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α effect in a turbulent liquid-metal plane Couette flow
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We calculate the mean electromotive force in plane Couette flows of a nonrotating conducting fluid under
the influence of a large-scale magnetic field for driven turbulence. A vertical stratification of the turbulence
intensity results in an α effect owing to the presence of horizontal shear. Here we discuss the possibility of
an experimental determination of the components of the α tensor using both quasilinear theory and nonlinear
numerical simulations. For magnetic Prandtl numbers of the order of unity, we find that in the high-conductivity
limit the α effect in the direction of the flow clearly exceeds the component in spanwise direction. In this limit, α
runs linearly with the magnetic Reynolds number Rm, while in the low-conductivity limit it runs with the product
Rm · Re, where Re is the kinetic Reynolds number, so that for a given Rm the α effect grows with decreasing
magnetic Prandtl number. For the small magnetic Prandtl numbers of liquid metals, a common value for the
horizontal elements of the α tensor appears, which makes it unimportant whether the α effect is measured in the
spanwise or the streamwise directions. The resulting effect should lead to an observable voltage of about 0.5 mV
in both directions for magnetic fields of 1 kG and velocity fluctuations of about 1 m/s in a channel of 50-cm
height (independent of its width).
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I. INTRODUCTION

Mean-field electrodynamics of turbulent conducting fluids
provides the commonly accepted approach to explaining the
existence of magnetic fields of cosmic bodies. The excitation
of magnetic fields results from the interplay of two elementary
processes, diffusive and nondiffusive ones. It is known that
turbulent motions reduce large-scale electric currents by in-
ducing an electromotive force (EMF) opposite to the direction
of the current. One can write

u × b = −μ0ηT J, (1)

where E = u × b is the EMF, with u = U − U and b =
B − B being the fluctuating contributions to the velocity U
and magnetic field B, respectively, overbars denote averaging
(to be specified later), μ0 is the vacuum permeability, J =
rotB/μ0 is the current density, and ηT is the turbulent mag-
netic diffusivity. In stellar convection zones, ηT exceeds the
molecular (microphysical) value η of the magnetic diffusivity
by many orders of magnitude.

In this paper the EMF is derived for a turbulent fluid in the
presence of a mean shear flow U and a uniform background
field B. For a turbulent dynamo, the enhanced dissipation must
be overcome by an induction process that does not run with
the electric current. One also knows that under the influence
of global rotation and a uniform magnetic field, anisotropic
turbulence produces an EMF parallel to the field [1]; i.e.,

u × b = αB − · · · . (2)
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Here, α is a pseudoscalar formed by the rotation vector �

and the anisotropy direction g with α ∝ g · �. Often, the
anisotropy direction from the gradient of density stratification
of the fluid is used, but it is also possible that an intensity
gradient close to rigid boundaries forms the preferred direc-
tion. The resulting dynamo equation in rotating and stratified
plasma is [1]

∂ B̄
∂t

= rot(α B̄ − (η + ηT)rotB̄), (3)

which has nondecaying solutions if α exceeds a critical value
(“α2 dynamo”); see Ref. [2] for a review.

In many papers the presented concept of a turbulent dynamo
has been applied to planets, stars, accretion disks, galaxies,
and galaxy clusters; see references in [3]. Very few papers,
however, deal with an experimental confirmation of the validity
of relations (1) and (2) in the laboratory. This is surprising
given the astrophysical importance of Eq. (3) as a direct
consequence of Eqs. (1) and (2), which characterizes the
basic ingredients of electrodynamics in rotating turbulent fluid
conductors. Generally, the validity of Eq. (1) is not seriously
doubted. However, the existing laboratory experiments report
an increase in the effective magnetic diffusivity by only a
few percent [4]. This is because the molecular magnetic
diffusivity is rather large and the turbulence not strong enough.
This is an unfortunate situation, as the eddy concept of the
effective dissipation in turbulent media governs much of
cosmic physics, from climate research, to geophysics, to the
theory of star formation and quasars.

An even more dramatic situation holds with respect to the
α effect. There are one or two experiments on the basis of the
idea that the α effect is essentially a measure of the swirl of
the flow. It has been demonstrated that a fluid with imposed
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helicity (imposed by rigid, swirling channels) produces an
EMF in the direction of an imposed field; see Refs. [5–7].
It has not yet been shown, however, that a rotating fluid with
helicity that is not imposed (but results from the global rotation
of the fluid) leads to an observable α effect. In natural cosmic
bodies, helicity is usually due to the interaction of rotating
turbulence with density stratification. The aim of the present
paper is to suggest a more rigorous α effect experiment. As
we demonstrate, the difficulties in such an experiment make it
understandable that this has not yet been possible without the
use of a prescribed helicity.

It is easy to see the general difficulty of performing α effect
experiments. Using Eq. (2), the potential difference between
the endplates of the container in the direction of the mean
magnetic field is

�Φ = αBH, (4)

where H is the distance between the endplates. Hence, for
H � 100 cm and B � 1000 G (say), the potential difference
is �Φ = 1 mV for |α| = 1 cm/s. The maximum α value is
of the order of urms, hence �Φ � urms (in mV). For urms �
1 cm/s the maximally induced potential difference is therefore
1 mV. A container of 5-cm radius rotating at 1 Hz has a linear
outer velocity of more than 30 cm/s so that urms � 1 cm/s
might be considered a conservative estimate. We find that, as
a necessary condition for any α experiment, one must be able
to measure potential differences smaller than a few millivolts.
The α experiment in Riga [5] worked with B � 1 kG and
velocities of the order of meters per second, so that the �Φ

exceeded 10 mV. This experiment, however, used a prescribed
helical geometry to mimic the symmetry breaking between
left- and right-handed helicities.

If the rotation is not uniform, the resulting shear induces
toroidal magnetic fields so that for sufficiently strong shear the
α effect can be rather small and still produce a dynamo (“α�

dynamo”). It is well known that also turbulence in liquid metals
subject to a plane shear flow (without rotation!) is able to
work as a dynamo if the turbulence intensity is stratified in the
direction orthogonal to the shear flow plane; see Ref. [8]. The
basic rotation may thus not be the only flow whose influence
enables the turbulence to generate global magnetic fields.

In the present paper, a plane Couette flow is considered to
analyze the characteristic issues of the corresponding α effect
and to design a possible experiment to measure its amplitude.

II. THE MEAN ELECTROMOTIVE FORCE

Consider a plane shear flow with uniform vorticity in the
vertical z direction, i.e.,

Ūy = Sx, (5)

where S is the shear rate. The shear flow may exist in a
turbulence field that does not possess anisotropy other than
that induced by the shear, (5), itself. The one-point correlation
tensor is

Qij = ui(x,t)uj (x,t). (6)

The correlation tensor may be constructed by a perturbation
method. The fluctuating velocity field is represented by a series

expansion,

u = u(0) + u(1) + u(2) + · · · , (7)

where the superscript index shows the order of the contribu-
tions in terms of the mean shear flow.

The zero-order term represents the “original” isotropic
turbulence, which is assumed to be not yet influenced by the
shear. We denote the Fourier transform of the correlation tensor
with a hat and define the spectral tensor for the original
turbulence as

Q̂
(0)
ij = E(k,ω)

16πk2

(
δij − kikj

k2

)
, (8)

where the positive-definite spectrum E gives the intensity of
isotropic fluctuations with

u(0)2 =
∫ ∞

0

∫ ∞

0
E(k,ω)dkdω. (9)

Here, k and ω are the wave vector and frequency. For analytical
calculations, the one-parametric spectrum,

E(k,ω) = 2

π

w

ω2 + w2
Ê(k), (10)

can be used, which yields a δ function, E ∝ δ(ω), in the
limit of w → 0 and leads to a white-noise spectrum for
large w. The correlation time of the turbulence is defined as
τcorr = 1/w. The extremely short correlation times of white
noise automatically lead to the high-conductivity limit for all
fluid conductors with a finite magnetic diffusivity η. On the
other hand, the application of (10) in the form of a δ function
provides the result in the low-conductivity limit.

By definition, the magnetic diffusivity tensor relates the
mean EMF, (1), to gradients of the mean magnetic field via
the relation Ei = ηijkB̄j,k . This tensor for originally isotropic
turbulence, influenced by the mean shear flow, (5), has been
constructed up to first order in the shear [8,10]. In that work,
it was also shown that the combination of shear and the shear-
induced parts of the magnetic diffusion tensor is not able to
operate as a dynamo.

On the other hand, it has been shown in Ref. [8] that shear, in
combination with stratified turbulence, provides helicity that
leads to an α effect in Eq. (2). Here, α must be a pseudotensor
so that an ε tensor has to appear in the coefficients for α. The
construction of the EMF, Ei = εijkujbk , is the only possibility
for the ε tensor to appear. The subscript of Ei is therefore
always also a subscript of the ε tensor. As the ε tensor is of
rank 3, an inhomogeneity of turbulence with the stratification

vector g = ∇ log u2
rms and urms =

√
u2 must also be present

for the α effect to exist. If shear is included to first order, the
general structure of the α tensor is

αij = γ εijkgk + (α1εiklŪj,k + α2εiklŪk,j )gl

+α3εiklgj Ūl,k + α4εikj Ūl,kgl + α5εijkŪk,lgl . (11)

If the stratification is along the vertical z axis, it follows
from (11) that, for the horizontal components of the α tensor,

αxx = α2gzS = αxS,

αyy = −α1gzS = αyS, (12)

αxy = −αyx = γgz = �.
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Turbulent pumping is characterized by αxy . The anisotropy of
the α tensor is described by the difference between αx and αy .
In the adopted geometry, the azimuthal component αyy (the
coefficient α1 defined below) plays the main role in all cosmic
applications, while in the proposed experiment with a turbulent
shear flow the coefficient α2 is probed, and it produces the EMF
perpendicular to the flow.

The coefficients in (12) read

γ = 1

6

∫ ∞

0

∫ ∞

0

ηk2E(k,ω)

ω2 + η2k4
dk dω (13)

for the pumping term and

αn =
∫ ∞

0

∫ ∞

0
AnE (k,ω) dk dω (14)

for the α effect, with

A1 = 4νη3k8 + 2ω2η(ν + η)k4

15(ω2 + ν2k4)(ω2 + η2k4)2
+ η2k4(η2k4 − 3ω2)

15(ω2 + η2k4)3
,

A2 = − η2ν3(4η − 5ν)k12

60(ω2 + ν2k4)2(ω2 + η2k4)2

− ω2ν(28η3 − 4η2ν + 12ην2 + 5ν3)k8

60(ω2 + ν2k4)2(ω2 + η2k4)2

− ω4η(η + 36ν)k4 − 5ω6

60(ω2 + ν2k4)2(ω2 + η2k4)2
(15)

for the kernels. Here, ν is the kinematic viscosity. In the
following we define the magnetic Prandtl number as Pm =
ν/η. Only the terms occurring in (12) have been given. For
small Pm, one can easily estimate the coefficient α1. For
ν � η, the expression for A1 simplifies to

A1 = 1

15

1

(ω2 + η2k4)2

{
4νη3k8

ω2 + ν2k4
+ η2k4(3η2k4 − ω2)

ω2 + η2k4

}
.

(16)

For ν → 0, the first expression on the right-hand side forms a
δ function. Hence,

α1 = 2π

15

∫ ∞

0

E(k,0)

ηk2
dk + · · · � 2π

15
Rm �2

corr + · · · , (17)

with the magnetic Reynolds number of the turbulence

Rm = u2
rmsτcorr

η
. (18)

The missing terms in (17), however, are of the same order as
the given one, so that it can only be used for orientation. In (17)
we have used the estimate∫ ∞

0

E(k,0)

k2
dk = τcorru

2
rms�

2
corr, (19)

which follows from (10).
As mentioned above, the white-noise approximation mim-

ics the high-conductivity limit, which holds for cosmic
applications. In this approach, the spectrum does not depend
on the frequency ω up to a maximum value ωmax, above which
the power spectrum vanishes. This corresponds to a turbulence
model with a very short correlation time; i.e., τcorr � 1/ωmax.

FIG. 1. Numerical values of the coefficients I1 and I2. Top,
Pm = 1; bottom, Pm = 10−6 (liquid gallium). Note that in the high-
conductivity limit (τ → 0; white-noise spectrum) the coefficients I1

and I2 for Pm � 1 exceed the values for Pm = 1. For small Pm the
differences between I1 and I2 and the influence of the diffusivity
parameter τ almost vanish.

One finds from (16), after integration,

α1 = π

6η

∫ ∞

0

E(k,0)

k2
dk, (20)

so that

α1 = π

6
Rm �2

corr, (21)

which is similar to result (17). The factor π/6 also appears in
Fig. 1 for small Pm as the value of I1 at the left vertical axis
for τcorr = 0. The same procedure for Pm = 1, applied to (15)
for A1, leads to

α1 = π

15
Rm �2

corr. (22)

Now, one finds the factor π/15 on the left vertical axis in Fig. 1
(top) for Pm = 1. Note that the result for small Pm exceeds that
for Pm = 1. For given η, lower values of the viscosity ν lead
to higher values of the EMF. It is this unexpected behavior
that makes experiments with fluid metals, with their small
magnetic Prandtl numbers, very promising.

While very small values of τcorr (relative to the magnetic
diffusion time τdiff) represent the high-conductivity limit, a
much larger value of τcorr represents the low-conductivity limit,
which can be treated by assuming w → 0 in Eq. (10), which
corresponds to using a δ function in Eqs. (15). It directly
follows from (15) for A1 that

α1 = 1

15

(
1 + 4

Pm

)
Rm2 �2

corr, (23)
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so that Pm = 1 leads to α1 = 1
3 Rm2 �2

corr. For small mag-
netic Prandtl numbers one finds α1 = 4

15 Re Rm �2
corr, where

Re = Rm/Pm is the Reynolds number. Hence, in the low-
conductivity limit (small Rm) the α effect runs with Re · Rm,
while in the high-conductivity limit (large Rm) the α effect
runs with Rm. Very similar expressions also occur if the shear
flow is formally replaced with a basic rotation [11].

The general expression for finite correlation times, which is
valid between the high- and the low-conductivity limits, might
also be written in the form

α1 = I1(τ ) Rm �2
corr, (24)

where I1(τ ) is given in Fig. 1 for Pm = 1 (top) and Pm =
10−6 (bottom). The curves result from numerical integrations
using a spectral function of the form exp(−τ 2ω2) with the
dimensionless parameter,

τ = ηk2τcorr � 1/Rm, (25)

for the aforementioned ratio of the correlation time to the
magnetic diffusion time of the eddies. τ < 1 gives the sector
of high conductivity and τ > 1 gives the sector of low
conductivity. One finds that for the given range of τ for
small Pm, the function I1 is nearly uniform (in contrast
to the case for Pm = 1). The consequence is that, also for
lower conductivities, the α effect only decreases linearly with
Rm rather than quadratically as is the case for Pm = 1. The
appearance of the 1/Pm term in Eq. (23) is the formal reason
for this surprising and very promising behavior.

As a demonstration, Fig. 2 shows the behavior of the
numerical integrals for decreasing Pm and very large values
of τ . The integrals run with (Pm τ )−1 so that for Pm τ � 1
the relation α1 ∝ Re Rm results. For small Pm, the kinetic
Reynolds number is much larger than the magnetic Reynolds
number. For a given magnetic diffusivity, smaller values of the
viscosity strongly enhance the resulting α effect.

In experiments with liquid metals like sodium and gallium,
Rm is of the order of 0,1, . . . ,1, so τ � 1 . . . 10. In this regime,
and for small Pm, the coefficient I1 hardly changes with τ (see
Fig. 1). Its approximate value is 0.4, which is very close to the
value π/6 valid in the high-conductivity limit. The reason is
that for small Pm the transition of I1 to the low-conductivity
limit only happens at rather high values of τ (Fig. 2). In this

FIG. 2. I1 for various Pm values. Obviously, for a given magnetic
diffusivity η, fluids with a much lower viscosity (like sodium and
gallium) are even better qualified for laboratory experiments.

limit one finds a strong influence of the magnetic Prandtl
number.

Similar calculations for α2 lead to

α2 � −I2 Rm �2
corr, (26)

where I2 is also plotted in Fig. 1. For τ of the order of unity
and small Pm, we find I2 � I1 ≈ 0.4, so

α2 � −0.4 Rm �2
corr. (27)

In the low-conductivity limit (τ � 1), we have

α2 = − 1

60

(
4

Pm
− 5

)
Rm2 �2

corr, (28)

which changes its sign at Pm = 0.8 and yields, for small Pm,

α2 = − 1

15
Rm Re �2

corr = −α1. (29)

Indeed, Fig. 1 shows that for large values of τ and Pm = 1, I2

is negative (and small), but for Pm � 1 it is positive (�0.4).
In summary, the plots in Fig. 1 reveal an important influence

of the value of the viscosity on the α effect for a given
diffusivity. For small Pm, using the low-conductivity limit,
the ratio of I2 to I1 approaches unity, while for Pm = 1 it is
very small. Note that for Pm = 1, α1 strongly exceeds α2, but
this is no longer the case for small Pm. The two horizontal
components of the α tensor are then of the same order of
magnitude. The signs of the components are always identical.

It must also be mentioned that the magnetic Prandtl number
is much smaller for liquid metals than what can presently
be used in numerical simulations. Figure 1 shows that in
numerical simulations, αxx should be smaller than αyy ; this is
not true, however, for laboratory conditions, with their small
Pm. In this case it does not matter whether the shear-induced α

effect is measured in the streamwise or the spanwise direction.
This finding is in stark contrast to the results of the turbu-

lence model described in [12] for applications to convection
zones. This model works with a very steep frequency spectrum,
E ∝ δ(ω), and assumes Pm = τ = 1 for the diffusivities
of a postulated small-scale background turbulence. This
immediately leads to A2/A1 = 1/20; i.e., αxx/αyy = 1/20.
The considered turbulence model, therefore, yields a strongly
dominating α effect in the azimuthal direction (as also in our
approach for Pm = 1).

It is also obvious that the pumping term does not depend
on the shear. After (13), for small η, it does not run with 1/η.
It is simply

γ � u2
rmsτcorr � η Rm. (30)

It can only be measured if the external field B0 lies in the shear
plane.

III. NUMERICAL SIMULATIONS

It is straightforward to verify the existence of an α effect in a
shear flow using numerical simulations of nonuniformly forced
turbulent shear flows in Cartesian coordinates. We perform
simulations in a cubic domain of size L3, so the minimal
wave number is k ≡ k1 = 2π/L. We solve the equations of
compressible hydrodynamics with an isothermal equation of

033009-4



α EFFECT IN A TURBULENT LIQUID-METAL . . . PHYSICAL REVIEW E 89, 033009 (2014)

state with constant sound speed cs,

DU
Dt

= SUx ŷ − c2
s ∇ log ρ + f + ρ−1∇ · 2ρνS, (31)

D log ρ

Dt
= −∇ · U, (32)

where D/Dt = ∂/∂t + U · ∇ + Sx ∂/∂y is the advective
derivative with respect to the full velocity field (including
the shear flow), U is the departure from the mean shear
flow (0,Sx,0), and Sij = 1

2 (∂iUj + ∂jUi) − 1
3δij∇ · U is the

traceless rate of the strain matrix (not to be confused with
the shear rate S). The flow is driven by a random forcing
function f consisting of nonhelical waves with wave numbers
whose modulus lie in a narrow band around an average wave
number kf = 5k1 [13]. We arrange the amplitude of the forcing
function such that the rms velocity increases with height, while
the maximum Mach number remains below 0.1, so the effects
of compressibility are negligible. The resulting flow is irregular
in space and time and is loosely referred to as turbulence.

We use the kinematic test-field method [9] in the Carte-
sian implementation [14] to compute from the simulations
simultaneously the relevant components of the α effect and
turbulent diffusivity tensors, αij and ηij . We do this by solving
an additional set of equations governing the departure of the
magnetic field from a set of given mean fields. This mean field
is referred to as a test field and is labeled with a superscript T.

For each test field B
T
, we find the corresponding fluctuations

bT = rotaT by solving the inhomogeneous equation for the
corresponding vector potential aT,

DaT

Dt
= −SaT

y x̂ + U × bT + u × B
T + (u × bT)′ + η∇2aT,

(33)

where D/Dt = ∂/∂t + Sx ∂/∂y is the advective derivative
with respect to the imposed shear flow only (i.e., without

U), and (u × bT)′ = u × bT − u × bT is the fluctuating part
of u × bT. We compute the corresponding mean EMF,

ET = u × bT, which is then related to b
T

and its curl, μ0 J
T =

rot B
T
, via

ET
i = αijB

T
j − ηijμ0J

T
j . (34)

We use four different test fields, with x or y components being
proportional to sin kz or cos kz. The x and y components of
Eq. (34) then constitute eight equations for the four relevant
components of αij (z,t) and ηij (z,t).

We adopt periodic boundary conditions in the y direction,
shearing-periodic boundary conditions in the x direction, and
stress-free perfect conductor boundary conditions in the z

direction; i.e.,

∂zux = ∂zuy = uz = aT
x = aT

y = ∂za
T
z = 0. (35)

Numerical resolutions of 643 and 1283 mesh points were found
to be sufficient, depending on the value of Pm. The PENCIL
CODE [15] has been used for all calculations.

Simulations are performed for different parameter combi-
nations. The quantities S and gz are positive in the calculations
presented here; i.e., the basic velocity, (5), grows in the positive

x direction, while the turbulence intensity grows in the positive
z direction. To make contact with laboratory experiments,
we focus here on the case of low conductivity and choose
Rm ≡ urms/ηkf = 0.2, which is consistent with our definition
of Eq. (18) with a Strouhal number of unity; i.e., τcorrurmskf =
1. As in earlier work using fully helical turbulence, we present
time averages of the components of αij and ηij in normalized
form in terms of α0 = urms/3 and ηT 0 = urms/3kf . Hence,
α0 L/ηT 0 = Lkf = 10π . Error margins are estimated as the
largest departure of any one-third of the full times series of αij

and ηij . The shear of the background flow is normalized with
the speed of sound, i.e.,

S = scack1 = 2πsurms

MaL
, (36)

where Ma = urms/cac is the Mach number. In the simulations
we work with s = 0.2 and Ma = 0.05. One finds

αyy

α0
� −�2

corr

L2
. (37)

Following Eqs. (12), both streamwise and spanwise α

tensor components, αyy and αxx , should be negative. When
the simulations are done for Pm = 1, |αyy | should strongly
exceed the value of |αxx |, but this is not expected for Pm < 1.
Here, the results of two simulations are presented. The first
one, for Pm = 1 with 643 mesh points, has Rm = 0.2 and
Re · Rm = 0.04, while the second one, for Pm = 0.1 with
1283 mesh points, has Rm = 0.25 and Re · Rm = 0.625. It
is thus possible to find out whether the simulated α effect runs
with Rm (which is almost the same) or with Rm · Re (which
differs by a factor of 10) in both simulations. In both cases
kf/k1 = 5 so that 10 cells can exist in the vertical direction,
and therefore, �2

corr/L
2 � 0.01.

As predicted, Fig. 3(a) for Pm = 1 shows αyy to be
dominant and both diagonal components of α to be basically
negative. The amplitude of αyy/α0 is about 0.01, in accordance
with Eq. (37) which also leads to |αyy |/α0 � 0.01.

For Pm = 1, I2 is strongly reduced relative to I1 so that
the low amplitude of αxx in Fig. 3(a) becomes understandable.
For smaller magnetic Prandtl numbers, this reduction does not
exist and both α components are of similar amplitude. Close
to the upper endplate the intensity stratification changes its
sign (due to the boundary conditions) and also a change in
the sign of the α effect can be observed there [see Fig. 4(a)].
Without this exception the simulations also confirm that the
signs depend only on the sign of the product gzS, as formulated
in relations (12).

Moreover, again as predicted, the amplitudes of the diagonal
elements of the α tensor increase for decreasing magnetic
Prandtl number. In the middle of the channel, the ampli-
tudes of the α components differ by a factor of 10, which
exceeds the ratio 1.25 of the two Rm by almost an order of
magnitude.

Next, the off-diagonal components of αij are considered;
see Figs. 3(b) and 4(b). As expected, we have αyx ≈ −αxy ,
which corresponds to a turbulent pumping velocity in the
z direction. This velocity is negative for k1z < 2.5, corre-
sponding to downward transport, i.e., down the gradient of
the turbulent intensity, as expected [1]. Near the top of the
domain, the gradient of the turbulent intensity is reversed and
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FIG. 3. (Color online) Simulations with positive shear (s = 0.2):
numerical values for the diagonal elements of the α tensor (top) and
the off-diagonal elements (bottom). Error margins are indicated by
(gray) shading. Pm = 1, Re = 0.2, Rm = 0.2.

so is the sign of the pumping velocity αyx . The simulations
with Pm = 0.1 and 1 lead to the result αyx/α0 � −Rm/10
[Figs. 3(b) and 4(b)].

IV. THE DIFFUSIVITY TENSOR

The numerical test-field procedure also allows the si-
multaneous calculation of the components of the η tensor

FIG. 4. (Color online) The same as Fig. 3, but for Pm = 0.1,
Re = 2.5, Rm = 0.25.

FIG. 5. (Color online) Simulations with s = 0.2 for the shear-
induced elements of the η tensor. Top: Horizontal eddy diffusivities.
Bottom: The two shear-current terms, ηxy and ηyx . Error margins are
indicated by (gray) shading. Pm = 1, Re = 0.2, Rm = 0.2.

for the same simulation with its vertical stratification of
the turbulence intensity. This knowledge is important for
the discussion of the question whether turbulence in shear
flows can be used for dynamo self-excitation of large-scale
magnetic fields. Despite the completely different roles played
by the spanwise and streamwise directions, we find the two
relevant diagonal components of the diffusivity tensor to
be nearly equal; i.e., ηxx ≈ ηyy [Figs. 5(a) and 6(a)]. This
strikingly high degree of isotropy of the turbulent diffusivity

FIG. 6. (Color online) The same as Fig. 5, but for Pm = 0.1,
Re = 2.5, Rm = 0.25.
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in the xy plane has been noted in earlier simulations of
the diffusivity in unstratified turbulent shear flows [2,8,14].
The maximum of ηT = (ηxx + ηyy)/2 is about 20% of the
reference value η0, which agrees with the fact that for Rm � 1,
ηT /η0 � Rm [16]. For larger Rm (or for smaller Pm) one
finds slightly larger numerical values for the eddy diffusivity
[Fig. 6(a)].

The data in Figs. 3(a) to 6(a) for Pm = 0.1 and 1 lead
to a value of about unity for the normalized α effect, Cα =
α L/ηT , which is also typical for rapidly rotating convec-
tion [17]. A comparison with the slab-dynamo calculation
in [8] leads to Cα � 10, as required for self-excitation of the
magnetic fields. This condition is not fulfilled for the present
simulations.

For the off-diagonal components of the η tensor for
nonstratified shear flows one finds

ηxy = ηxS, ηyx = ηyS, (38)

i.e., both are linear in S. The calculation of a simple slab
dynamo model shows self-excitation for sufficiently large
positive ηy . From quasilinear theory we know, however, that
ηy is negative definite [8]. For positive shear, the coefficient
ηyx is therefore expected to be negative. This result has
also been confirmed for Rm � 200 for unstratified turbulence
[14].

The same sign and the same linear dependence of ηyx on
S also hold for ηxy , but only for Pm of order unity and in the
low-conductivity limit. Both conditions are fulfilled for the
present simulations. Experiments for liquid metals, however,
concern much smaller magnetic Prandtl numbers, for which
ηxy is expected to be positive.

Our numerical simulations for stratified turbulence and
with positive shear and Pm � 1 also produce negative values
for both ηxy and ηyx [Figs. 5(b) and 6(b)]. The possibility
of dynamo action in such nonhelical shear flows [14,18,19]
therefore cannot be explained by the so-called shear-current
effect.

It is also shown that the vertical stratification of the
turbulence intensity does not basically modify the known
findings about the eddy diffusivity tensor. Only experiments
can finally provide the sign of ηx , as simulations for such small
Pm are not usually possible.

V. SHEAR FLOW ELECTRODYNAMICS

Following relations (12), the EMF across the channel is

Ex = α2gzSB0, (39)

so that the potential difference δΦ between the walls with
distance D is δΦ = α2gzSDB0, and thus

δΦ � −0.5 Rm �2
corrgzUB0 � −Rm λ2 LUB0 (40)

with I2 � 0.5 for small Pm (Fig. 1, bottom), with gz = 2/L

as the vertical scale height of the turbulence stratification, and
with the ratio λ = �corr/L. The amplitude of the mean shear
flow is U . Note that, surprisingly, the width D of the channel
does not appear in (40) and even the height L has only a weak

influence. Hence,

δΦ � 10 Rm λ2

[
L

10 cm

] [
U

m/s

] [
B0

kG

]
(41)

(in mV), so that with (say) λ � 0.1 and a channel height of
50 cm, a shear flow of 1 m/s subject to a magnetic field of 1
kG would lead to a potential difference of

δΦ � 0.5 Rm [mV]. (42)

For the (maximal) value of Rm � 1 (urms � 1m/s and �corr �
5 cm) the channel should thus provide a potential difference
of 0.5 mV between the side walls by the action of the α

effect along a spanwise magnetic field. These numbers are
quite similar to those of the Riga experiment [1,5]. The
basic difference is that in our shear flow the helicity is
not prescribed but it is self-consistently produced by the
interaction of the stratified turbulence with the background
shear.

VI. CONCLUSIONS

Laboratory studies of homogeneous dynamos are still in
their infancy. The only working dynamo where the flow pattern
is not strongly constrained by pipes or container walls is the ex-
periment in Cadarache [20], where, however, the effects of soft
iron play an important and not well understood role [21]. The
present proposal of measuring the α effect in an unconstrained
turbulent flow would therefore be a major step forward. In
such an experiment, the pseudoscalar necessary for producing
helicity comes from the stratification of turbulent intensity
giving rise to a polar vector and the vorticity associated with
the shear flow giving rise to an axial vector. Thus, the basic
effects in the theory of turbulent dynamos, which are usually
considered as special properties of rotating and stratified fluids,
can also be found for the plane-shear flows, i.e., without global
rotation.

The present work yields a detailed prediction of the sign
and magnitude of the components of both α and η tensors. It
may motivate the construction of a suitable experiment using
liquid metals to achieve a measurable α effect. The necessary
vertical stratification of turbulence intensity must be exper-
imentally imitated using grids with nonuniform mesh sizes
and/or walls of increasing/decreasing roughness in the vertical
direction.

We have shown that in stratified turbulence driven in a
plane shear flow, a measurable α effect should exist. Here,
the key problem is the smallness of the magnetic Prandtl
number. For Pm � 1, the quasilinear theory and the possible
nonlinear numerical simulations lead to very similar results.
With the quasilinear theory we have shown that, even for
fluids with very small magnetic Prandtl numbers, stratified
shear flow turbulence leads to an α effect that can be realized
in an experiment with liquid metals such as sodium (Pm �
10−5) and gallium (Pm � 10−6). Such small magnetic Prandtl
numbers cannot be simulated with present-day numerical
codes.

In fact, it may not be possible that such flows could produce
a supercritical dynamo in the conceivable future. Nevertheless,
even in the subcritical case, an α effect should be measurable,
which would thus open the possibility of detailed comparisons
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among theory, simulations, and experiments. Once such
comparison is possible, there will be more details that should
be investigated. One of them concerns the modifications of the
results in the presence of imperfect scale separation in space
and time. For oscillatory dynamos, this effect can significantly
lower the excitation conditions for the dynamo compared to
standard mean-field estimates [22].
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[11] G. Rüdiger, Astron. Nachr. 299, 217 (1978).

[12] L. L. Kichatinov, Astron. Astrophys. 243, 483 (1991).
[13] N. E. L. Haugen, A. Brandenburg, and W. Dobler, Phys. Rev. E

70, 016308 (2004).
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