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ABSTRACT

Nonlinear mean-field models of the solar dynamo show long-term variability, which may be relevant to different
states of activity inferred from long-term radiocarbon data. This paper is aimed at probing the dynamo hysteresis
predicted by the recent mean-field models of Kitchatinov & Olemskoy with direct numerical simulations. We
perform three-dimensional (3D) simulations of large-scale dynamos in a shearing box with helically forced
turbulence. As an initial condition, we either take a weak random magnetic field or we start from a snapshot of an
earlier simulation. Two quasi-stable states are found to coexist in a certain range of parameters close to the onset of
the large-scale dynamo. The simulations converge to one of these states depending on the initial conditions. When
either the fractional helicity or the magnetic Prandtl number is increased between successive runs above the critical
value for onset of the dynamo, the field strength jumps to a finite value. However, when the fractional helicity or
the magnetic Prandtl number is then decreased again, the field strength stays at a similar value (strong field branch)
even below the original onset. We also observe intermittent decaying phases away from the strong field branch
close to the point where large-scale dynamo action is just possible. The dynamo hysteresis seen previously in
mean-field models is thus reproduced by 3D simulations. Its possible relation to distinct modes of solar activity
such as grand minima is discussed.
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1. INTRODUCTION

The solar magnetic activity cycle is not a strictly periodic
phenomenon. Its duration and strength vary from cycle to
cycle. An impressive example of this aperiodicity is the famous
Maunder minimum when sunspots were extremely scarce over
about 70 yr (Hoyt & Schatten 1996). Prolonged events of low
magnetic activity like the Maunder minimum are typical
characteristics of the Sun. Radiocarbon data reveal solar
activity variations for the past ∼11,000 yr, with 27 grand
minima covering about 17% of the time (Usoskin et al. 2007;
Usoskin 2013).

Based on the extensive literature on nonlinear dynamos
displaying long-term variability, we can classify two broad
theories of grand minima: amplitude modulation through
nonlinearity (Spiegel 1977, pp. 267–283; Tavakol 1978;
Ruzmaikin 1981) and externally imposed noise (Choud-
huri 1992), as has been extensively reviewed by Charbonneau
(2010). Amplitude modulation is found to exist in many
nonlinear dynamo models. This can result from the coupling
between various dynamo modes with close frequencies (e.g.,
Brandenburg et al. 1989a, 1989b; Sokoloff & Nesme-
Ribes 1994; Beer et al. 1998; Brooke et al. 1998) and/or from
the interaction between magnetic field and differential rotation
(Kitchatinov et al. 1994; Küker et al. 1999). However, the
latter is less likely to apply to the Sun on the grounds that the
variation in observed differential rotation is weak. Chaotic
behavior of nonlinear dynamo models was also identified to be
a cause of amplitude modulation in low-order models (e.g.,
Weiss et al. 1984). Originally this appeared to be a feature of
highly truncated models, but it was later also found in two-
dimensional models (Covas et al. 1998). On the other hand,
since turbulence is the driver of dynamo action in stars, grand
minima through the resulting noise could be possible. Indeed,

dynamo coefficients such as the α effect and the Babcock–
Leighton type α effect (through variations in the tilt angle of
bipolar active regions; Dasi-Espuig et al. 2010) are known to
fluctuate (Hoyng 1988; Brandenburg et al. 2008). Therefore,
fluctuations in the dynamo parameters (e.g., Choudhuri 1992;
Moss et al. 1992; Hoyng 1993; Ossendrijver et al. 1996;
Charbonneau et al. 2004; Moss et al. 2008; Choudhuri &
Karak 2009; Passos et al. 2014) and even the meridional
circulation (Karak 2010) are naturally invoked to explain the
origin of grand minima. Turbulence also introduces “magnetic
noise” that directly affects the mean electromotive force
(Brandenburg & Spiegel 2008). The fluctuations cause
irregular changes in dynamo cycle amplitudes with occasional
wandering into states of low cycle strength. Dynamo models
with fluctuating parameters generally reproduce the grand
minima statistics (e.g., Choudhuri & Karak 2012; Karak &
Choudhuri 2013; Olemskoy & Kitchatinov 2013). Recent
analysis of radiocarbon data by Usoskin et al. (2014), however,
showed that grand minima do not constitute a low-activity tail
of the distribution common for all activity cycles, but represent
a separate activity mode that cannot be interpreted as a
fluctuation of the “regular” mode. They concluded that solar
dynamo regimes in grand minima and in regular cycles are
distinct.
The difference in dynamo operation between grand minima

and regular activity modes can be interpreted as a consequence
of a hysteresis phenomenon found in nonlinear mean-field
dynamo models (Kitchatinov & Olemskoy 2010). In the
majority of such models of the solar dynamo, suppression of
poloidal field generation by the magnetic field (α-quenching) is
invoked. This nonlinearity serves well for stabilizing magnetic
field growth. The dynamo amplification of the magnetic field
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takes place when the dynamo number
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exceeds a critical value c, where h h h= +T t is the total
(microphysical plus turbulent) magnetic diffusivity, DΩ is the
angular velocity variation in the Sun, and α is the measure of
the α effect; see Krause & Rädler (1980). A decrease in α with
increasing magnetic field strength reduces the effective dynamo
number to saturate the field growth.

However, it is not only α but also the eddy diffusivity ht that
is magnetically quenched. Using predictions of the quasi-linear
theory for α- and ht-quenching results in a non-monotonous
dependence of the effective (magnetically modified) dynamo
number on the magnetic field (see Figure 1 in Kitchatinov &
Olemskoy 2010). This number initially increases with the
magnetic field but the dependence changes to a decrease for
stronger fields. If the dynamo number (1) is increased from a
subcritical value, the saturated field amplitude jumps to a finite
value of the order of the equipartition field just after  exceeds
c and then varies smoothly with increasing  (Rüdiger
et al. 1994). If the dynamo number is then decreased, dynamo-
generated finite fields survive for < c, but for sufficiently
small values of , the field eventually falls to zero. The
saturated field amplitude, therefore, depends on the pre-history
of the  variation (the dynamo hysteresis). In a finite range of
-values, there are two stable solutions with considerably
different characteristic strengths of the magnetic field. Fluctua-
tions in dynamo parameters provoke irregular transitions
between these two solutions (Kitchatinov & Olemskoy 2010).
The dynamo hysteresis can thus explain the distinction between
grand minima and regular activity modes found by Usoskin
et al. (2014).

Kitchatinov & Olemskoy (2010) used a mean-field dynamo
model that cannot be free from arbitrary prescriptions. Apart
from magnetic quenching of α and ht, there are other
nonlinearities that all are implicitly present in direct numerical
simulations. This paper probes the dynamo hysteresis with such
simulations. Using a shearing box setup, we perform simula-
tions of helically forced turbulence, which produce oscillating
(solar-type) dynamos. In principle, this can also be studied in
realistic global rotating magneto-convection simulations in
spherical geometry (e.g., Racine et al. 2011; Nelson et al. 2013;
Karak et al. 2015), but those simulations are computationally
more demanding and would benefit from guidance through
simpler turbulence simulations. By varying the amount of
relative kinetic helicity, the hysteresis-type dependence of the
oscillation amplitude on the pre-history of helicity variations is
clearly seen. Similar behavior is also found when magnetic
diffusion is varied. The simulations generally confirm the
presence of two distinct regimes of large-scale dynamos in the
vicinity of the dynamo threshold.

We note that turbulent large-scale dynamos near onset have
already been studied by Rempel et al. (2009), who used ABC
flow forcing. They found intermittent large-scale fields right
after dynamo onset, but in their case no cyclic dynamos were
possible nor did they find evidence of two distinct states.

2. THE MODEL SETUP

In our model, we assume the fluid to be isothermal and
compressible. It obeys the equation of state r=p cs

2 , with

constant sound speed cs. Hence we solve the following
equations:

r

r rn
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Here = ¶ ¶ + +U UD Dt t ( ) ·S( ) is the advective time
derivative, =U Sx(0, , 0)S( ) with =S constant is the imposed
uniform large-scale shear flow, ν is the constant kinematic
viscosity, A is the magnetic vector potential, = ´B A is
the magnetic field, m = ´-J B0

1 is the current density, η is
the constant microscopic diffusivity, and f is a forcing function
to be specified below. The traceless rate of strain tensor S is
given by d = + - US U U( ) · ,ij i j j i ij

1

2 , ,
1

3
where the commas

denote partial differentiation with respect to the coordinate (j or
i). The contribution of U S( ) to S is omitted, because it would
only introduce a small contribution.
Turbulence is sustained by supplying energy to the system

through a forcing function =f f x t( , ), which is helical and
random in time (δ-correlated). It is defined as

f= é
ëê + ù

ûú{ }f x f k xt N i t i t( , ) Re exp ( ) · ( ) , (5)k t( )

where x is the position vector. At each timestep the wavevector
k t( ) randomly takes any value from many possible wavevec-
tors in a certain range around a given forcing wavenumber kf .
The phase p f p- < ⩽t( ) also changes randomly at every
timestep. On dimensional grounds, we choose

d= ∣ ∣( )kN f c c t0 s s
1 2, where f0 is a non-dimensional forcing

amplitude. The transverse helical waves are produced via
Fourier amplitudes (Haugen et al. 2004)

d s

s
= =

-

+


f R f R

i k
· with

ˆ

1
, (6)k k ij

ij ijk k(nohel)

2

where σ is a measure of the helicity of the forcing; for positive
maximum helicity, s = 1. The nonhelical forcing function,

= ´ -( ) ( )f k k kê · ê ,k
(nohel) 2 2 where ê is an arbitrary

unit vector not aligned with k. Note that =∣ ∣f 1k
2 and

s s´ = +( )f k fi k· * 2 (1 )k k
2 .

The fluid and magnetic Reynolds numbers and the magnetic
Prandtl number are defined as

n h n h= = =u k R u k PRe , , , (7)rms f m rms f m

where = á ñuurms
2 1 2 is the rms value of the velocity in the

statistically stationary state with á ñ· denoting the average over
the whole domain and kf is the mean forcing wavenumber.
The boundary conditions are shearing–periodic in the x

direction and periodic in the y and z directions, with dimensions
p= = =L L L 2x y z . We always choose = -S 0.2, =f 0.010 ,

and =k k5f 1 or k3 1, where p= =k L2 1x1 is the smallest
possible wavenumber of the box. We use non-dimensional
units by setting r m= = =c 1s 0 0 , where r r= á ñ0 is the

2
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volume-averaged density, which is constant in time. As initial
conditions we take r= =u ln 0 and a small-scale low
amplitude ( -10 4) Gaussian noise for A. All computations are
performed using the PENCIL CODE.5 The grid resolution of all
runs presented in this paper is 96 × 96 × 96.

3. RESULTS

We begin by focusing on the following two sets of
simulations. In one, we have simulations for different values
of σ, by taking weak fields as initial conditions (described in
Section 2). These simulations are performed to identify the
onset of the dynamo. In the other set, we take as initial
conditions a snapshot of a previous simulation right after the
onset of dynamo action. The corresponding dynamo solution is
oscillatory. We perform several simulations by successively
reducing the helicity by a small value and using the resulting
fields of the previous simulation as the initial condition. We
continue this procedure until there is only a decaying solution.
In this way we identify the regime of dynamo hysteresis as the
location where, depending on the initial conditions, both non-
decaying oscillatory dynamos and decaying solutions are
possible, i.e., the system becomes bistable. Finally, we repeat

the whole procedure in a different parameter regime and
explore the robustness of the results.

3.1. Onset of Dynamo Action

We perform a set of simulations by increasing the strength of
the helicity parameter σ of the turbulent forcing, starting from 0
to 1 (Set I). For this set we fix h n= = 0.005 and =k k5f 1.
Runs A–M in Table 1 show these simulations. Along with
other important parameters, we show a rough measure of the
dynamo number defined as = aD C CΩ , where a h=aC k0 T 1

and h= ∣ ∣C S kΩ T 1
2, with wa t= - á ñu·0

1

3
, t = -( )u krms f

1,

h h h= + ,T t0 and h t= á ñut0
1

3
2 . In Figure 1 we show the

temporal mean in the statistically stationary state of the large-
scale magnetic field over the whole domain, =Brms

áá ñ + á ñ + á ñ ñB B B ,x y y y z y xzt
2 2 2 1 2 normalized by =B ueq rms. We

see that the large-scale field is zero when σ is below about 0.32,
implying there is no dynamo action. For s = 0.32 (Run D) in
Figure 2 we show the spatio-temporal variation of the y-
component of the mean magnetic field = á ñB By y xy (which
corresponds to the toroidal field in spherical coordinates) and
the time series of By

2 at an arbitrarily chosen mesh point,

normalized by Beq
2 (which may be considered as a measure of

sunspot number). Here we do not see clear magnetic
oscillations. A few cycles started to appear at around =t 2,
but they did not survive. The overall field is also very weak. On
increasing σ slightly we observe a dynamo transition at
s = 0.322 (Run E) and the magnetic field becomes strong
( >B Brms eq). Hence the critical value of σ for dynamo action is
s » 0.322c . The spatio-temporal variation for this case is
shown in Figure 3, where we see clear magnetic cycles with
dynamo wave propagation along the positive z direction.
Together with positive helicity (which results in a negative α)
and negative shear, migration in the positive z direction is
indeed expected. However, the cycles are not regular; the
amplitude varies from cycle to cycle, similar to the observed
solar cycle. We recall that in stochastically forced mean-field
dynamo models, the cycle irregularity is related to the amount
of imposed fluctuations and the corresponding coherence times
(see examples in Charbonneau 2010; Karak & Choud-
huri 2011). In the present simulations, however, this cycle
irregularity is naturally coming because of the finite number of
eddies and it is directly related to the scale-separation ratio
(k kf 1), which has been demonstrated in Brandenburg &
Guerrero (2012). For s s> c we always observe clear magnetic
cycles and the value of Brms remains around Beq; see Figure 1.

Figure 1. Dynamo hysteresis, as seen in the rms value of the large-scale
magnetic field as a function of σ (Set I). The filled circles (Runs A–L) and the
red diamonds (Runs E1–E12) are from simulations that started with weak
random seed fields and strong oscillatory fields of the previous simulation,
respectively. Short arrows denote the zero values for Runs A–D. Runs E5–E11
show intermittent behavior.

Figure 2. Top: By , bottom: its time series at an arbitrarily chosen mesh point as
a function of time, normalized by the diffusive time h -k( )1

2 1. These results are
from a simulation started with a weak seed field at σ = 0.32, which is just
before the onset of dynamo action (Run D).

Figure 3. Results from the simulation started from a weak seed field at
σ = 0.322, which is just after the dynamo transition (Run E). The format is the
same as Figure 2.

5 http://pencil-code.googlecode.com
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3.2. Dynamo Hysteresis

Now we take a snapshot of a simulation at s s= = 0.322c
(Run E, which is shown in Figure 3) and perform a set of
simulations by reducing σ slowly and taking the output of the
previous simulation as the initial conditions. Runs E1–E12 in
Table 1 represent such cases and the corresponding Brms are
shown in Figure 1 as red diamonds. We observe oscillatory
solutions over a broad parameter range, s <⩽0.22 0.322, in
which there are otherwise decaying solutions when started from
weak fields. Therefore, in this range, the results depend on the
initial conditions, i.e., system becomes bistable. All the
simulations are run for a sufficiently long time to ensure that
they remain in the same state. We recall that Brummell et al.
(2001) studied the linear and nonlinear dynamo properties
using time-dependent ABC flows forcing in triply periodic
Cartesian geometry. Their simulations are similar to those of
Rempel et al. (2009), but for an incompressible fluid. In the
nonlinear regime, Brummell et al. (2001) found two distinct
classes of behavior depending on the initial hydromagnetic
properties of the forced ABC flow, similar to earlier results by
Fuchs et al. (1999) in spherical geometry. One produces the
stationary solution followed by an initial exponential growth of
the magnetic field, whereas the other initially produces a
dynamo solution but later turns into a decaying one because the
flow itself evolves to a non-dynamo stage through hydro-
dynamic instability. However, our study of hysteresis is
different from Brummell et al. (2001) because we take

different initial conditions for velocity as well as magnetic
fields and we believe that the magnetic quenching rather than
the hydrodynamic instability is the cause of the bistability.
In Figure 4 we show the magnetic oscillations from the last

run (Run E11) at s = 0.22, below which the oscillations die
completely. We see that the magnetic cycles persist most of the
time in this simulation. The interesting feature is that
occasionally some of the cycles disappear or become weaker.

Table 1
Summary of the Runs

Set I (σ Varied) Set II (Pm Varied)

Run σ u crms s Rm D B̃ B̃x B̃y Osc Run Pm u crms s Rm D B̃ B̃x B̃y Osc

A 0.25 0.32 12.7 3.28 0.00 0.00 0.00 N N 0.062 0.23 0.6 0.80 0.00 0.00 0.00 N
B 0.27 0.30 11.9 4.10 0.00 0.00 0.00 N O 0.100 0.34 1.3 0.86 0.00 0.00 0.00 N
C 0.31 0.35 13.6 3.33 0.00 0.00 0.00 N P 0.167 0.28 1.8 2.49 0.00 0.00 0.00 N
D 0.32 0.32 12.5 4.26 0.00 0.00 0.00 N Q 0.250 0.31 3.1 3.07 0.00 0.00 0.00 N
E 0.322 0.12 4.8 22.0 3.14 0.21 3.08 Y R 0.263 0.27 2.8 4.35 0.00 0.00 0.00 N
F 0.325 0.12 4.9 22.1 3.14 0.21 3.09 Y S 0.278 0.25 2.7 5.57 0.00 0.00 0.00 N
G 0.327 0.12 4.8 22.7 3.17 0.21 3.16 Y T 0.294 0.16 1.8 6.70 1.68 0.23 1.59 Y
H 0.33 0.12 4.8 23.0 3.19 0.21 3.14 Y U 0.312 0.18 2.3 5.21 1.51 0.20 1.48 Y
I 0.35 0.21 8.3 7.31 1.09 0.18 0.93 Y V 0.357 0.19 2.6 5.74 1.66 0.22 1.75 Y
J 0.40 0.22 8.6 7.47 1.00 0.20 0.76 Y W 0.500 0.19 3.8 7.18 2.03 0.29 2.93 Y
K 0.45 0.22 8.7 7.79 0.97 0.21 0.73 Y X 0.556 0.23 5.0 6.14 1.12 0.22 0.93 Y
L 0.50 0.23 8.9 7.89 0.98 0.22 0.71 Y Y 0.625 0.23 5.8 6.51 1.05 0.23 0.81 Y
M 1.00 0.23 9.1 9.14 0.97 0.27 0.64 Y Z 0.714 0.24 6.7 6.69 1.03 0.23 0.87 Y

E1 0.32 0.13 5.0 20.0 3.01 0.20 2.96 Y T1 0.278 0.13 1.4 8.52 1.92 0.29 1.88 Y
E2 0.31 0.24 9.6 4.88 1.47 0.10 1.43 Y T2 0.250 0.13 1.3 7.45 1.69 0.27 1.65 Y
E3 0.30 0.28 11.2 3.30 1.13 0.09 1.06 Y T3 0.200 0.13 1.0 6.25 1.34 0.26 1.29 Y
E4 0.29 0.25 10.0 4.16 1.39 0.10 1.37 Y T4 0.179 0.14 1.0 5.29 1.10 0.23 1.04 Y
E5 0.28 0.30 11.9 2.74 1.00 0.08 0.93 Int T5 0.167 0.15 1.0 4.54 0.92 0.20 0.86 Y
E6 0.27 0.34 13.4 2.12 0.78 0.07 0.72 Int T6 0.161 0.15 0.9 4.43 0.88 0.20 0.82 Y
E7 0.26 0.36 13.9 1.91 0.72 0.06 0.66 Int T7 0.156 0.33 2.0 1.60 0.00 0.00 0.00 N
E8 0.25 0.37 14.7 1.77 0.67 0.06 0.63 Int T8 0.154 0.35 2.1 1.44 0.00 0.00 0.00 N
E9 0.24 0.34 14.6 1.97 0.35 0.04 0.29 Int T9 0.152 0.32 1.9 1.71 0.00 0.00 0.00 N
E10 0.23 0.33 12.8 2.36 0.52 0.05 0.45 Int T10 0.147 0.21 1.2 3.25 0.00 0.00 0.00 N
E11 0.22 0.28 11.0 3.17 0.52 0.05 0.43 Int T11 0.143 0.39 2.2 1.06 0.00 0.00 0.00 N
E12 0.21 0.32 12.5 2.93 0.00 0.00 0.00 N T12 0.132 0.31 1.6 1.47 0.00 0.00 0.00 N

Note. Runs A–E12 belong to Set I in which σ is varied. Runs A–M are started from weak seed fields. Run E1 is performed from a snapshot of Run E (bold), but at
slightly reduced σ. A similar procedure is continued from Runs E1 E2 E3 ... E12. Runs N–T12 belong to Set II in which Pm is varied. Runs N–Z are started
from weak seed fields. Run T1 is started from a snapshot of Run T (bold), but at decreased Pm, and a similar procedure is performed for Runs T1 T2 T3 ...
T12. =B B B˜

rms eq, = á ñB B Bx̃ x
2 1 2

eq, and = á ñB B Bỹ y
2 1 2

eq. The columns “Osc” indicate whether there are oscillations (Y) or not (N) and “Int” denotes intermittent

behavior.

Figure 4. Example of a subcritical dynamo in the bistable state of Figure 1: the
simulation started from a strong initial field at σ = 0.22, just before the
decaying solution (Run E11). The format is the same as Figure 2, but here the
x-component of mean-field Bx is also displayed in the middle panel.
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By comparing the first two panels of Figure 4 we note that
during weaker cycles (for example, at ~t 130 and 154), Bx is
not reduced as much as By , implying that the α effect
dominates over the Ω effect. This kind of intermittent behavior
somewhat resembles the grand minima observed in the Sun.
We see a similar behavior for many runs in the bistable region,
particularly in Runs E5–E11.

3.3. Dynamo Hysteresis: Dependence on Pm

To explore the robustness of the existence of dynamo
hysteresis, we repeat the same procedure in different parameter
regimes of the simulations. Here we fix σ at 1 (fully helical
flow) but vary the magnetic diffusivity η in each simulation;
see Runs N–Z of Set II in Table 1. Hence, Pm varies, but
n = 0.005 is unchanged. This is similar to the experiments of
Rempel et al. (2009), who used ABC flow forcing.

The black points in Figure 5 show Brms from different
simulations started with weak seed fields as the initial
conditions (Runs N–Z). We see that when Pm just exceeds
about 0.29, the dynamo is excited and the magnetic field
becomes oscillatory. The critical Pm for dynamo action is

»P 0.294m
c .
Next, as before, we take an oscillatory dynamo solution

(Run T) as the initial condition for the new simulation and
decrease Pm by a small value progressively in each simulation
by taking as initial conditions the last snapshot from the
previous simulation. Runs T1–T12 in Table 1 are such
examples and the corresponding Brms are shown as red

diamonds in Figure 5. We see that, up to about =P 0.16m ,
we obtain an oscillatory large-scale magnetic field. Figure 6
shows the typical magnetic cycles from a simulation at

=P 0.1613m (Run T6) below which the oscillation dies. Note
that in the bistable stage, unlike in the previous set of
simulations, for example in Figure 4 where some of the
magnetic cycles disappear occasionally, here we observe cycles
all of the time. However, when we repeat the whole procedure
at s = 0.5 instead of 1, we see this kind of intermittent
behavior in the bistable regime. To obtain even more
confidence in the results we repeated another set of simulations
(Set III) at =k 3f and n = ´ -8 10 3. These simulations are at
slightly higher Rm. Table 2 gives a summary of these runs, and
Figure 7 shows the corresponding dynamo hysteresis. We
clearly see a similar behavior.

Figure 5. Similar to Figure 1, but from a different set of simulations (Set II,
Runs N–T12; see also Table 1) where η is varied while σ and ν are held fixed.

Figure 6. Example of a subcritical dynamo in the bistable state of Figure 5: the
simulation started from a strong initial field at Pm = 0.1613, just above the
value for the decaying solution (Run T6). The format is the same as in
Figure 2.

Table 2
Same as Set II in Table 1 but Simulations are Performed at Forcing

Wavenumbers =k 3f and n = ´ -8 10 3

Set III

Run Pm u crms s Rm D B̃ B̃x B̃y Osc

A′ 0.50 0.28 5.5 2.63 0.00 0.00 0.00 N
B′ 1.00 0.38 15.0 1.71 0.00 0.00 0.00 N
C′ 1.14 0.38 17.4 1.76 0.00 0.00 0.00 N
D′ 1.33 0.32 17.2 2.77 0.00 0.00 0.00 N
E′ 1.60 0.14 9.1 14.81 2.23 0.19 2.08 Y
F′ 2.00 0.13 10.8 18.66 2.50 0.19 2.39 Y
G′ 2.67 0.13 14.0 23.13 2.59 0.18 2.36 Y
H′ 4.00 0.13 21.3 25.01 2.85 0.15 2.63 Y
I′ 8.00 0.13 42.6 29.19 2.52 0.12 2.25 Y

E′1 1.14 0.13 6.0 13.99 2.20 0.22 2.09 Y
E′2 1.00 0.14 5.5 11.15 1.95 0.21 1.85 Y
E′3 0.89 0.14 4.8 10.74 1.89 0.22 1.80 Y
E′4 0.80 0.15 4.7 8.36 1.72 0.21 1.61 Y
E′5 0.73 0.14 4.0 8.79 1.72 0.22 1.64 Y
E′6 0.67 0.15 3.9 7.44 1.56 0.21 1.48 Y
E′7 0.62 0.14 3.4 7.59 1.51 0.22 1.43 Y
E′8 0.57 0.14 3.1 7.48 1.46 0.22 1.36 Y
E′9 0.53 0.15 3.2 5.64 1.28 0.21 1.23 Y
E′10 0.50 0.36 7.2 1.36 0.00 0.00 0.00 N

Note. Runs E′1–E′10 have been restarted from Run E′ (bold).

Figure 7. Similar to Figure 5 but simulations are performed at =k 3f and
n = ´ -8 10 3 (Set III in Table 2).
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4. COMPARISON WITH ANALYTIC PREDICTIONS

To understand why the hysteresis discussed in this paper has
not been seen before, we need to assess more carefully the
parameter regimes of our solutions. Given that we use
(shearing) periodic boundary conditions, there are no magnetic
helicity fluxes in or out of the domain, so we can describe the
solutions by comparing with the analytic results of Blackman
& Brandenburg (2002, hereafter BB02). The dynamical
quenching theory used in BB02 was already compared with
numerical solutions by Käpylä & Brandenburg (2009). One of
the predictions they tested was the saturation level of the mean
magnetic field, which they gave in the form

h
h

» -
æ

è
çççç

+
ö

ø
÷÷÷÷÷




B

B

k

k
1 , (8)rms

2

eq
2

f f

m m t0

where kf and km are, respectively, the effective wavenumbers
of the fluctuating and mean fields, defined via

= á ñ á ñj b a bk · ·f
2 and = á ñ á ñJ B A Bk · ·m

2 , and  f and
m are their fractional helicities, defined via

m m= á ñ á ñ = j b b J B Bk k· , · . (9)f f 0
2

m m 0
2

Figure 8 shows our data from two sets of simulations (Sets
I–II) that produce significant large-scale magnetic fields, i.e.,
Runs E–E11 from Set I and Runs T–T6 from Set II. We have
added labels to some of the data points to identify the runs. We
note that, unlike Figures 1 and 5, where we have plotted
B Brms eq, here we plot B Brms

2
eq

2, but in a smaller range, which
is why the data in Figure 8 show a nearly linear variation. Even
in a limited range, apart from a small offset, there is a
reasonable agreement between our data and the theory given by
Equation (8); see the dotted line in Figure 8. However, Käpylä
& Brandenburg (2009) had data in a wider range and found
better agreement for higher field strengths. In Figure 8 we
observe that, when increasing the helicity parameter σ (from
Runs E to M in Set I), both the wavenumber ratio of fluctuating
to mean fields, as defined by Equation (9), and the strength of
the mean field decrease. A similar trend is followed while
decreasing σ (Runs E1–E8), except for the last few runs (Runs

E9–E11), which deviate significantly. Qualitatively similar
behavior is observed in Set II, when Pm is decreased from Runs
T1 to T6, although they consistently deviate from the other
runs. However for Runs T–Z, the trend is not monotonous.
Another prediction of BB02 was that m is directly

proportional to the ratio of poloidal to toroidal magnetic field
amplitudes via

= ( )B B2 . (10)x ym
2 2 1 2

From Equation (9) we compute m by assuming = -k km 1 and

show in Figure 9 a scatter plot of m versus á ñ á ñB B(2 )x y
2 2 1 2.

Here we see better agreement with Equation (10), as indicated
by the dotted line. In Set I, with increasing σ from Runs E to
M, the ratio of the poloidal to toroidal field increases, but the
same happens from Runs E1 to E11 with decreasing σ as well,
which was unexpected. The same trend is observed as we
decrease Pm from Runs T1 to T6 in Set II, but in Runs T–Z the
variation is not monotonous. Furthermore, we note that the data
points corresponding to two different regimes—subcritical and
supercritical—lie on different lines (compare red and black
points in Figure 9).
We note that in Figure 8, and also to some extent in Figure 9,

the simulation data are systematically below the analytically
expected values. A smaller value of Brms could readily be
explained as being a combination of several modes, which
results in reduced averages. This is reminiscent of the fratricide
aΩ dynamos of Hubbard et al. (2011), who found that they can
be destroyed by their growing a2 dynamo siblings. An
important difference, however, is that they never found the
recovery of the aΩ dynamo. This might be related to different
orderings of the onsets of a2 and aΩ dynamo action, but this
has not been investigated further.

5. CONCLUSION AND DISCUSSION

As discussed in the Introduction, dynamo hysteresis
predicted by the nonlinear mean-field model of Kitchatinov
& Olemskoy (2010) may be relevant to the understanding of
distinct modes of solar activity found by Usoskin et al. (2014).
Our simulations of turbulent dynamos in shearing boxes with
helically forced turbulent flows, which resemble the equivalent
aΩ solar dynamo, demonstrate, for the first time, hysteresis
behavior. By performing several simulations, either by varying

Figure 8. Scatter plot between B Brms
2

eq
2 and h h- + k k (1 )f f m 1 t0 . The

dotted line shows the comparison with theory (Equation (8)). The black
asterisks represent data from Runs E–M of Set I (also represented by black
points in Figure 1), whereas red asterisks are from Runs E1–E11 (red points in
Figure 1). The black squares represent data from Runs T–Z of Set II (also
represented by black points in Figure 5), whereas red squares are from Runs
T1–T6 (red points in Figure 5).

Figure 9. Scatter plot between the ratio of the poloidal to toroidal field and m.
The dotted line shows the comparison with theory (Equation (10)).
Representations of the data symbols are the same as in Figure 8.
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the helicity parameter σ or the magnetic Prandtl number Pm, we
observe two stable states with largely different characteristic
field strengths depending on the initial conditions of the
simulation. A decaying solution is obtained when the
simulation is started with weak random seed fields, but
otherwise an oscillatory solution is obtained when the
simulation is started from a snapshot of a previous oscillatory
dynamo.

We emphasize that our simulations show hysteresis close to
the dynamo onset only. This raises the question of whether the
Sun may be close to the marginal state for the dynamo. Stellar
observations indicate that this might indeed be the case.
Magnetic activity is known to be correlated with rotation rate,
but leads to angular momentum loss through a magnetically
coupled stellar wind (Kraft 1967; Hartmann & Noyes 1987).
Spin-down of solar-type stars does not continue above a certain
rotation period that depends on the spectral type (Rengara-
jan 1984). The maximum period probably corresponds to the
rotation rate where the global dynamo ceases. The maximum
period for G2 dwarfs is only slightly larger than the rotation
period of the Sun (see Figure 1 in Rengarajan 1984). The stars
showing low magnetic activity similar to the solar grand minima
are typically old and slow rotators (Saar & Baliunas 1992).

We note that the grand minima in models based on stochastic
fluctuations (e.g., Hoyng 1993; Hoyng et al. 1994; Branden-
burg & Spiegel 2008; Moss et al. 2008) always result in
random deviations from a single (regular) state. Thanks to the
reconstructed solar activity record (Usoskin et al. 2014),
however, a different picture emerges in that the grand minima
cannot be described in terms of random fluctuations of a single
solar-activity mode, but are distinct from the regular mode and
produced as a result of sudden transitions from the regular
mode to weak-field mode.

Transitions between the distinct dynamo regimes may be
caused by small-scale hydromagnetic fluctuations inherent to 3D
simulations. The transitions do indeed happen in the simulations
with relative kinetic helicity below unity (Figure 4).

The intermittency of distinct dynamo regimes, however,
disappeared for maximally helical forcing (Figure 6). In mean-
field language, an increase in fractional helicity changes the
dynamo from aΩ toward a2 type. There is no hysteresis for the
a2 dynamo. In any case, maximal helical forcing would not be
realistic for the Sun. The dependence of intermittency on the
(fractional) helicity should be explored further in future work.

Besides the demonstration of a hysteresis phenomenon in a
turbulent dynamo, we have analyzed the simulation data to
compare with the dynamical theory of BB02. We observe that
the data from subcritical and supercritical dynamos behave in a
qualitatively similar way and that they are in reasonable
agreement with the theoretical predictions. We end by remarking
that, although our findings of hysteresis between two distinct
modes of dynamos is relevant to the recently discovered bi-
modal solar activity of Usoskin et al. (2014), our simulations are
far from the real Sun. Therefore, future research is necessary to
explore similar behaviors in more realistic setups.

We thank an anonymous referee for careful review and
valuable comments. L.L.K. is thankful to the Russian
Foundation for Basic Research (project 13-02-00277) for the
support and A.B. acknowledges support through the Swedish
Research Council grants 621-2011-5076 and 2012-5797 and
the Research Council of Norway under the FRINATEK grant
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Technology in Sweden, and the Nordic High Performance
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