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ABSTRACT

We show that in the presence of a magnetic field that is varying harmonically in space, the fundamental mode, or
f-mode, in a stratified layer is altered in such a way that it fans out in the diagnostic kω diagram, with mode power
also within the fan. In our simulations, the surface is defined by a temperature and density jump in a piecewise
isothermal layer. Unlike our previous work (Singh et al. 2014), where a uniform magnetic field was considered, here
we employ a non-uniform magnetic field together with hydromagnetic turbulence at length scales much smaller
than those of the magnetic field. The expansion of the f-mode is stronger for fields confined to the layer below
the surface. In some of those cases, the kω diagram also reveals a new class of low-frequency vertical stripes at
multiples of twice the horizontal wavenumber of the background magnetic field. We argue that the study of the
f-mode expansion might be a new and sensitive tool to determine subsurface magnetic fields with azimuthal or
other horizontal periodicity.
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1. INTRODUCTION

For several decades, helioseismology has provided informa-
tion about the solar interior through detailed investigations of
sound or pressure waves, generally referred to as p-modes.
While internal gravity waves, or g-modes, are evanescent in
the convection zone and hence not seen in the Sun, the so-called
surface or fundamental mode (f-mode) is observable. This mode
is just like deep water waves. In that case, it is well known that
the presence of surface tension leads to additional modes known
as capillary waves (Dias & Kharif 1999). Such modes do not
exist on gaseous interfaces, but magnetic fields could mimic
the effects of surface tension and thus lead to characteristic
alterations of the f-mode, which could potentially be used to
determine properties of the underlying magnetic field. Earlier
work has indeed shown that both vertical and horizontal uni-
form magnetic fields have a strong effect on the f-mode (Singh
et al. 2014, hereafter SBCR), but, obviously, the assumption of
a uniform magnetic field is unrealistic.

The goal of local helioseismology using the f-mode
(Hanasoge et al. 2008; Daiffallah et al. 2011; Felipe et al.
2012, 2013) is to determine the local structure of the under-
lying magnetic field. Such techniques might be more sensitive
than local techniques employing only p-modes (see, e.g., Gizon
et al. 2010). Our aim is to determine the structure of sunspot
magnetic fields and to decide whether they have emerged as iso-
lated flux tubes from deeper layers (Parker 1975; Caligari et al.
1995), as expected from the flux transport dynamo paradigm.
An alternative approach to solar magnetism presumes that the
dynamo is a distributed one operating throughout the entire
convection zone and not just at its bottom, and that sunspots
are merely localized flux concentrations near the surface. This
approach was discussed in some detail by Brandenburg (2005),
who mentioned the negative effective magnetic pressure in-
stability (Kleeorin et al. 1996) and the local suppression of
turbulent heat transport (Kitchatinov & Mazur 2000) as possi-
ble agents facilitating the formation of such magnetic flux con-
centrations. He also discussed magnetic flux segregation into

magnetized and unmagnetized regions (Tao et al. 1998) as a
mechanism involved in the formation of active regions. In those
two instabilities, the magnetic field experiences a local concen-
tration near the surface. In the horizontal plane, the field shows
then a periodic pattern that also plays a role in the motivation of
the field pattern chosen for the present investigation.

2. MODEL SETUP AND MOTIVATION

Instead of solving an eigenvalue problem to obtain the mode
frequencies, we infer them from direct numerical simulations
via diagnostic wavenumber–frequency diagrams, as observers
would do. Our model is close to that studied in SBCR with a
piecewise isothermal setup consisting of a lower cooler layer
(“bulk” with thickness Lzd) and a hotter upper one (“corona”
with thickness Lzu), referred to by subscripts “d” and “u,”
respectively. Their interface is placed at z = 0. The only
difference is that we include here an electromotive force to
maintain the now non-uniform background field. We solve the
basic hydromagnetic equations,

D ln ρ

Dt
= −∇ · u, (1)

Du
Dt

= f + g +
1

ρ
( J × B − ∇p + ∇ · 2νρS) , (2)

T
Ds

Dt
= 2νS2 +

μ0η

ρ
J2 − (γ − 1)cp

T − Td,u

τc
, (3)

∂ A
∂t

= u × B + E0 − ημ0 J, (4)

where u is the velocity, D/Dt = ∂/∂t + u · ∇ is the advective
time derivative, f is a forcing function specified below, g =
(0, 0,−g) is the gravitational acceleration, Sij = (1/2)(ui,j +
uj,i) − (1/3)δij∇ · u is the traceless rate of strain tensor,
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Figure 1. Full disk solar magnetogram showing the line of sight magnetic field
during a very active phase. Light (dark) shades correspond to positive (negative)
values. Note the characteristic wavelength ≈100 Mm of regular sign changes.

where commas denote partial differentiation, ν = const is
the kinematic viscosity, s is the specific entropy, A is the
magnetic vector potential, B = ∇ × A is the magnetic field,
J = μ−1

0 ∇ × B is the current density, E0 is an external
electromotive force specified below, η = const is the magnetic
diffusivity, μ0 is the vacuum permeability, γ = cp/cv is the ratio
of specific heats at constant pressure and density, respectively,
and T is the temperature. The last term in Equation (3), being
of relaxation type, is to guarantee that the temperature is, on
average, constant in either subdomain and equal to Td and Tu,
respectively. For the relaxation rate τ−1

c , we choose, as in SBCR,
g/(2csd) in z > 0 and zero in z < 0. (Dropping the relaxation
term in the bulk is preferable as it allows the flow to evolve more
freely while causing only a slow drift of T away from Td. In the
corona, on the other hand, our choice of τc is sufficient to keep
deviations of T from Tu small without affecting the oscillations
markedly.)

The adiabatic sound speeds in the upper and lower layers
are referred to as csu and csd, respectively. In most of the
cases, we assume a temperature jump q = Td/Tu = c2

sd/c
2
su =

ρu(0)/ρd(0) of about one-tenth, which means that at the interface
the density changes by the same factor, thus allowing for the
f-mode to appear. A random flow is driven in the lower layer
(z < 0) by applying a solenoidal nonhelical forcing with a
wavenumber that is much larger than the lowest one fitting into
the domain.

This is a minimalistic model as it employs just those in-
gredients that are necessary to produce the desired magnetically
affected f-mode: the interface, maintained by thermal relaxation,
gravity, and the electromotive force owing to the non-uniformity
of the background field. Viscosity and magnetic diffusivity are
merely needed for numerical stability, but then a random forcing
is necessary for mode excitation.

We normalize the length scales by L0 = γHd = c2
sd/g, where

Hd is the pressure scale height in the bulk, while frequencies are
normalized by ω0 = g/csd. Quantities normalized this way are
indicated by tildae.

In a customary kx–ω diagram (referred to simply as kω
diagram), we show the amplitude of the Fourier transform of

the vertical velocity uz, taken from the interface at z = 0, as a
function of kx and ω. As the Fourier transform ûz(kx, ω) has the
dimension of length squared, we construct the dimensionless
quantity

P̃ (ω, kx) = |ûz|
D2

= |ûz|
L2

0

c2
sd

u2
rms,d

, (5)

where urms,d represents the rms value of the random motions in
the bulk and D = urms,d/ω0 is the distance traveled with speed
urms,d in a time ω−1

0 . The fluid Reynolds and Mach numbers of
the flow are defined as Re = urms,d/(νkf) and Ma = urms,d/csd,
respectively.

As in SBCR, we employ a two-dimensional model in x and z,
ignoring any variations in the y direction. The domain is of size
Lx × Lz = 8πL0 × πL0, where Lx and Lz denote its horizontal
and vertical extents, respectively. For the boundary conditions,
we adopt a perfect conductor and vanishing stress at the top
and bottom of the domain and periodicity in the x-direction. All
calculations are performed with the pencil code.4

As discussed at the end of Section 1, we produce a steady
magnetic field B0 by applying a constant external electromotive
force E0 with a harmonic spatial variation

E0 = Ê0 cos
(
kB
x x

)
cos

(
kB
z z

)
ey. (6)

Our choice of a sinusoidally varying magnetic field can be
motivated by looking at a solar magnetogram showing a regular
pattern of alternating positive and negative vertical field along
the azimuthal direction (Figure 1). However, the stationary
magnetic field that emerges in the domain is the result of the
combined effects of E0 and the Lorentz force of B0. Given
that initially, when the fluid is still at rest, E0 generates a
field resembling that of an array of (thick) straight wires in
the y-direction, the Lorentz force will tend to compress these
field vortices (rolls) and hence accumulate fluid within them.
Consequently, they have to sink to a position where their excess
weight is compensated by the magnetic pressure gradient of the
field concentrated between the rolls and the lower boundary.
Finally, the overall state adjusts to a steady MHD equilibrium
(U0, ρ0, B0), which can qualitatively be characterized by the
spectra of its fields with respect to x. Assuming kB

x = Nk1,
where k1 = 2π/Lx (in this work, k1L0 = 0.25), the spectra of
U0 and ρ0 are given by ±2mNk1 and that of B0 by ±(2m+1)Nk1
with m = 0, 1, 2, . . .. In Figure 2, we show visualizations of the
background field B0 for all runs discussed in the results section;
see Table 1.

We define the z dependent rms Alfvén speed, vA(z), and the
quantity β, characterizing the subsurface concentration of vA(z)
as

vA(z) =
√

〈B2〉x(z)

μ0〈ρ〉x(z)
, β = (

max
z�0

vA(z)
)
/csd. (7)

In Figure 3, we show the variation of vA(z)/cs(z) with z for all
runs; more details are given in Table 1, where zm is the position
of the maximum in Equation (7). We also show that the f-mode
asymmetry, characterized by the quantity Af (defined below),
increases with zm and varies only weakly with β.

For a uniform magnetic field imposed in the x-direction, the
f-mode frequency is well described by the dispersion relation
(Chandrasekhar 1961; Miles & Roberts 1992; Miles et al. 1992)

ω2
fm = c2

fmk2
x + gkx

1 − q

1 + q
, (8)

4 http://pencil-code.googlecode.com/
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Figure 2. Flux lines of the saturated magnetic background fields of the runs in Table 1. Colors: modulus of B. |B| in units of 0.65csd
√

μ0ρd(0).

(A color version of this figure is available in the online journal.)

Table 1
Summary of Simulations

Run k̃B
x k̃B

z β z̃m Δωf+/ωf Δωf−/ωf Re Ma

A1 0.75 2.5 0.074 0 . . . . . . 4.95 0.0198
A2 0.25 3.0 0.118 −1.5 0.33 0.23 9.67 0.0201
A4 0.50 2.0 0.234 −0.8 0.33 0.37 0.79 0.0032
A5 0.50 2.0 0.285 −0.8 0.44 0.41 1.15 0.0046
A5f0a 0.50 2.0 0.278 −0.75 0.11 0.0 0.74 0.0030
B1 0.50 4.0 0.034 −0.3 . . . . . . 0.05 0.0010
B2 0.50 2.0 0.104 −0.7 0.33 0.30 1.06 0.0042
B3 0.50 1.0 0.127 0 . . . . . . 0.03 0.0006

Notes.
All runs have q = 0.1, ν/η = 1, and k̃f = 20. Δωf±/ωf are evaluated at k̃x = 9.
a No random forcing.

where c2
fm = 2ρd(0)v2

Axd/(ρd(0) + ρu(0)) with vAxd being the
Alfvén speed just below the interface; see Equation (21) of
SBCR. Here, the second term on the right-hand side represents
the (square of the) classical, unmagnetized f-mode frequency,
to which the first term, being the magnetic contribution, always

adds. Thus, horizontal magnetic fields lead to an increase in the
f-mode frequency, but, as discussed by Murawski & Roberts
(1993), turbulence without magnetic field leads to a decrease.
SBCR found that strong vertical magnetic fields also lead to a
decrease of the f-mode frequency for sufficiently large k̃x .

Berton & Heyvaerts (1987) analyzed the alterations of the
p-mode frequencies in the presence of a non-uniform (piece-
wise uniform periodic) magnetic field, but they did not consider
f-modes. It would be important to determine how a harmonic
magnetic field affects the f-mode frequencies, but such calcu-
lations have not yet been done. Some qualitative insight can
be gained from an analysis of the possible eigensolution spec-
tra. The coefficients in the linearized MHD equations for the
perturbations u′, ρ ′, and B′, which are essentially determined
by the background fields U0, ρ0, and B0, are periodic in x (or
constant). Hence, the eigenmodes must, in general, comprise
an infinitude of x wavenumbers. With the spectra of the back-
ground fields derived above, we expect for u′ and ρ ′ nonvanish-
ing spectral amplitudes at (±2mN ± l)k1, but for B′ at (±(2m +
1)N ± l)k1, where m = 0, 1, 2, . . ., and l is a fixed integer,
0 � l � N/2.

3



The Astrophysical Journal Letters, 795:L8 (6pp), 2014 November 1 Singh, Brandenburg, & Rheinhardt

Figure 3. Vertical profiles of the ratio of Alfvén to sound speed, vA/cs, in the
upper two panels; dash–dotted line: position of the interface. Af as a function
of zm in panel (c) showing the fit Af = a0 +a1zm with a0 = 0.42 and a1 = 0.67
for all values of β (solid line); Af compensated by this fit as a function of β in
panel (d).

The described eigenmodes correspond to Bloch waves being
bounded solutions of the stationary Schrödinger equation with
a periodic potential. According to Bloch’s theorem, they must
have the form c+F (x) exp ik0x + c−F (−x) exp(−ik0x), where
F (x) is a function with the same periodicity as the potential
and k0 is the so-called Bloch wavenumber (Berton & Heyvaerts
1987). For our conditions, k0/k1 = l and can hence only adopt
integers from 0 to N/2.

3. RESULTS

To demonstrate the effects of non-uniformity of the magnetic
field, we study two types of cases: for the first one, the domain is
asymmetric with respect to the interface (Lz,d/Lz,u = 5; Runs
A1–A5), while for the second, it is symmetric (Lz,d = Lz,u;
Runs B1–B3).

The corresponding kω diagrams are shown in Figure 4.
Similar to the non-magnetic or weakly magnetized cases studied
by SBCR, we see p-modes above the line ω = csdkx with an
apparent discontinuity at ω = csukx , and indications of g-modes

at k̃x < 4 and ω̃ = 0.5–0.8. However, the f-mode now fans out

and spans a trumpet-shaped structure around the nonmagnetic
f-mode frequency ωf = √

gkx . The more the magnetic field is
pushed toward the bottom of the domain, the more asymmetric
this expansion appears to be with respect to the f-mode in the
unmagnetized case.

To quantify the fanning out of the f-mode, we denote the
upper and lower edges of the fan by ωf+(kx) and ωf−(kx),
respectively. In general, the fan is asymmetric with respect to
the classical f-mode (ωf). Let us represent this asymmetry at
any given kx by Af = Δωf+/Δωf−, where Δωf± = |ωf± − ωf|
are the frequency spreads above and below ωf ; see Table 1 for
Δωf±/ωf at k̃x = 9. We find that at k̃x = 15, the total relative
spread, (Δωf+ + Δωf−)/ωf , can be as large as 1.1, which further
increases with increasing β for fixed zm; see Runs A4 and A5 in
Figure 4. Note that Af can take values both larger and smaller
than unity, as may be seen by comparing Run A2 with Runs A4
or A5 in Figure 4; see also Table 1 and Figure 3. Additional
experiments have shown that when we increase the value of β
further, the power above and below the ωf line increases, but
the mode profile becomes more diffuse and the edges of the fan
less sharp.

In addition, we see as a qualitatively new feature a regular
pattern of vertical stripes at multiples of 2̃kB

x all the way up
to k̃x = 14, which appears unconnected with the f-mode. (In
the spectra of B, the stripes appear at odd multiples of k̃B

x .)
They are absent if B0 is independent of z (kB

z = 0; not shown),
but most pronounced when the magnetic field is concentrated
in the lower part of the domain; see Figure 3(a) for Runs A4
and A5 as well as Figure 3(b) for Run B2. These are also
the cases in which the f-mode appears most fanned out. The
stripes appear weaker when the magnetic field is symmetric
about the interface at z = 0 (Run B3) or when it is generally
weak (Runs A1, A2, and B1). Given that they are persistent
after switching off the random hydrodynamic forcing (see Run
A5f0 in Figure 4), they can be identified to indicate at least one
unstable eigensolution. Note that for a fixed ω an infinitude of
kx belongs to the same eigenmode. The discrete ω spots within
each stripe may either belong to different unstable eigenmodes
or represent overtones of a single mode. Given that the ratio
|∇·u|/|∇×u| in Run A5f0 is small (<0.01) everywhere within
the domain, we conclude that the velocity field of the stripes is in
that sense close to solenoidal. Furthermore, as their occurrence
and amplitude are strongly dependent on the strength of B0, we
propose to consider them as shear Alfvén modes having become
unstable due to the inhomogeneity of B0. A similar transition is
observed in whistler waves which become unstable for suitably
non-uniform background fields (Rheinhardt & Geppert 2002).

Remarkably, the unstable mode(s) excite f-modes, but without
fanning them out, whereas p-modes remain unexcited (Panel
A5f0). Comparing panels A5 and A5f0 suggests that the fanning
out requires not just a non-uniform magnetic field, but also the
presence of random forcing. However, the fact that A5f0 exhibits
only a single line and no fan might indicate a physical difference
between the fan and the regular f-mode. We also note that the
expansion of the f-mode can still be seen when the vertical
stripes are weak or absent (especially in Run A2), but in Run
B1, where the field is less deep and the domain symmetric about
z = 0, the f-mode lacks a clear trumpet shape.

Another qualitatively new feature compared to the case of a
uniform background field is the occurrence of inclined stripes
running from the lower left to the upper right corner of the
kω diagram, best visible in panel A1 of Figure 4. They are
reminiscent of Alfvén modes. Since they occur only in cases
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Figure 4. kω diagrams corresponding to the runs of Table 1; Lzd/Lzu = 5 for models A1–5 and Lzd = Lzu for models B1–3. The dotted and dashed lines show
ω = csukx and ω = csdkx , respectively; dash–dotted curves show ωf (the classical f-mode). The insets show the f-mode profile (on a linear scale) P̃ (ω̃, k̃x ) at k̃x = 4.5
with the red line marking the position of ωf . In panel A4, the arrows indicate the upper (ω̃f+) and lower (ω̃f−) edges of the f-mode fan.

(A color version of this figure is available in the online journal.)

where the aforementioned instability is weak or turbulently
suppressed, they might be (damped) Alfvén waves modified
by the non-uniformity of the background field.

4. CONCLUSIONS

The present study was aimed at identifying diagnostic sig-
natures of spatial variability of the magnetic field. Indeed,
we find as such characteristic features the fanning out of the

f-mode and a pattern of vertical stripes in the kω diagram which
have not been reported in earlier helioseismic studies. Since the
use of a non-uniform background field was the only change rela-
tive to SBCR, we must conclude that these features are due to this
non-uniformity. Our work also suggests that their occurrence is
only weakly dependent on Reynolds and Mach numbers.

The fanning out of the f-mode is different from the case
of capillary waves, where instead a “bifurcation” of the
f-mode in deep water waves is caused by surface tension (Dias
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& Kharif 1999). In the present case, the width of the fan and its
asymmetry appear to characterize the magnetic field strength.
Independent from that, the horizontal variability of the underly-
ing magnetic field is reflected in the presence of vertical stripes
in the diagnostic kω diagram at even multiples of the horizontal
wavenumber of the magnetic field. We have proven that these
stripes can be assigned to one or perhaps several unstable eigen-
modes, most likely of shear Alfvén type.

The spatial variation of the photospheric field seen in
Figure 1 with a wavelength of, say, 100–200 Mm corresponds to
a wavenumber of the background field kB

x = 0.03–0.06 Mm−1,
i.e., with γHd ≈ 0.5 Mm, we have k̃B

x = 0.015–0.03, which is
10–20 times smaller than the smallest value used in the present
work. Given that smaller k̃B

x yield a sharper fan (see panels A1
and A2 in Figure 4), we might speculate that in solar data the
fan could also be sharper, but we have to remember that the
assumption of a completely periodic pattern of B0 is, of course,
too optimistic.

With respect to instrumentation requirements, it is clear that
for a possible detection of the fan one would need to reach k̃x � 3
and 1 � ω̃ � 3. With R = 700 Mm for the solar radius, this
corresponds to kx � 6 Mm−1, or � > 4200. This is somewhat
above what can currently be achieved. Correspondingly, a
cadence of less than a minute would be required. Thus, while
it is impossible at present to make a clear case for helioseismic
applications, our work has opened an avenue for more targeted
searches, both theoretically and observationally.
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in Linköping and Umeå, as well as the Center for Parallel
Computers at the Royal Institute of Technology in Sweden and
the Nordic High Performance Computing Center in Iceland.

REFERENCES

Berton, R., & Heyvaerts, J. 1987, SoPh, 109, 201
Brandenburg, A. 2005, ApJ, 625, 539
Brandenburg, A., Gressel, O., Jabbari, S., Kleeorin, N., & Rogachevskii, I.

2014, A&A, 562, A53
Caligari, P., Moreno-Insertis, F., & Schüssler, M. 1995, ApJ, 441, 886
Chandrasekhar, S. 1961, Hydrodynamic and Hydromagnetic Stability (New

York: Dover)
Daiffallah, K., Abdelatif, T., Bendib, A., Cameron, R., & Gizon, L. 2011, SoPh,

268, 309
Dias, F., & Kharif, C. 1999, AnRFM, 31, 301
Felipe, T., Braun, D., Crouch, A., & Birch, A. 2012, ApJ, 757, 148
Felipe, T., Crouch, A., & Birch, A. 2013, ApJ, 775, 74
Gizon, L., Birch, A. C., & Spruit, H. C. 2010, ARA&A, 48, 289
Hanasoge, S. M., Birch, A. C., Bogdan, T. J., & Gizon, L. 2008, ApJ, 680, 774
Ilonidis, S., Zhao, J., & Kosovichev, A. 2011, Sci, 333, 993
Kitchatinov, L. L., & Mazur, M. V. 2000, SoPh, 191, 325
Kleeorin, N., Mond, M., & Rogachevskii, I. 1996, A&A, 307, 293
Miles, A. J., Allen, H. R., & Roberts, B. 1992, SoPh, 141, 235
Miles, A. J., & Roberts, B. 1989, SoPh, 119, 257
Miles, A. J., & Roberts, B. 1992, SoPh, 141, 205
Murawski, K., & Roberts, B. 1993, A&A, 272, 595
Parker, E. N. 1975, ApJ, 198, 205
Rae, I. C., & Roberts, B. 1981, GApFD, 18, 197
Rheinhardt, M., & Geppert, U. 2002, PhRvL, 88, 101103
Roberts, B. 1981, SoPh, 69, 27
Singh, N. K., Brandenburg, A., Chitre, S. M., & Rheinhardt, M. 2014, MNRAS,

submitted (arXiv:1404.3246) (SBCR)
Tao, L., Weiss, N. O., Brownjohn, D. P., & Proctor, M. R. E. 1998, ApJL,

496, L39

6

http://adsabs.harvard.edu/abs/1987SoPh..109..201B
http://adsabs.harvard.edu/abs/1987SoPh..109..201B
http://dx.doi.org/10.1086/429584
http://adsabs.harvard.edu/abs/2005ApJ...625..539B
http://adsabs.harvard.edu/abs/2005ApJ...625..539B
http://dx.doi.org/10.1051/0004-6361/201322681
http://adsabs.harvard.edu/abs/2014A&A...562A..53B
http://adsabs.harvard.edu/abs/2014A&A...562A..53B
http://dx.doi.org/10.1086/175410
http://adsabs.harvard.edu/abs/1995ApJ...441..886C
http://adsabs.harvard.edu/abs/1995ApJ...441..886C
http://adsabs.harvard.edu/abs/2011SoPh..268..309D
http://adsabs.harvard.edu/abs/2011SoPh..268..309D
http://adsabs.harvard.edu/abs/1999AnRFM..31..301D
http://adsabs.harvard.edu/abs/1999AnRFM..31..301D
http://dx.doi.org/10.1088/0004-637X/757/2/148
http://adsabs.harvard.edu/abs/2012ApJ...757..148F
http://adsabs.harvard.edu/abs/2012ApJ...757..148F
http://dx.doi.org/10.1088/0004-637X/775/1/74
http://adsabs.harvard.edu/abs/2013ApJ...775...74F
http://adsabs.harvard.edu/abs/2013ApJ...775...74F
http://dx.doi.org/10.1146/annurev-astro-082708-101722
http://adsabs.harvard.edu/abs/2010ARA&A..48..289G
http://adsabs.harvard.edu/abs/2010ARA&A..48..289G
http://dx.doi.org/10.1086/587455
http://adsabs.harvard.edu/abs/2008ApJ...680..774H
http://adsabs.harvard.edu/abs/2008ApJ...680..774H
http://dx.doi.org/10.1126/science.1206253
http://adsabs.harvard.edu/abs/2011Sci...333..993I
http://adsabs.harvard.edu/abs/2011Sci...333..993I
http://adsabs.harvard.edu/abs/2000SoPh..191..325K
http://adsabs.harvard.edu/abs/2000SoPh..191..325K
http://adsabs.harvard.edu/abs/1996A&A...307..293K
http://adsabs.harvard.edu/abs/1996A&A...307..293K
http://adsabs.harvard.edu/abs/1992SoPh..141..235M
http://adsabs.harvard.edu/abs/1992SoPh..141..235M
http://adsabs.harvard.edu/abs/1989SoPh..119..257M
http://adsabs.harvard.edu/abs/1989SoPh..119..257M
http://adsabs.harvard.edu/abs/1992SoPh..141..205M
http://adsabs.harvard.edu/abs/1992SoPh..141..205M
http://adsabs.harvard.edu/abs/1993A&A...272..595M
http://adsabs.harvard.edu/abs/1993A&A...272..595M
http://dx.doi.org/10.1086/153593
http://adsabs.harvard.edu/abs/1975ApJ...198..205P
http://adsabs.harvard.edu/abs/1975ApJ...198..205P
http://adsabs.harvard.edu/abs/1981GApFD..18..197R
http://adsabs.harvard.edu/abs/1981GApFD..18..197R
http://adsabs.harvard.edu/abs/2002PhRvL..88j1103R
http://adsabs.harvard.edu/abs/2002PhRvL..88j1103R
http://adsabs.harvard.edu/abs/1981SoPh...69...27R
http://adsabs.harvard.edu/abs/1981SoPh...69...27R
http://www.arxiv.org/abs/1404.3246
http://dx.doi.org/10.1086/311240
http://adsabs.harvard.edu/abs/1998ApJ...496L..39T
http://adsabs.harvard.edu/abs/1998ApJ...496L..39T

	1. INTRODUCTION
	2. MODEL SETUP AND MOTIVATION
	3. RESULTS
	4. CONCLUSIONS
	REFERENCES

