefficients α⊥ and α‖ that vanish on average
owing to the lack of helicity, but whose fluctuations are still of

8 In Sur et al. (2007) a leading power of 3 is quoted, but the data in their
Figure 2 are actually closer to a power of 4 as was already pointed out in
Section 4.2.1 of Rheinhardt & Brandenburg (2010).
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Figure 2. Dependence of η11 and η22 on the imposed field for forced turbulence;
Rm0 = 0.87. Left: Set TBx with Bext ‖ x̂; right: Set TBz with Bext ‖ ẑ.
Dashed lines: fits from Equation (32) with exponents qη; dotted lines: fits from
Equation (34).

(A color version of this figure is available in the online journal.)

interest; see Section 4.2.4. As expected, and in agreement with
earlier work (Brandenburg et al. 2012), γ and δ also vanish on
average and are not shown here.

The time spans for temporal averaging should ideally be so
long that the averages become stationary. How close we came
to this is in several cases indicated by error bars showing the
largest deviation of the average over any one-third of the time
series from the overall average.

It is convenient to normalize the results using the unquenched
and hence isotropic expression for ηt as obtained in SOCA in
the high conductivity limit, i.e.,

ηt0 = 1
3urms0k

−1
f . (33)

When we determine the fluctuations of α, we use α0 = urms0/3
for normalization, which would be the expected value in fully
helically forced isotropic turbulence. First, we present the
transport coefficients measured using TFZ, but restrict ourselves
to η11 and η22.

4.2.1. TFZ: Horizontal and Vertical Fields

Figure 2 shows the results for both horizontal and vertical
external fields, Bext = Bext x̂ (Set TBx) and Bext = Bext ẑ (Set
TBz); see Table 1. For these runs we have adopted kf /k1 = 5
and η = ν = 0.01 cs/k1, which yields Rm0 = 0.87. Note
that in both cases η11 is almost identical to η22, which is
natural for the vertical field, but unexpected for the horizontal
one, because ηij , being an axisymmetric rank-2 tensor whose

preferred direction is given by B̂ ‖ Bext, must have the general

form ηij = η0δij +η1B̂iB̂j with B-dependent coefficients η0 and
η1. This has indeed been confirmed previously for a dynamo-
generated B of Beltrami type (Brandenburg et al. 2008b). For
horizontal Bext we have thus η11 = η0 + η1, but η22 = η0. The
reason for the apparent vanishing of η1 is currently unclear,
but might be connected with the fact that here the field is a
uniform one.

Indeed, considering a forcing, simplified such that only a
single transverse (frozen) wave is supported instead of switching
rapidly between waves with random wavevector and phase,
one finds that a uniform imposed field of arbitrary strength
does not change the geometry of that wave, but merely its
amplitude, see the Appendix. Hence, for a statistical ensemble,
generated by random choices of wave and polarization vectors,
ηij from averaging over this ensemble must remain isotropic,
that is, η1 needs to vanish. The only condition for that to
hold is the negligibility of the pressure variations caused by
the imposed field, compared to the pressure in the field-free

case. This finding looks similar to that obtained for the Roberts
forcing case, although the mathematical reason is here the
transversality of the wave flow and not its Beltrami property.
Returning to the actually used delta-correlated random-wave
forcing, one would conclude, that approximate isotropy could
occur as long as the waves are damped quickly enough for
letting their mutual interactions be subdominant. Of course, if
at all, this can only happen for small Re and Rm as those in Sets
TBx and TBz (Re0 = Rm0 = 0.87). With increasing Reynolds
numbers, anisotropy should gradually emerge, and indeed, for
Re0 = Rm0 ≈ 14 we find η11 being by ≈9% bigger than η22
when the imposed field is as weak as Bext/Beq = 0.66.

Unlike the Roberts flow case, the behavior for Bext > Beq
cannot be described by a single asymptotic power law. Instead
we observe a possible transition from one power law to another
one with lower power at Bext � 20Beq. Accordingly, the fitting
formula (32), with quenching exponents qη = 1.1 for both cases
matches well only up to this value. Nevertheless in Figure 2 we
see that the quenching is not exactly the same for the two field
directions, namely, slightly weaker for the vertical field as we
find pη = 0.21 for the latter, but pη = 0.38 for the horizontal
field.

A satisfactory overall fit can be obtained by employing an
ansatz of the form

η11,22(Bext) = η11,22(0)
1 + pn(Bext/Beq)q

1 + pd (Bext/Beq)q
(34)

with q = 1.36 and 1.31 for horizontal and vertical field,
respectively; see the red dotted lines in Figure 2. This can be
taken as an indication of asymptotic independence of η11,22 on
Bext, which makes sense as the turbulence should asymptotically
become two-dimensional with Bext · ∇u = 0. Note that we do
not observe this in the Roberts forcing case because there, as
demonstrated above, the flow has no freedom to adjust to this
condition, at least for not too high Rm.

If we normalize Bext in Equation (32) by Beq0, the scaling
changes and the exponent qη becomes 1.5 and 1.4 for horizontal
and vertical external fields, respectively. These values are higher
than the result of Kitchatinov et al. (1994) and Rogachevskii &
Kleeorin (2001), who found unity.

When comparing the two panels of Figure 2 one might ask
why the quenching characteristics of η22 for horizontal and
vertical Bext are not identical although this coefficient is in
both cases correlating components of E and J perpendicular to
the preferred direction. This apparent ambiguity can be resolved
with a view to Equation (5): Provided that ε ≈ 0 (which will be
demonstrated in the next section), we have for vertical external
field ∇ = ∇‖ êz, hence ηt and μ sum up, while for horizontal
Bext of course ∇‖ = 0, so η11(= η22) should differ in the two
cases roughly by μ. That is, the anisotropy of the turbulence
does manifest in the diffusive behavior, but not by causing an
anisotropic ηij .

4.2.2. TFA: Determining Anisotropy

To measure the anisotropy of turbulent diffusion, we have
applied TFA for axisymmetric turbulence whose preferred
direction is defined by the imposed field. Hence, we consider
the case Bext = Bext ẑ. We measure all the relevant transport
coefficients described in Equation (4). Here we only show η⊥,
η‖, and μ. It turns out that κ⊥ and κ‖ are negative (around −0.01
in units of ηt0) for our largest field strengths, but zero within
error bars for weaker fields and hence not shown. All other
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Figure 3. Results of Set AT1, Rm0 = 2.23. Variation of η‖ (crosses), η⊥
(triangles), μ (diamonds, dotted), and η⊥ − μ/2 (squares), all normalized by
ηt0, with the imposed field Bext/Beq; dashed and dash-dotted: fits to η‖ and η⊥,
respectively, from Equation (32). Dashed line in inset: linear fit with slope 0.2.

(A color version of this figure is available in the online journal.)

Figure 4. As Figure 3, but for Set AT2, Rm0 = 18.2 and the linear fit (dashed
line in inset) has slope 0.6 here.

(A color version of this figure is available in the online journal.)

coefficients are at least about 10 times smaller and fluctuating
about zero; see Section 4.2.4 for some discussion about those
fluctuations. We denote this set of simulations by AT1 and show
its results in Figure 3; see also Table 1. It turns out that η⊥ is less
strongly quenched than η‖. According to the fitting formula (32),
we have q‖ = 1.2, but q⊥ = 0.85. The coefficient μ is increasing
with Bext until a maximum at Bext/Beq ≈ 2. Interestingly,
we have η‖ ≈ η⊥ − μ/2; see red squares in Figure 3. If
we apply this finding in Equation (5) we see that because of
ε ≈ 0 the mean-field induction equation takes the simple form
∂t B = (

(η + η⊥ − μ/2)∇2 + μ∇2
‖
)
B. We may redefine the

preferred direction to coincide now with x̂ and assume at the
same time, that all mean quantities depend solely on z, hence
∇‖ = 0. In this way we can make contact with the results of
TFZ for horizontal fields arriving at η11 = η22 = η⊥ − μ/2. So

Figure 5. Rm dependence of the turbulent diffusivity in axisymmetric turbulence
with a fixed Bext/Beq ≈ 4.3 (Set AT3). Squares: η⊥−μ/2; crosses: η‖; triangles
η⊥; diamonds: μ, all normalized by ηt0.

(A color version of this figure is available in the online journal.)

Figure 6. Small portion of the time series of z-averaged η⊥ and η‖ for the
highest Rm = 537 (from Set AT3) with imposed field Bext/Beq ≈ 4.3. Time
is normalized by the turnover time (urmskf )−1. Dashed lines: averages over the
resetting intervals. We take the average of many (�10) such intervals.

(A color version of this figure is available in the online journal.)

the somewhat surprising isotropy of ηij obtained with TFZ is
confirmed with TFA in spite of η⊥ �= η‖.

4.2.3. Rm Dependence

To study the influence of Rm, we performed simulations with
the higher value Rm0 = 18.2; see Set AT2 in Table 1. Figure 4
shows that for this set the quenching exponents of η⊥ and η‖
are reduced mildly. The μ increases more rapidly with Bext
compared to Set AT1 and seems to saturate at large fields.
Moreover, we have performed simulations with a fixed value
of Bext/Beq ≈ 4.3, but Rm increasing from 0.07 to 537; see
Figure 5. For the largest values of Rm, the resetting of the test
solutions (see Section 3.4) is most critical, but it turns out that
the resulting values of η⊥ and η‖ show clear plateaus where
statistically stable averages can be taken; see Figure 6 for an
example.

At low Rm we do not see much anisotropy, but for Rm > 1,
η⊥ becomes significantly larger than η‖. Interestingly, at about
Rm = 10, η‖ reaches a maximum, whereas η⊥ increases even at
the largest Rm, as does μ. We find again that η⊥ −μ/2 is almost
identical to η‖.

It has been reported earlier that in forced hydrodynamic
turbulence ηt increases linearly with Rm at smaller values and
saturates beyond Rm ≈ 10 (Sur et al. 2008). However this
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Figure 7. As Figure 5, but showing the fluctuations of α as functions of Rm.
Crosses: αrms

‖ ; triangles: αrms
⊥ .

(A color version of this figure is available in the online journal.)

is not so in our hydromagnetic turbulence. Unfortunately, the
instability of the test problems for high Rm prevents us from
looking further for a possible saturation.

4.2.4. Incoherent α Effect

For non-helical isotropic forcing, the α tensor vanishes on
average when rotation or stratification is absent. As emphasized
by Brandenburg et al. (2008a), however, its fluctuations, also
referred to as “incoherent α effect,” may in general have
relevance for dynamo processes, especially if they interact with
large-scale shear (Vishniac & Brandenburg 1997; Heinemann
et al. 2011; Mitra & Brandenburg 2012). In our simulations
they are too weak to lead to self-excitation though. In Figure 7
we show the volume-averaged temporal fluctuations of α⊥ and
α‖ as functions of Rm in terms of their rms values, defined as
〈α2

⊥〉1/2
t and 〈α2

‖〉1/2
t , respectively, where the subscript t refers to

time averaging. While αrms
⊥ increases with Rm, αrms

‖ increases
only slightly at moderate Rm, but decreases beyond Rm ≈ 5.
Fluctuations in z could also be important and would increase
the rms values of α⊥ and α‖ but have been ignored here.

4.3. Stratified Convection

Finally, we turn to convection, in which already in the absence
of a magnetic field a preferred direction is set by gravity and thus
density stratification. All the relevant transport coefficients are
measured using TFZ with wavenumber k = k1, except that in
one case we also consider k = 0. As in the case of homogeneous
forced turbulence, we present time-averaged results, but owing
to the intrinsic inhomogeneity of the setup, no z averaging is
performed by default. Error bars are generated as described for
forced turbulence.

In deriving quenching characteristics for an inhomogeneous
turbulence from numerical experiments with an imposed (uni-
form) field, one has to remember that the actually quenching
mean field needs not coincide with the imposed one. In general,
as a consequence of Equation (1), a mean electromotive force
is caused by Bext, which in turn can give rise to an additional
constituent of B. This could of course not happen in our setups
with forcing, as there the generated E is uniform. For convection,
however, the transport coefficients are at least z dependent (for
TFZ) and the x and y components of E will result in B �= Bext
due to the generation of one or even two components orthogonal
to Bext. For horizontal Bext the imposed component itself is also
modified.

Figure 8. Dependences of γ (left) and ηt (right) on the vertical coordinate
z for different Bext/Beq (Set CR0). Hatched areas: errors (not shown for
Bext/Beq = 16.8 as indistinguishable from the mean). Dotted lines at z = 0, 1:
boundaries of the convectively unstable region.

(A color version of this figure is available in the online journal.)

4.3.1. Non-rotating Convection

First, we present results for the simplest situation without
rotation or large-scale shear (Set CR0, listed in Table 1). No
(coherent) α effect is expected, but turbulent pumping, i.e., a
γ effect, should occur due to the inhomogeneities caused by
stratification and boundaries. Figure 8 presents profiles of γ
and ηt for four different values of the imposed magnetic field
Bext from zero to ≈17Beq. We see that the unquenched profiles
of γ and ηt are similar to what has been found by Käpylä
et al. (2009a) and that even when Bext/Beq � 1, at least ηt is
not quenched much. However, for Bext/Beq > 2, both γ and
ηt are suppressed significantly, and γ is even changing sign.
Moreover, the level of fluctuations is markedly reduced at the
highest Bext/Beq and the convection itself is suppressed to the
extent that it only shows elongated cells; see Table 1 for the
reduction of urms (cf. Rm). This is a consequence of our choice
of using relatively small values of Rm and Re, with the effect
that the convection is only mildly supercritical and therefore
more vulnerable to quenching.

For weak and moderately strong fields, negative (positive)
values of γ are seen in the upper (lower) part of the domain,
which corresponds to downward (upward) pumping, i.e., toward
the middle of the convection zone. These directions are just
opposite to what analytic theory predicts for uniform mean
fields, namely, that the pumping is directed away from the
maximum of the turbulence intensity. The obtained behavior
agrees, however, with the findings of Käpylä et al. (2009a) for
harmonic test fields with k = k1 which are also employed in this
section. For stronger fields the sign is reversed, as expected for
magnetic buoyancy (Kitchatinov & Pipin 1993). In Section 4.3.3
we will show results for uniform test fields (k = 0) and compare
them with the theoretical prediction.

The coefficients are intrinsically z dependent, but for the
sake of clarity in presenting their dependences on Bext, we
calculate the averages of η11,22 and |γ | over a certain z extent,
typically 0.2 � z/d � 0.9. Other intervals or even the
degenerate case of fixed values of z, however, yield very similar
quenching behaviors. In Figure 9, we present η11,22 and γ ,
averaged in this way, in dependence on Bext. Fitting the data
with the formula (32), we find qγ,η = 1.2, which is very
close to our earlier results for the Roberts flow, but slightly
larger than those found in forced turbulence. Finding the same
quenching dependence of γ and ηt seems sensible in light of
the result of the linear theory of Roberts & Soward (1975),
γ = −∂zηt/2. When we normalize Bext with Beq0 we find for
the exponents qγ,η ≈ 2.2. The value of qγ disagrees with the
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Figure 9. Results from Set CR0: Dependences of 〈η11〉z (squares) 〈η22〉z
(crosses) and 〈|γ |〉z (diamonds) on Bext/Beq. Dashed lines: fits from
formula (32) with exponents qη,γ = 1.2.

(A color version of this figure is available in the online journal.)

analytical result of Rogachevskii & Kleeorin (2006). However,
this was derived for turbulent pumping being caused by the
density gradient, which can hardly be dominant here because of
weak density stratification. Therefore, our result is closer to the
exponent 2 that is found when pumping is caused by a gradient
in the turbulence intensity instead (see Section 4.3.3 for the
validation).

4.3.2. Rotating Convection

Next we consider rotating convection with the rotation axis
aligned along the z direction (θ = 0), whereas the magnetic
field is along the x direction. We expect an α-effect because
g · Ω �= 0. Figure 10 shows the profiles of the measured
transport coefficients at different strengths of the external field
with αij normalized to the isotropic value for maximum helicity
α0 = urms0/3 and ηij normalized to ηt0 (see Eq. (33)). The main
diagonal elements of both tensors are for Bext �= 0 not equal
because the external field is applied along the x direction. For
vanishing and weak Bext, both α11 and α22 change sign, albeit not
at exactly the same position; they are then positive in (roughly)
the upper half of the convective zone and negative in the lower
one, again consistent with earlier findings of Ossendrijver et al.
(2001) and Käpylä et al. (2009a). Importantly, α11 decreases
rapidly with increasing Bext. However, α22 increases at first and
only later decreases.

The components η11,22 have very similar profiles not only
for vanishing, but also for very strong magnetic field, differing
a bit more for intermediate field strengths. The off-diagonal
components of the η tensor are here of interest mainly in the
combination δ = (η21 − η12)/2, which characterizes the Ω × J
effect. In agreement with earlier work for rotating convection
(Käpylä et al. 2009a), the sign of δ is mainly positive, while
for rotating forced turbulence, Brandenburg et al. (2008a, 2012)
found it to be negative. It is also remarkable that δ is only
mildly quenched unless the magnetic field becomes very strong.
We further see that η21 + η12 is not small. This quantity would
vanish in the absence of a magnetic field, but it is apparently
quite sensitive even to weak fields.

The lowermost panels in Figure 10 show the mean kinetic and
current helicity as defined by hk = ω · u with ω = ∇ × u, and
hc = j · b, respectively. For weak fields, the kinetic helicity
is positive in the lower third and negative in the upper two
thirds of the unstable layer, while the current helicity changes

Figure 10. Results from Set CR1: variations of αij , ηij , γ , δ, and the mean kinetic
and current helicity, hk and hc , respectively, along the vertical coordinate z at
different field strengths. hk and hc are normalized by 〈u2〉V kf and ρ〈u2〉V kf ,
respectively, where 〈·〉V indicates volume averaging. Dotted lines at z/d = 0, 1:
boundaries of the convectively unstable region.

(A color version of this figure is available in the online journal.)

from positive to negative only at z ≈ 0.6d. So the expectation
of sign equality of the helicities, nourished by ideas of α
quenching originating from closure approaches (Pouquet et al.
1976; Kleeorin & Ruzmaikin 1982), is only very roughly met.
For strong fields, however, both helicities show only one sign,
opposite to each other, over almost the entire domain. The
current helicity increases first rapidly with the imposed field,
but for the strongest fields both helicities begin to be quenched.

In Figure 11, showing the absolute values of the transport
coefficients averaged over 0.2 � z/d � 0.9, we find 〈|α11|〉z
being quenched according to Equation (32) with qα11 = 1.8. By
contrast, 〈|α22|〉z is growing until Bext/Beq ≈ 6, where it reaches
roughly eight times its unquenched value, and is falling then, but
with a lower power than 〈|α11|〉z, namely, qα22 ≈ 1. Similarly to
the α quenching for Roberts forcing, we find that the quenching
exponents are larger when normalizing by Beq0: about 3 for
〈|α11|〉z and asymptotically perhaps about 2 for 〈|α22|〉z. The
power 3 agrees with earlier analytic results of Moffatt (1972),
Rüdiger (1974), and Rüdiger & Kitchatinov (1993), while the
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Figure 11. Results from Set CR1: variations of (a) 〈|α11,22|〉z, (b) 〈|α12,21|〉z,
〈|γ ]〉z, (c) 〈η11,22〉z, and (d) 〈|δ|〉z with the external field. Dashed lines: fits from
Equation (32).

(A color version of this figure is available in the online journal.)

power 2 agrees with the exponent found by Rogachevskii &
Kleeorin (2000), who all normalized by Beq0.

The quantities 〈ηt 〉z and 〈|γ |〉z show also systematic quench-
ing with exponents very similar to those found earlier in non-
rotating convection (q = 1.2) and in fact identical to the results
for Roberts forcing (q = 1.3). As we have rotation, another rel-
evant quantity is δ, defined in Equation (24), which is essential
for the Ω × J dynamo in non-helical turbulence with shear, cf.
Equation (4). For a recent application to stellar dynamos see
Pipin & Seehafer (2009). Figure 11 shows the variation of 〈|δ|〉z
with Bext, and we find strong quenching with qδ = 2.

As mentioned above, for the inhomogeneous turbulence in
convection we must take into account that B �= Bext. Therefore,
we show in Figure 12 for Set CR1 (cf. Figure 11), how the
transport coefficients are quenched with the local B(z)/Beq(z).
For comparison, the fit to the z averaged quantities from
Equation (32) is shown by the dashed lines. A more appropriate
representation is obtained by considering the turbulent transport
coefficients as functions of both the local B(z) and Rm0(z), as
they should also depend on the intrinsic (unquenched) local
strength of the turbulence. This view is provided in Figure 13,
where the arguments in the (B/Beq, Rm0) plane were formed
by taking both quantities from the same set of z positions
within the convection zone for eight different values of Bext. The
shown surface was then obtained by linear interpolation over a
Delaunay triangulation of the irregularly spaced arguments. In
η11,22 we see for fixed Rm0 the common power-law quenching
behavior, while the dependence on Rm0 for fixed B/Beq grows
until saturation for small B/Beq � 5, but falling beyond. |α11|
shows a similar power-law behavior with B/Beq for fixed Rm0,
but there is in general a sign change of α11 for B/Beq between
1 and 10. At best, a very narrow Rm0 interval exists without
sign change. As already indicated by Figure 11, the behavior of
|α22| is different in that it is first growing with B/Beq reaching a
maximum at ≈5 for all values of Rm0. As a remarkable feature
we see a sign change only up to B/Beq � 3. Beyond, the Rm0
dependence is becoming weak with a flat maximum.

It remains open, whether the transport coefficients are re-
ally local functions of the two quantities employed, or whether
there is also a generic dependence on the local mean cur-
rent density. In addition, non-locality of turbulent transport has

Figure 12. As Figure 11 from Set CR1, but all coefficients are computed locally
at 14 equidistant z positions, 0.2 d � z � 0.9 d, in the convective zone and
are plotted against the local value of B(z)/Beq(z). Each curve, limited by filled
and open circles, corresponds to one of the values of Bext/〈Beq0(z)〉z out of
0.21, 0.83, 2.1, 4.1, 10.3, 20.7, 31.0, and 41.3, in the order of increasing B/Beq-
positions of filled circles (but not necessarily of open circles). Filled and open
circles refer to z/d = 0.2 and z/d = 0.9, respectively, thus z is the curve
parameter. Dashed lines: fits to the z averaged quantities from Equation (32).
Red/dash-dotted curve sections in (b), (c), and (d) indicate negative γ , α11,22
and δ.

(A color version of this figure is available in the online journal.)

been ignored throughout, which is only permissible at large
enough scale separation; see Rheinhardt & Brandenburg (2012).
Note that the dependences on B/Beq and Rm0 were entan-
gled in the result of Brandenburg et al. (2008b) as there B,
being dynamo generated, could not be varied independently
of Rm0.

In another set of simulations, the external field is applied along
the vertical direction; see Set CR1Bz in Table 1. Figure 14 shows
the dependences of 〈|α11,22|〉z on the external field. We see that
〈|α11|〉z is very close to 〈|α22|〉z, but now both are quenched
with the exponent qα = 1.3, which is smaller than the one of
〈|α11|〉z for horizontal external field; see Set CR1. Unlike in
that case, 〈|α22|〉z shows no “anti-quenching”; cf. Figure 11. For
〈ηt 〉z and 〈|γ |〉z, the quenching exponents are equal to those for
the horizontal field case, but for 〈|δ|〉z we get qδ = 1.8 instead of
2. To confirm these findings, we have repeated the simulations
at higher Ra and Rm and find similar results; see Set CR3Bz in
Table 1.

4.3.3. Turbulent Pumping for Uniform Test Fields

According to analytic SOCA theory, developed for uniform
(or linear) mean fields, turbulent pumping is related to the
inhomogeneity of the turbulence through (Krause & Rädler
1980)

γSOCA = −(τγ /2)∂zu2
z , τγ ≈ τ corr. (35)

Hence, we now employ TFZ with uniform test fields (k = 0)
in the sets CR6 and CR7 having horizontal imposed field, see
Table 1. Figure 15 shows the z profiles of γ for different values of
Bext together with those of γSOCA where τ corr has been set to the
(z dependent) mixing-length estimate Hp/〈u2〉1/2

t . Comparison
reveals that for Bext = 0 there is sign agreement of γ and
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Figure 13. As Figure 12 (Set CR1), but coefficients shown as functions of B/Beq and Rm0, both depending on z. Upper panels: η11 and η22; lower panels: |α11|
and |α22|. Circles: data points, solid/open–positive/negative. Surface: linear interpoland over a triangular grid. Dotted lines connect points which belong to the same
Bext/〈Beq0(z)〉z. Colors: black/red–positive/negative.

(A color version of this figure is available in the online journal.)

Figure 14. Results from Set CR1Bz for Bext ‖ ẑ: variation of 〈|α11|〉z (squares)
and 〈|α22|〉z (crosses) with Bext/Beq; cf. Figure 11 for Set CR1.

(A color version of this figure is available in the online journal.)

γSOCA only close to the bottom of the convection zone. However,
already at Bext/Beq = 1.3 the signs match rather well and do so
perfectly at Bext/Beq = 18.3. The lack of quantitative agreement
in the last two cases can most likely be assigned to the crude
estimate of τγ . In the unquenched case, by contrast, no complete

Figure 15. Results of Set CR6: as Set CR1, but for uniform test fields. Thick
lines: TFZ results for Bext/Beq = 0, 1.3 and 18.3; Thin lines: corresponding
profiles of γSOCA, see Equation (35).

(A color version of this figure is available in the online journal.)

agreement can be expected since SOCA is no longer reliable
at Rm = Rm0 = 3.85, whereas the quenched values of Rm

approach the validity range of SOCA again. For Bext � Beq,
we see that γ is strongly quenched, in particular in the upper

13



The Astrophysical Journal, 795:16 (16pp), 2014 November 1 Karak et al.

Figure 16. Results of Set CR6: as Figure 11 (Set CR1), but for uniform test
fields.

(A color version of this figure is available in the online journal.)

two-thirds of the convective region. A comparison with Figure 8
confirms the strong sensitivity of γ – even in sign – with respect
to the test-field wavenumber, noticed already in Käpylä et al.
(2009a). Only for the highest Bext/Beq there is some agreement
of the γ profiles for k = 0 and k = k1.

In Figure 16, we present the magnetic field dependences of
〈|γ |〉z and 〈|α11,22|〉z, which are similar to what was found in
Set CR1 for z-dependent test fields; cf. Figure 11. Set CR7 with
higher Rm yields essentially the same results.

5. CONSEQUENCES FOR MEAN-FIELD DYNAMOS

One of the ultimate goals of our work is the application
of the numerically obtained quenching functions to mean-field
dynamos that can be validated by comparison against turbulence
simulations and that can perhaps eventually be extrapolated to
solar and stellar regimes. One of our striking results that might
have consequences when applied to mean-field models is the
fact that for isotropically forced turbulence the value of μ keeps
increasing with Rm and exceeds ηt by more than a factor of
two when Bext � 10Beq. So turbulent diffusion is enhanced
in the direction of the magnetic field relative to that in the
perpendicular direction (cf. Equation (5)), but note that ηt is
quenched by an order of magnitude and more at such strong
Bext. Furthermore, in Equation (5), ε is negligible compared
with ηt , and so are κ⊥ and κ‖. Thus, the dynamo equation takes
the form

∂ B/∂t = ∇ × (α · B) + ηT ∇2 B + μ∇2
‖ B, (36)

where an (anisotropic) α effect has been added.
It is important to note that anisotropic diffusion acts here

differently from what is sometimes assumed in axisymmetric
dynamo models (Chatterjee et al. 2004; Jiang et al. 2007; Yeates
et al. 2008; Karak & Choudhuri 2011, 2012, 2013). To clarify
this, let us assume that ẑ is the toroidal direction and that the
toroidal field is dominating, implying ê = ẑ and ∇‖ = 0, while
x and y are coordinates in the meridional plane. We can then
write the magnetic field as

B(x, y, t) = ∇ × ( ẑA‖) + ẑB‖, (37)

and, using this in Equation (3) with Equation (4), but γ , δ, κ‖,
and κ⊥ neglected, we get (cf. Bykov et al. 2013)

∂A‖/∂t = αAB‖ + ηA∇2A‖, (38)

∂B‖/∂t = αBJ ‖ + ηB∇2B‖, (39)

where
αA = α‖, αB = α⊥, (40)

ηA = η + η‖, ηB = η + η⊥ − μ/2. (41)

With η‖ ≈ η⊥ − μ/2, however, ηA ≈ ηB holds, hence the
diffusion is actually isotropic. As alluded to above, this is in
contrast to previously adopted reasoning by which ηA should
be much larger than ηB (e.g., Chatterjee et al. 2004; Jiang et al.
2007; Yeates et al. 2008; Karak & Choudhuri 2011). We have
to stress, however, that the isotropy we found may well be
an artifact of the rather specific way of forcing turbulence by
transverse waves.

Furthermore, the amount of quenching assumed in some
mean-field models is rather large, for example, Muñoz-Jaramillo
et al. (2011) employed a reduction of the magnetic diffusivity
by nearly two orders of magnitude in the lower half of the
convection zone compared to the mixing length estimate.
According to our results, this would require field strengths
that exceed the equipartition value correspondingly also by two
orders of magnitude. In most of the solar convection zone the
equipartition value Beq0 is around 5000 G (see Stix 2002), so the
mean field strength required for such strong quenching would
have to reach the unlikely order of several 105 G at the bottom.

Although several mean-field dynamo models (e.g.,
Brandenburg et al. 1992; Käpylä et al. 2006; Guerrero & de
Gouveia Dal Pino 2008; Do Cao & Brun 2012; Karak & Nandy
2012; Pipin & Kosovichev 2014) include turbulent pumping,
its quenching is usually ignored. As an exception, Käpylä et al.
(2006) include quenching of γ with exponent 2 in a formulation
with respect to Beq0, which is close to ours with a value of about
2.3.

The question now is to what extent our new results can be
used in modeling the mean magnetic field evolution either in
turbulence simulations of convectively driven dynamos or even
in the Sun. In recent years, simulations have displayed a wealth
of different behaviors that are hard to explain with our current
knowledge. Examples include the equatorward migration in the
simulations of Käpylä et al. (2012), which is only found in the
saturated regime of the dynamo. It could therefore be connected
with quenching, but in ways that are even qualitatively unclear.
There are also aspects that might not be possible to capture
within the framework of Cartesian geometry such as the extreme
concentration of toroidal flux belts or wreaths (Brown et al.
2010), possibly connected with the dramatic concentration of
kinetic helicity toward low latitudes and near the surface; see
Figure 1(b) of Käpylä et al. (2012). One must therefore wait
until proper test-field results for azimuthally averaged fields in
spherical shells become available.

With these qualifications in mind, we have to content our-
selves with statements that we can hope are robust. An example
is our finding that the quenching exponents are of the order
of unity and the prefactors typically below unity, which sug-
gests that the quenched turbulent transport coefficients should
not strongly deviate from their kinematic values if the mag-
netic field is comparable with the equipartition value. If our
results should be employed in a mean-field dynamo model
for the Sun, those obtained from convection simulations are
the most relevant ones. Therefore, when restricting oneself
to the coefficients α, ηt , and γ , one could think about choos-
ing the quenching exponents 3, 2.3, and 2.3, respectively, in
expressions of the form (32), with respect to Bext/Beq0, pro-
viding a somewhat stronger quenching than obtained with the
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usually adopted exponent 2. However, given that dynamo fields
are non-uniform, more elaborated models for the dependence of
the transport coefficients on both the local B and the local Beq0,
perhaps even also including a dependence on the local J , need
to be developed.

6. CONCLUSIONS

We have measured the quenching of the turbulent transport
coefficients appearing in the mean-field dynamo equation, in
particular αij , γ , ηij , δ, and μ, by test-field methods. For
this, we have considered three different background flows on
which uniform external magnetic fields with various directions
were imposed. This is of course quite different from the real
situation where quenching occurs due to dynamo-generated
mean fields; see Brandenburg et al. (2008b) for a measurement
of α and ηt at large values of Rm in such a case. Another
aspect to keep in mind is that the magnetic and fluid Reynolds
numbers of our simulations are far too small in comparison with
astrophysical situations. Extrapolation to Rm → ∞ is feasible
once an asymptotic regime is detected, but we emphasize that,
in agreement with the results of Brandenburg et al. (2008b), our
maximum value of Rm � 600 is not yet sufficient. Nevertheless,
the obtained results indicate clear trends that may well apply to
more realistic settings and parameter regimes.

In the setup with Roberts forcing, we have found as a striking
property of the quenching behavior its dependence on whether
one normalizes the external field with the actual or the original
(unquenched) value of the equipartition field strength, Beq or
Beq0, respectively. In the former case, the quenching exponent
for turbulent diffusivity and α effect is significantly smaller
and closer to that found for forced turbulence and convection
(around 1.3). In the latter case, on the other hand, we recover the
exponent 4, found earlier for α quenching in the Roberts flow
(Rheinhardt & Brandenburg 2010). Somewhat surprisingly, we
find the quenched αij and ηij to be still isotropic in the xy plane,
in contrast to that paper. However, it is now clear that this is a
consequence of their use of a simplified momentum equation
and that the obtained isotropy is physically sensible.

For isotropically forced turbulence, the differences between
the two normalizations of Bext are not so large and the exponent
based on Beq0 is only around 1.5, which is higher than what
has been found analytically in Kitchatinov et al. (1994) and
Rogachevskii & Kleeorin (2000), while the exponent based on
Beq is around 1.1, which is similar to that found by Gressel et al.
(2013).

Finally we have considered rotating stratified convection.
Along with α and ηt , we have studied turbulent pumping (γ )
and the Ω × J effect (δ). We find that ηt and γ show similar
quenching dependences on Bext/Beq (with quenching exponent
q ≈ 1.3), while q is about 2 for α and δ. However, when Bext
is normalized with Beq0 the exponent becomes 3, which is in
agreement with Rüdiger & Kitchatinov (1993). In non-rotating
convection, the quenching of γ and ηt is only slightly weaker
compared to the rotating case.

We have not studied the simultaneous quenching of turbulent
transport by magnetic field and rotation, which is particularly
important in rapidly rotating stars. Furthermore, we have not
yet applied TFA for convection, which is a subject of our
ongoing work. It is unclear, however, how useful it would
be to consider quenching with this method, because only one
preferred direction is possible. More general methods would be
needed in the presence of a strong horizontal magnetic field.
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APPENDIX

QUENCHING FOR A SINGLE WAVE FLOW

Assume the forcing in Equation (8) to be a single transverse
(frozen) wave with time-dependent amplitude,

f = f̂ (t) â cos ψ, ψ = k · x + φ,

â = k × e
|k × e| , e � ‖ k − an arbitrary vector. (A1)

Then, in the absence of Bext

u(0) = â cos ψ

∫ t

−∞
exp

(
νk2(t ′ − t)

)
f̂ (t ′)dt ′ = û(0)(t) â cos ψ,

p(0) = const, ρ(0) = const, (A2)

is an exact solution of Equations (6) and (8) for arbitrary Re as,
being a transverse wave, it obeys u(0) · ∇u(0) = 0, ∇ · u(0) = 0
and ∇2u(0) = −k2u(0). Further,

b(1) = −Bextkx â sin ψ

∫ t

−∞
exp

(
ηk2(t ′ − t)

)
û(0)(t ′)dt ′

= −β̂(1)(t)Bextkx â sin ψ (A3)

is an exact solution of the first-order induction equation with
horizontal Bext for arbitrary Rm, again as a consequence of
transversality and solenoidality of u(0). Likewise,

u(2) ≈ −B2
extk

2
x â cos ψ

∫ t

−∞
exp

(
νk2(t ′ − t)

)
β̂(1)(t ′)dt ′/ρ(0),

p(2) ≈ −b(1)2
/2 − b(1) · Bext, (A4)

is an approximate solution of the second-order momentum
equation as long as p(2) � p(0), thus ρ ≈ ρ(0). As u(2) ∼ u(0)

(with a time-dependent factor) the argument continues to hold in
arbitrary orders in Bext. The relation u(2) ∼ u(0) would even hold
for the less restricting condition that only the non-constant part
of p(2) needs to be negligible. We conclude that the imposed field
does not change the geometry of the flow, but only its amplitude.
Considering an ensemble of such flows with randomly chosen k
and e, the transport coefficients obtained by ensemble averaging
would have to be isotropic, even when quenched, as long as the
density remains close to uniform.
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Brandenburg, A., Rädler, K.-H., Rheinhardt, M., & Subramanian, K.

2008b, ApJL, 687, L49
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Rädler, K.-H., Rheinhardt, M., Apstein, E., & Fuchs, H. 2002, MHD, 38, 41
Rempel, M. 2006, ApJ, 647, 662
Rheinhardt, M., & Brandenburg, A. 2010, A&A, 520, 28
Rheinhardt, M., & Brandenburg, A. 2012, AN, 333, 71
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