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Supplemental Material
to “Nonhelical inverse transfer of a decaying
turbulent magnetic field” (arXiv:1404.2238)

by A. Brandenburg, T. Kahniashvili, & A. G. Tevzadze

The focus of the accompanying Letter is the investigation
of inverse transfer of magnetic energy at the expense of
kinetic energy at intermediate scales. In this Supplemen-
tal Material, we present additional details of the result-
ing turbulence regarding initial conditions, decay rate,
the mechanisms for inverse transfer, including the ques-
tion of local two-dimensionality of the turbulence, and
the spectral energy transfer functions.

INITIAL CONDITION

Initial conditions can be obtained either as a result
of an earlier turbulence simulation driven by monochro-
matic driving or the fields can be synthesized with given
power spectra and random phases. In the following, we
describe and compare these cases.

Via monochromatic driving

Our goal is to have an initial condition that quickly
leads to self-similar decay. Earlier experience [1] has
shown that this is easily achieved by using a snap-
shot from a turbulence simulation that was driven with
stochastic monochromatic forcing in the equation for the
magnetic vector potential. The resulting initial condi-
tion used in our present work is shown in Figure 1. It
shows approximate k2 and k4 subinertial ranges for ki-
netic and magnetic energy spectra, respectively. The ini-
tial energies are EM(0) = v2

A0/2 and EK(0) = u2
0/2 with

vA0 = 0.15 and u0 = 0.10. Both spectra are maintained
also at later times in such a way that they gradually shift
with time (see Fig. 1 of the Letter).

In the present simulations (Run A of the Letter), both
magnetic and kinetic energies show a slight uprise of
power near the Nyquist wavenumber, kNy = π/δx, where
δx is the mesh spacing. This indicates that the resolu-
tion is only marginal for the Reynolds number chosen
here. However, during the subsequent decay calculation,
after several Alfvén times, this excess power at kNy dis-
appears, as is seen in Fig. 1 of the Letter.

Via random phases

An alternative mechanism of producing initial condi-
tions is to generate a vector field in wavenumber space
with a given spectrum and random phases. In Figure 2
we show an example where we have for magnetic energy

FIG. 1: Magnetic (solid lines) and kinetic (dashed lines) en-
ergy spectra for the initial condition of Run A.

FIG. 2: Like Figure 1, but with an initial k4 spectrum for
magnetic energy using random phases;

a k4 spectrum for k < k0 and k−5/3 for k > k0, but zero
kinetic energy (vA0 = 0.40 and u0 = 0). Our initial ve-
locity is zero and the initial vector potential in Fourier
space is Âj(k) such that for all three components j are
given by

kÂj(k) = A0
(k/k0)

n1/4−1/2

[1 + (k/k0)n1−n2 ]1/4
eiφ(k), (1)

where n1 = 4 and n2 = −5/3 are the exponents of
the related magnetic energy spectrum, φ(k) are random
phases, A0 is the amplitude, and k = |k|. We choose
k0/k1 = 60 and run with ν = 5 × 10−6 at 11523 mesh-
points, which is slightly more dissipative than the runs
reported in the Letter with ν = 2 × 10−6 using 23043

meshpoints. In Figure 2 we show the times t/τA = 10,
50, 200, and 900, where τA = (vA0k0)

−1 ≈ 0.042 is the
initial Alfvén time.

At very early times (t ≈ τA), a k4 kinetic energy spec-
trum develops, which is consistent with the causality con-
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straint, but after several hundred Alfvén times the spec-
trum becomes gradually shallower and approaches a k2

subinertial range. However, unlike the initial condition
shown in Figure 1, the magnetic field is continuously de-
caying and the integral scale is increasing, which is the
reason why the k2 subinertial range is less strongly devel-
oped in Figure 2. Nevertheless, the magnetic spectrum
shows again clear inverse transfer, although it is initially
somewhat slower, as can be expected given the time it
takes to build up the k2 velocity spectrum.

Steeper initial spectra

If we start with a magnetic energy spectrum steeper
than k4, the spectrum quickly changes into a k4. This is
demonstrated in Figure 3, where we start with an initial
k6 spectrum, followed by a k−5/3 subrange. We show
the times t/τA = 1, 5, 20, 80, and 400, and see that
already at t/τA = 20 the subinertial range has nearly a
k4 subrange.

FIG. 3: Like Figure 2, but with an initial k6 spectrum for the
magnetic energy using random phases.

EVOLUTION

Integral scale

The decay of MHD turbulence is characterized by the
kinetic and magnetic integral scales. The kinetic integral
scale ξK = k−1

K is defined analogously to the magnetic
one ξM = k−1

M (given in the Letter), with

k−1
K

(t) =

∫ ∞

0

k−1EK(k, t) dk/EK(t). (2)

Both scales grow in time nearly perfectly proportional
to each other like t1/2; see Figure 4. The corresponding

decay of kinetic and magnetic energies is proportional to
t−1 and is addressed below in this Supplemental Material
where we plot urms = (2EK)1/2 and vA = (2EM)1/2 vs. t.

FIG. 4: Kinetic and magnetic integral scales, ξK and ξM ,
respectively, for Runs A (thick lines) and B (thin lines).

In Table 1 of Ref. [2], Campanelli has summarized
the decay laws for various subinertial range scalings us-
ing both helical and non-helical MHD turbulence. The
scaling exponent for the magnetic integral scale, ξM =
k−1
M

(t) =
∫
k−1EM(k, t) dk/EM(t), is around 1/2 for most

of the cases. It emerges quite generically from scaling
arguments first derived by [3]. Kalelkar & Pandit [4]
find ξM ∼ t1/2 for an initial spectrum EM ∼ k, but the
same scaling also emerges for other initial power laws, as
has been demonstrated by numerous simulations [1]. The
reason for this is that the decay properties depend mainly
on nature of the turbulence (being either hydrodynamic,
hydromagnetic without helicity, or with helicity).

Mach & Alfvén numbers

In Figure 5, we plot the evolution of the Mach number
urms/cs, the Alfvén number urms/vA, and the ratio vA/cs,
where urms and vA are the rms values of velocity and
magnetic field (density is approximately constant), and
cs = const is the isothermal sound speed.

Both urms and vA decay in time proportional to t−1/2,
so the kinetic and magnetic energies decay like EK(t) =
u2

rms/2 ∝ t−1 and EM(t) = v2
A/2 ∝ t−1. Earlier work

[1] resulted in a decay law proportional to t−0.9, but this
departure from the t−1 law is likely a consequence of
insufficient scale separation; k0/k1 is now 60 compared
to 15 previously.
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FIG. 5: Mach number urms/cs (black), Alfvénic Mach number
urms/vA (red), and the ratio vA/cs (blue) for Runs A (thick,
solid lines) and B (dotted lines).

Loitsyansky invariant

In hydrodynamic turbulence, using the constancy of
the Loitsyansky invariant,

L =

∫
r2〈u(x) · u(x + r)〉 dr ∝ ℓ5u2

ℓ , (3)

with typical velocity uℓ on scale ℓ, Kolmogorov argued
on dimensional grounds that the kinetic energy should
decay like EK ∝ L2/7t−10/7. On the other hand, if the
decay is governed by viscosity, dimensional arguments
suggest EK ∝ νt−1 and ℓ ∝ (νt)1/2, both of which appear
consistent with our simulations. If that is the case, we
should expect L to grow with time like L ∝ ν5/2t1/2.

In Table I we give values of L and 〈u2〉 for a low reso-
lution run (643 mesh points) and a down-sampled one of
Run A of the Letter (23043 mesh points).

TABLE I: Values of L and 〈u2〉 for a low resolution run (643

mesh points) and a down-sampled one of Run A of the Letter
(23043 mesh points).

resol. t L 〈u2〉

643 40 +2.1 × 10−7 8.0 × 10−3

100 −5.4 × 10−7 7.0 × 10−5

250 −8.4 × 10−7 1.1 × 10−5

23043 50 −4.4 × 10−9 1.0 × 10−4

150 −1.1 × 10−8 3.3 × 10−5

Table I suggests that |L| has indeed a tendency to
increase with time. This would support our argument
above in favor of viscously dominated decay behavior.
On the other hand, as the resolution is increased by a
factor of 36, L deceases by about two orders of magni-
tude while urms stays about the same. This would be
consistent with L converging to zero and therefore not
being able to constrain the decay.

Comparison with hydrodynamics

In the absence of magnetic fields, there is purely hydro-
dynamic decay without the mutual interaction between
two energy reservoirs. This leads to a steeper decay law
for kinetic energy and a slower growth of the integral
scale, as can be easily be verified by applying an initial
k4 spectrum for the kinetic energy. This is shown in
Figure 6, where we compare the decay spectra for hydro-
dynamic turbulence with nonhelical and helical magne-
tohydrodynamic turbulence.

Scaling behavior

According to the Olesen scaling law [3], both kinetic
and magnetic energies should decay like

EK(k, t) ∼ EM(k, t) ∼ kαψ(k(3+α)/2t). (4)

Integrating over k yields the decay law of the energies as

EK(t) =

∫
EK(k, t) dk ∼

∫
kαψ(k(3+α)/2t) dk. (5)

Introducing κ = ktq with q = 2/(3 + α), we have

EK(t) ∼ tp
∫
καψ(κ) dκ, (6)

where p = (1+α)q. The integral scales like kK ∼ tq with
q = 2/(3+α). Several parameter combinations are given
in Table II.

TABLE II: Parameter combinations of q = 2/(3 + α), p =
2(1 − q) and α = 2/q − 3. Note that 10/7 ≈ 1.43 and 2/7 =
0.286.

α (= β) p q physics

4 10/7 2/7 L = const

3 8/6 2/6

2 6/5 2/5

1 4/4 2/4 〈A2

2D〉 = const (?)

0 2/3 2/3 〈A · B〉 = const

The numbers in Table II suggest that different subiner-
tial range scalings ∝ kα correspond to different exponents
p and q. Instead, we now argue that the subinertial range
scaling is not characterized just by α, but mainly by the
slope of ψ(k) for small values of k. To demonstrate this,
let us begin by noting that, in practice, it is more accu-
rate to relate the change in the amplitude to the change
in the correlation length instead of the time, because it al-
ways takes a while to establish asymptotic scaling behav-
ior. Therefore, instead of using Equation (4), we prefer
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FIG. 6: Kinetic energy spectra in a hydrodynamic simulation (a), compared with magnetic (solid) and kinetic (dashed) energy
spectra in a hydromagnetic simulation without helicity (b), and with (c). Panels (d)–(f) show the corresponding collapsed
spectra obtained by using β = 3 (d), β = 1 (e), and β = 0 (f).

the following alternative formulation by extracting just a
time-dependent factor from the spectrum and write [5]

EM(k, t) ∼ ξ−βφ(kξ), (7)

with ξ(t) ∼ tq standing either for ξM (in the magnetic
case) or for ξK (in the hydrodynamic case). The exponent
q can be determined by dimensional arguments, e.g. by
assuming L = const = U2L5, which implies

L ∼ u2l5 ∼ l7τ−2 → q = 2/7, p = 10/7 (β = 4). (8)

Alternatively, in the presence of helical magnetic fields,
〈A ·B〉 is conserved. Again, from dimensional arguments
we find

〈A ·B〉 ∼ u2l ∼ l3τ−2 → q = 2/3, p = 2/3 (β = 0). (9)

Finally, in nonhelical hydromagnetic turbulence we have
q = 1/2, which suggests that a quantity with the di-
mensions u2l2 should be constant. Since 〈A2〉/µ0ρ0 has
such dimensions u2l2, we must carefully reassess our pre-
vious findings suggesting that the flow is fully three-
dimensional. Nevertheless, tentatively one can state

〈A2
2D〉 ∼ u2l2 ∼ l4τ−2 → q = 1/2, p = 1 (β = 1), (10)

where A2D is the gauge that aligns A with the intermedi-
ate rate-of-strain vector; see Section . Equations (8)–(10)
a decay law EM ∼ t−p with p = (1 + β) q, where β is a
parameter that is usually not associated with the subiner-
tial range scaling exponent α. Formally, however, we find
that α = β, so the parameter combinations in Table II
still apply with α = β, but this new formulation does not
imply anything about the subinertial range scaling.

INVERSE TRANSFER

The growth of spectral energy at small wavenumbers is
cautiously referred to as inverse transfer. By contrast, in
an inverse cascade there is a k-independent flux of some
quantity (e.g., magnetic helicity in three-dimensional hy-
dromagnetic turbulence) toward progressively smaller k.

An inverse cascade is known to exist in three dimen-
sional hydromagnetic turbulence if there is helicity. Also
two-dimensional hydrodynamic turbulence is known to
exhibit inverse cascade behavior. While any of these
mechanisms could in principle play a role in explaining
the behavior seen in the accompanying Letter, there may
also be completely different mechanisms that could po-
tentially explain the growth of spectral magnetic energy
at large length scales.

In order to narrow down possible reasons for the in-
verse transfer found in our simulations, we begin by dis-
cussing the concepts of eddy noise and the unwinding of
magnetic fields. We also determine the magnetic helicity
as well as various other helicities and examine whether
the flow could be locally two-dimensional, which might
provide yet another cause of inverse transfer, in which
case one could appeal to the inverse cascade of 〈A2

2D〉,
where A2D is the magnetic vector potential perpendic-
ular in a gauge in which it is locally aligned with the
intermediate eigenvector of the rate-of-strain tensor.
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Eddy noise

Eddy noise has been mentioned as a mechanism that
brings energy from the unresolved scales into resolved
scales [6, 7]. The physics of this mechanism is obscured
by the fact that it referred originally to numerical arti-
facts. In particular, it is not obvious that it really leads
to a spectral increase of power rather than just a prefer-
ential decay at small scales. Of course, at a descriptive
level, the concept of eddy noise may be the similar to
what we find, although there was never a clear demon-
stration of the resulting spectral evolution.

Unwinding magnetic fields

One could imagine that the unwinding of a magnetic
field leads to the conditions seen in the Letter. Again,
this is only a descriptive concept, but one could think of
addressing this question through a numerical experiment.
Winding up an externally imposed magnetic field leads
to magnetic flux expulsion. We now ask about the dy-
namical behavior of such a magnetic field after the diving
force is turned off.

FIG. 7: Field lines in a two-dimensional simulation in the
presence of a forced hydromagnetic eddy at an intermediate
time (left) and a later time (right) when the eddy has been
altered by the Lorentz force in a time-dependent manner.

There are several complications with this seemingly
simple idea. First, the original problem of Weiss was
not dynamic, but kinematic. Allowing the flow to be a
self-consistent solution of the momentum equation leads
to more complicated behavior, as demonstrated in Fig-
ure 7, where the driving force is given by f = ∇×ψẑ with
ψ = cos k1x cos k1y exp(−r2/2R2), and r2 = x2+y2. Sec-
ond, turning off the driving leads to propagating Alfvén
waves and long-term oscillations at large scales, which
is very different from what is seen in the Letter. How-
ever, this behavior can easily be removed by also turning
off the imposed magnetic field. Finally, the eddy shown
in Figure 7 is too big (R = 0.1) and there would be no
extended subinertial range. Thus, we now repeat this ex-

periment with a much smaller eddy of radius R = 0.002.
The resulting spectral evolution is shown in Figure 8.

FIG. 8: Kinetic and magnetic energy spectra. The two red
lines are proportional to k1 and t3, respectively.

In this experiment, the initial magnetic field is a global
one and it therefore unconstrained by causality. It turns
out that the magnetic energy now has a k3 subrange at
large scales. Interestingly, as the magnetic field decays,
there is a slight decay also at large length scales, so there
is no inverse transfer in such a setup.

Helicities for Runs A and B

In Table III we list various helicities for Runs A and B.
The normalized kinetic helicity 〈ω ·u〉/ωrmsurms and the
normalized cross helicity 2〈u · b〉/(u2

rms + b2rms) are less
than 0.4%, the normalized current helicity 〈j ·b〉/jrmsbrms

is less than 2%, and the normalized magnetic helicity
k1〈a·b〉/b

2
rms is less than 1%. In this Letter, it was shown

that the level of magnetic helicity was small enough so as
not to constrain (i.e., enhance) the growth of the integral
scale. Also the other helicities appear to be small enough
for being important in explaining the inverse transfer.

TABLE III: Various helicities for Run A of the Letter.

quantity expression value

kinetic hel. 〈ω · u〉/ωrmsurms 0.00364

current hel. 〈j · b〉/jrmsbrms 0.01693

cross hel. 2〈u · b〉/(u2
rms + b2

rms) −0.00318

magnetic hel. k1〈a · b〉/b2
rms 0.00976
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Projections onto strain tensor

To examine whether there is a tendency for the tur-
bulence to become locally two-dimensional, we compute
the rate-of-strain tensor,

sij = 1
2 (ui,j + uj,i) . (11)

Since sij is symmetric, it has three real eigenvalues, λi

for i = 1, 2, and 3. They are traditionally ordered such
that

λ1 < λ2 < λ3. (12)

The corresponding eigenvectors are called êi.
If the flow was incompressible, their sum would vanish,

which is here also approximately the case. The largest
eigenvalue λ3 corresponds to stretching in the direction
ê3, and the most negative one, λ1, corresponds to com-
pression in the direction ê1.

It has been known for some time that in isotropic tur-
bulence the vorticity vector tends to be aligned with the
direction ê2 and is therefore normal to the plane where
the flow would be two-dimensional. If the turbulence was
perfectly two-dimensional, the intermediate eigenvalue of
the rate-of-strain tensor would vanish. This is however
not the case; see Figure 9, where we plot probability den-
sity functions (PDFs) of the three eigenvalues.

FIG. 9: PDF of the eigenvalues of the rate-of-strain tensor.
Note that the intermediate ones are not vanishing, as expected
for two-dimensional turbulence.

In the present simulations, we see all the usual charac-
teristics of three-dimensional MHD turbulence where the
vorticity vector ω is aligned with the eigenvector ê2. Also
the magnetic field B is aligned with ê2; see Figure 10.
Here, the PDFs p(cosφ) are normalized such that

∫ 1

0

p(cosφ) d cosφ = 1. (13)

Furthermore, while ω is perpendicular to ê1 and ê3, the
angle between B and both ê1 and ê3 is about 45◦ (see

lower panel of Figure 10), which was first found in MHD
shear flows; see Ref. [8], who interpreted their finding as
alignment with the direction of the overall shear. We
recall that a shear flow can be decomposed into a rota-
tional and a straining motion [9]. The rotational motion
is not captured by the strain tensor. The directions of
compression and stretching are then at 45◦ angles with
respect to the direction of the shear [10]. Similar results
have recently also been obtained in Ref. [11].

FIG. 10: Alignment of ω and B with the eigenvectors of the
rate-of-strain tensor.

Next, we compute the projections of various vectors σ

onto sij :

sσ = 〈σisijσj〉/〈σ
2〉, (14)

where σ stands for either u, ω, B, or J . For ω and B,
these values quantify the production of ω and B, respec-
tively, but for the other quantities no such interpretation
exists. In Table IV we give the mean and rms values of
the sσ. Here we also compare with the projection of A

onto the direction ê2, i.e., A → ê2(A · ê2), and therefore
sA = 〈λ2(A · ê2)

2〉/〈(A · ê2)
2〉.

Note that sA is not particularly small, as one would
have expected for a locally nearly two-dimensional flow
and is comparable to all the other terms. The average of
〈BisijBj〉/〈B

2〉 is actually the smallest one among them
all.
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TABLE IV: Mean and rms values of the normalized projec-
tions sσ with σ = u, ω, B, and J onto sij and a comparison
with the value of sA defined in the text.

σ u ω B J A

mean 0.009 0.019 −0.001 0.005 0.007

rms 0.145 0.204 0.069 0.064 0.106

Conservation of squared potential?

In the Letter, we have argued that the inverse transfer
can be a consequence of the different subinertial range
scalings for kinetic and magnetic energy spectra. How-
ever, as a very different possibility we also have to con-
sider an inverse cascade due to the approximate invari-
ance of 〈A2〉 in two dimensions [12]. This would seem
surprising given the similar widths of the PDFs of the
intermediate eigenvalue λ2 and those of λ1 and λ3, which
suggests that the flow cannot be regarded as locally two-
dimensional.

The quantity 〈A2〉 is obviously gauge-dependent.
However, the relevant gauge is one that aligns A locally
with ê2. Thus, we use the new vector potential

A2D = A + ∇Λ, (15)

such that

0 = ê2 × A + ê2 × ∇Λ. (16)

Taking the curl yields

0 = ê2 · ∇ × (ê2 × A) + ê2 · ∇ × (ê2 × ∇Λ). (17)

We define Ã(k, t) =
∫

A(x, t) e−ik·x d3x as the Fourier
transformed vector potential to obtain

∇Λ = −

∫
k · Ã − (ê2 · k)(ê2 · Ã)

k2 − (ê2 · k)2
k eik·x d3k

(2π)3
, (18)

TABLE V: Values of 〈A2〉, 〈A2

2D〉, and 〈B2〉 for a low reso-
lution run (1443 mesh points) and the down-sampled Run A
of the Letter (23043 mesh points).

resol. t 〈A2〉 〈A2

2D〉 〈B2〉

1443 10 1.8 × 10−5 9.7 × 10−6 1.8 × 10−4

50 1.2 × 10−5 6.0 × 10−6 8.1 × 10−5

100 9.4 × 10−6 5.1 × 10−6 4.4 × 10−5

200 6.6 × 10−6 5.0 × 10−6 2.0 × 10−5

23043 50 5.3 × 10−5 2.0 × 10−5 8.2 × 10−4

100 4.4 × 10−5 9.9 × 10−6 4.0 × 10−4

150 4.0 × 10−5 8.7 × 10−6 2.6 × 10−4

In Table V we summarize the values of 〈A2〉 (in the
gauge used in the code, i.e., the Weyl gauge) and 〈A2

2D〉,
and compare their temporal changes with that of 〈B2〉
for a low resolution run and the down-sampled Run A of
the Letter. Note first of all that 〈A2

2D〉 is always smaller
than 〈A2〉. This is expected, because A contains redun-
dant contributions. Second, 〈A2

2D〉 decays more slowly
than 〈B2〉, demonstrating that 〈A2

2D〉 is approximately
conserved. Furthermore, the ratio (〈A2

2D〉/〈B
2〉)1/2 is a

length scale of around 0.2 for Run A, which is well above
the scale Taylor micro scale shown in Fig. 4 of the Letter.
Thus, the typical values of 〈A2

2D〉 may well be significant
for explaining the ξM ∼ t1/2 scaling and its approximate
conservation could be responsible for the inverse transfer.

Reynolds and Lundquist numbers

Since urms, vA, and kM are all proportional to t−1/2 the
decay is self-similar in such a way that the Reynolds and
Lundquist numbers, Re = urms/νkM and Lu = vA/ηkM ,
remain constant. This is clearly demonstrated in Fig-
ure 11, where we plot Re (dotted) and Lu (solid) both
for Runs A and B with PrM = 1 and 10, respectively.

FIG. 11: Instantaneous Reynolds and Lundquist numbers for
Runs A and B with PrM = 1 and 10, respectively.

During the decay, the approximate values of Re and Lu
are 230 and 700 for Run A and 130 and 6300 for Run B.
As discussed in the Letter, for Run B the value of Lu is
so huge that, even though we also have a large number of
mesh points, one must be concerned about the numerical
accuracy of the simulation. One should note, however,
that, because PrM = 10 is larger than unity, most of the
energy is dissipated viscously. Therefore, although Lu is
huge, less magnetic energy needs to be dissipated than
for PrM = 1; see Ref. [13] and references therein.

ENERGY TRANSFERS

In the Letter we considered the spectral transfer func-
tion Tkpq = 〈Jk · (up × Bq)〉, which governs the gain
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of magnetic energy and correspondingly the loss of ki-
netic energy. There is also a kinetic energy transfer
function Skpq, which describes the transfer between dif-
ferent scales. It vanishes for k = p and is given by
Skpq = ρ0〈u

k · (up × ωq)〉, where ρ0 = 〈ρ〉 is the av-
erage density; compressibility effects have been ignored
here. The transfer function Skpq enters only in the ki-
netic energy equation. Thus, the magnetic and kinetic
energy equations are given by

d

dt
〈 1
2B2

k〉 = Tkpq − ηk2〈B2
k〉, (19)

d

dt
〈 1
2ρ0u

2
p〉 = −Tkpq − Skpq − νp2〈ρ0u

2
p〉. (20)

Swapping indices k and p in Equation (20) yields

d

dt
〈 1
2ρ0u

2
k〉 = −Tpkq − Spkq − νk2〈ρ0u

2
k〉. (21)

To get the total energy at wavenumber k, we now add
Equations (19) and (21), i.e.,

1
2

d

dt
〈B2

k + ρ0u
2
k〉 = Tkpq − Tpkq − Spkq

− ηk2〈B2
k〉 − νk2〈ρ0u

2
k〉. (22)

The total energy has contributions from all p and q and
it is of interest to separate between those that are larger
and smaller than k, so we write

1
2

d

dt
〈B2

k + ρ0u
2
k〉 = Πq≥k

p≥k + Πq<k
p≥k + Πq≥k

p<k + Πq<k
p<k

− ηk2〈B2
k〉 − νk2〈ρ0u

2
k〉. (23)

where

Πq
<

>k

p
<

>k
=

∑
p

<

>k

∑
q

<

>k

(Tkpq − Tpkq − Spkq) . (24)

The results in Figure 12 show that Πq<k
p<k is positive for

k/k0 > 0.25, demonstrating that there is a gain of total
energy at wavenumbers k/k0 > 0.25 from interactions
with smaller wavenumbers. This shows that there is for-
ward transfer at those wavenumbers. Furthermore, for
k/k0 > 0.25, the spectral transfer is approximately inde-
pendent of k, as expected for a proper forward cascade.
There is also a short range 0.15 < k/k0 < 0.3, where

Πq<k
p>k is negative. This suggests the existence of inverse

transfer resulting from mixed interactions of p > k and
q < k. In our simulations, |Tkpq| dominates over |Skpq|,
so the dominant contribution to wavenumbers q comes
from the magnetic field.

FIG. 12: Energy transfer functions defined in Equation (24).
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