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ABSTRACT
With the ultimate aim of using the fundamental or f mode to study helioseismic aspects of
turbulence-generated magnetic flux concentrations, we use randomly forced hydromagnetic
simulations of a piecewise isothermal layer in two dimensions with reflecting boundaries at
top and bottom. We compute numerically diagnostic wavenumber–frequency diagrams of the
vertical velocity at the interface between the denser gas below and the less dense gas above.
For an Alfvén-to-sound speed ratio of about 0.1, a 5 per cent frequency increase of the f
mode can be measured when kxHp = 3–4, where kx is the horizontal wavenumber and Hp

is the pressure scaleheight at the surface. Since the solar radius is about 2000 times larger
than Hp, the corresponding spherical harmonic degree would be 6000–8000. For weaker
fields, a kx-dependent frequency decrease by the turbulent motions becomes dominant. For
vertical magnetic fields, the frequency is enhanced for kxHp ≈ 4, but decreased relative to its
nonmagnetic value for kxHp ≈ 9.
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1 IN T RO D U C T I O N

Much of our knowledge of the physics beneath the solar photo-
sphere is obtained from theoretical calculations and simulations.
Helioseismology provides a window to measure certain properties
inside the Sun; see the review by Gizon, Birch & Spruit (2010). This
technique uses sound waves (p modes) and to some extent surface
gravity waves (f modes), but the presence of magnetic fields gives
rise to magnetoacoustic and magnetogravity waves, whose restor-
ing forces are caused by magnetic fields and modified by pressure
and buoyancy forces (see e.g. Thomas 1983; Campos 2011). This
complicates their use in helioseismology, where magnetic fields are
often not fully self-consistently included. This can lead to major
uncertainties.

Recent detections of changes in the sound travel time at a depth of
some 60 Mm beneath the surface 1–2 days prior to the emergence
of sunspot regions (Ilonidis, Zhao & Kosovichev 2011) have not
been verified by other groups (Braun 2012; Birch et al. 2013). Also
the recent proposal of extremely low flow speeds of the supergran-
ulation (Hanasoge, Duvall & Sreenivasan 2012) is in stark contrast
to our theoretical understanding and poses serious challenges. It is
therefore of interest to use simulations to explore theoretically how
such controversial results can be understood; see, e.g. Georgobiani
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et al. (2007) and Kitiashvili et al. (2011) for earlier attempts trying
to construct synthetic helioseismic data from simulations.

The ultimate goal of our study is to explore the possibility of us-
ing numerical simulations of forced turbulence to assess the effects
of subsurface magnetic fields on the p and f modes. Subsurface
magnetic fields can have a broad range of origins. The most pop-
ular one is the buoyant rise and emergence of flux tubes deeply
rooted at or even below the base of the convection zone (Caligari,
Moreno-Insertis & Schüssler 1995). Another proposal is that global
magnetic fields are generated in the bulk of the convection zone
with equatorward migration being promoted by the near-surface
shear layer (Brandenburg 2005). In this case, subsurface magnetic
fields are expected to be concentrated into sunspots through local ef-
fects such as supergranulation (Stein & Nordlund 2012) or through
downflows caused by the negative effective magnetic pressure insta-
bility (Brandenburg, Kleeorin & Rogachevskii 2013; Brandenburg
et al. 2014). The latter mechanism requires only stratified turbulence
and its operation can be demonstrated and studied in isolation from
other effects using just an isothermal layer. To examine seismic ef-
fects of magnetic fields on the f mode, one must however introduce
a sharp density drop, which implies a corresponding temperature
increase. This leads us to studying a piecewise isothermal layer.

In the Sun, waves are excited by convective motions (Stein 1967;
Goldreich & Kumar 1988, 1990). However, in an isothermal layer
there is no convection and turbulence must be driven by external
forcing, as it has been done extensively in the study of negative
effective magnetic pressure effects. We adopt this method also in
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this work, but use a rather low forcing amplitude to minimize the
non-linear effects of large Reynolds numbers and Mach numbers
close to unity.

In the absence of a magnetic field, linear perturbation theory
gives simple expressions for the dispersion relations of p and f
modes, which are also the modes which we focus on in this work.
For large horizontal wavenumbers kh, the frequencies of the so-
lar f mode have been observed to be significantly smaller than the
theoretical estimates, and both line shift and line width grow with
kh (Fernandes et al. 1992; Duvall, Kosovichev & Murawski 1998).
Both effects are expected to arise due to turbulent background mo-
tions (Murawski & Roberts 1993a,b; Mȩdrek, Murawski & Roberts
1999; Murawski 2000a,b; Mole, Kerekes & Erdélyi 2008). There
have also been alternative proposals to explain the frequency shifts
as being due to what Rosenthal & Gough (1994) call an interfacial
wave that depends crucially on the density stratification of the tran-
sition region between chromosphere and corona; see also Rosenthal
& Christensen-Dalsgaard (1995).

In the presence of magnetic fields, both p and f mode frequencies
are affected. Nye & Thomas (1976) derive the dispersion relation for
sound waves in the uniformly horizontally magnetized isothermally
stratified half-space with a rigid lower boundary. In the presence of
structured magnetic fields, e.g. near sunspots, a process called mode
conversion can occur, i.e. an exchange of energy between fast and
slow magnetosonic modes, which leads to p mode absorption in
sunspots (Cally 2006; Schunker & Cally 2006). The properties of
surface waves in magnetized atmospheres have been studied in de-
tail (Roberts 1981; Miles & Roberts 1989, 1992; Miles et al. 1992).
From these results, one should expect changes in the f mode during
the course of the solar cycle. Such variations have indeed been ob-
served (Antia et al. 2000; Dziembowski & Goode 2005) and may
be caused by subsurface magnetic field variations. It was argued
by Dziembowski, Goode & Schou (2001) that the time variation of
f mode frequencies could be attributed to the presence of a perturb-
ing magnetic field of amplitude ≈20 G localized in the outer 1 per
cent of the solar radius.

The temporal variation of f mode frequencies may be resolved
into two components: an oscillatory component with a one-year
period which is probably an artefact of data analysis resulting from
the orbital period of the Earth, and another slowly varying secular
component which appears to be correlated with the solar activity
cycle. Subsequent work by Antia (2003) showed that variations in
the thermal structure of the Sun tend to cause much smaller shifts
in f mode frequencies as compared to those in p mode frequencies
and as such are not effective in accounting for the observed f mode
variations.

Schou et al. (1997) and Antia (1998) deduced from accurately
measured f mode frequencies the seismic radius of the Sun. They
found that the customarily accepted value of the solar radius,
695.99 Mm needs to be reduced by about 200–300 km to have an
agreement with the observed f mode frequencies. From the study of
temporal variations of f mode frequencies, Lefebvre & Kosovichev
(2005) found evidence for time variations of the seismic solar ra-
dius in antiphase with the solar cycle above 0.99 R�, but in phase
between 0.97 and 0.99 R�.

The importance of using the f mode frequencies for local he-
lioseismology has been recognized in a number of recent papers
(Hanasoge et al. 2008; Daiffallah et al. 2011; Felipe et al. 2012;
Felipe, Crouch & Birch 2013). While such approaches should ulti-
mately be used to determine the structure of solar subsurface mag-
netic fields, we restrict ourselves here to the analysis of oscillation
frequencies as a function of horizontal wavenumber. The purpose of

Figure 1. Geometry of the piecewise isothermal model. The layer z > 0 is
hotter than the layer z < 0.

this paper is to use numerical simulations in piecewise isothermal
layers to study frequencies of oscillations due to random forcing and
to assess the effects of imposed magnetic fields on the frequencies.
In this work we restrict ourselves to the case of uniform magnetic
fields and refer to the case of non-uniform fields in another paper
(Singh, Brandenburg & Rheinhardt 2014), where we study what is
called a fanning out of the f mode.

2 M O D E L A N D N U M E R I C A L S E T U P

Let us consider a conducting fluid in a two-dimensional Cartesian
domain with ex and ez denoting the unit vectors along the x and z

directions, respectively. Let gravity be acting along −ez, with con-
stant acceleration g > 0. Thus we identify x and z as the horizontal
and vertical directions, respectively. Let the domain have a large
horizontal extent Lx, but a relatively small vertical extent Lz � Lx.
Due to gravity, the fluid is vertically stratified. In addition it has
an interface at z = 0 with a layer of thickness Lzu above it, which
is much less dense than the layer of thickness Lzd below.1 In this
work, we assume Lzu = Lz/6, so Lzd = 5Lz/6. At the interface,
we assume a sharp jump in density ρ with ρu(0) � ρd(0) along
with corresponding jumps in temperature and sound speed. Such
a setup may be thought of as an annular section with rectangular
cross-section cut out from a star with z = 0 being its surface. The
thin layer on top represents then the rarefied hot corona and the
subdomain below z = 0 stands for the more strongly stratified up-
permost part of the convection zone, which we sometimes refer to
as the bulk. A schematic diagram of this setup is shown in Fig. 1.

Assuming the fluid to obey the equation of state of an ideal
gas, the pressure is given by p = (cp − cv)ρT = ρc2

s /γ , where
γ = cp/cv is the ratio of specific heats at constant pressure and
volume, respectively, and cs is the adiabatic sound speed. Assum-
ing further both subdomains to be isothermal, the scaleheights of
pressure and density are constant and equal in each subdomain,
Hpd,u = Hρd,u = Hd,u. Thus we have

ρd,u(z) = ρd,u(0) exp(−z/Hd,u), (1)

with

Hd,u = (cp − cv)Td,u/g. (2)

The abrupt changes in the thermodynamic quantities at the interface
z = 0 may be characterized by the ratio

q = ρu(0)/ρd(0) = c2
sd/c

2
su = Hd/Hu = Td/Tu, (3)

1 Subscripts ‘u’ and ‘d’ indicate the value of a variable in the ‘up’ and ‘down’
parts of the layer on both sides of the jump at z = 0.
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3710 N. K. Singh et al.

Figure 2. Density (a), pressure scaleheight (b), and pressure (c) of the
background state as functions of z for Lz/L0 = 2π. Solid: q0 = 0.1, dashed:
q0 = 0.01.

where pressure balance (pd = pu) at z = 0 has been employed. Dif-
ferent values of q correspond to different factors by which density,
temperature, and sound speed change abruptly at the interface. For
investigating a magnetic influence on the oscillation modes, we will
also consider an augmentation of the background state by a uniform
magnetic field B0 = (Bx0, 0, Bz0). Note, that it does not affect the
hydrostatic equilibrium.

In Fig. 2 we show the variations of density, scaleheight, and
pressure as functions of z, in a domain with Lz/L0 = 2π where L0 =
γHd = c2

sd/g. The solid and dashed lines correspond to q = 0.1 and
0.01, respectively, which are the two values employed in this study.

Given that the oscillation modes are perturbations of the back-
ground state, we solve in our direct numerical simulations (DNS)
the time-dependent hydromagnetic equations, extended by terms for
both maintaining the background as well as exciting the oscillations.
Hence the basic equations adopt the form

D ln ρ

Dt
= −∇ · u, (4)

Du
Dt

= f + g + 1

ρ
( J × B − ∇p + ∇ · 2νρS) , (5)

T
Ds

Dt
= 2νS2 + μ0η

ρ
J2 − γ (cp − cv)

T − Td,u

τc
, (6)

∂A
∂t

= u × B − ημ0 J, (7)

where u is the velocity, D/Dt = ∂/∂t + u · ∇ is the advective time
derivative, f is a forcing function specified below, g = (0, 0, −g)
is the gravitational acceleration, ν = const is the kinematic viscos-
ity, Sij = 1

2 (ui,j + uj,i) − 1
3 δij∇ · u is the traceless rate of strain

tensor, where commas denote partial differentiation, A is the mag-
netic vector potential, B = B0 + ∇ × A is the magnetic field,
J = μ−1

0 ∇ × B is the current density, η = const is the magnetic
diffusivity, μ0 is the vacuum permeability, and T is the temperature.

For our purposes, viscous and Ohmic damping of the modes are par-
asitic effects, so we have included them only to ensure numerical
stability and chosen ν and η as small as possible. For the same rea-
son, bulk viscosity was omitted. The boundaries at z = −Lzd, Lzu

are chosen to be impenetrable, stress-free, and perfectly conducting,
while at the x boundaries periodicity is enforced.

The last term in equation (6), being of relaxation type, is to guar-
antee that the temperature is on average constant in either subdo-
main and equal to Td and Tu, respectively. For too high temperatures
cooling is provided, but heating for too low ones. Due to permanent
viscous and Ohmic heating, however, cooling is necessary on aver-
age. In test runs we found that the relaxation term can be omitted in
the lower part of the domain as long as the dissipation rate is suffi-
ciently small. Accordingly, the temperature in the lower subdomain
is set by the initial condition defined by the piecewise isothermal
z profiles with the desired value of q; see Fig. 2. For numerical
reasons, the jumps at z = 0 were smoothed out over a few grid cells.
Note that without the relaxation term in z < 0, there is a slow drift in
the xt averages of density and temperature, reflected by a deviation
of the actual value of q, calculated with these averages, from its
initial value, which we now call q0. For the relaxation rate τ−1

c (in
z > 0) we choose 0.5 g/csd throughout this paper. On average, this
corresponds to about 0.2urmskf.

We provide a weak stochastic forcing f in an isotropic and homo-
geneous fashion, at a length-scale, which is much shorter than the
box dimensions, for details see Brandenburg (2001). The average
forcing wavenumber kf defines the energy injection scale lf = 2π/kf

of the flow. In this study, we have used kf/k1 = 20, where k1 = 2π/Lx

is the lowest wavenumber in the domain. Normally the forcing is
specified to act exclusively in the lower subdomain, but we also
compared with the case when it is provided in the entire domain.
These two choices gave basically identical results, most likely due
to the weakness of the forcing and the fact that the sound speed is
high in the upper part and disturbances are quickly propagated.

We compute the root-mean-squared value of the turbulent veloc-
ity from the region below the interface (z < 0), which we expect to
be physically most relevant for our purpose and denote it by urms, d.
Let us define corresponding fluid Reynolds and Mach numbers of
the flow as

Re = urms,d

νkf
, Ma = urms,d

csd
. (8)

For characterizing the forcing strength, it is useful to employ the
dimensionless quantity

F = f0 Rc = f0
csd

ν kf
, (9)

where f0 is a dimensionless measure of the forcing amplitude (non-
dimensionalized by

√
kfc

3
sd/δt with the timestep of the numerical

integration δt; Brandenburg 2001). Rc may be thought of as the
fluid Reynolds number defined with respect to the sound speed csd.
The random forcing is expected to excite acoustic, internal gravity,
and surface waves, referred to as p, g, and f modes, respectively.
Although our primary goal is to study the properties of the f mode
under a variety of physical conditions, we also turn to p modes in
some detail, while g modes are inspected only at a qualitative level.

It is customary to show the presence of these modes in a kx − ω

diagram, to which we refer in the following simply as kω diagram.
It shows the amplitude of the Fourier transform of the vertical ve-
locity uz as a function of kx and ω. Here, we take uz from the
interface at z = 0, where the f modes are expected to be most promi-
nent. By Fourier transforming uz(x, 0, t) in x and t, we obtain the
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p and f modes in hydromagnetic turbulence 3711

quantity ûz(kx, ω). Results are presented in terms of the dimension-
less wavenumber k̃x and angular frequency ω̃,

k̃x = kxL0, ω̃ = ω

ω0
, ω0 = g

csd
, (10)

where ω0, being twice the Lamb acoustic cut-off frequency of the
bulk,

ωc = g/2csd = csd/2L0, (11)

provides a natural time-scale. As ûz(kx, ω) has the dimension of
length squared, we construct the dimensionless quantity

P̃ (ω, kx) = |ûz|
D2

= |ûz|
L2

0

c2
sd

u2
rms,d

, (12)

whereD = urms,d/ω0 characterizes the distance travelled with speed
urms, d in an acoustic time ω−1

0 . Note that D = Ma L0 is smaller than
L0 for our values of Ma.

3 N ON-MAG NETIC CASE

We first study mode excitation in the absence of an imposed mag-
netic field by performing simulations for three different extents
(Lx × Lz) of the domain, while keeping q0 = 0.1 and F = 0.05
fixed; see Table 1. The different box sizes were chosen to compare
properties such as frequency shifts and line broadening of the p and
f modes.

The kω diagrams for Runs A (Lz = 2π) and B (Lz = π) are shown
in Figs 3 and 4, where modes of all types (p, g, and f) clearly appear.
The multiple curves to the left of the long-dashed line belong to the
p modes, the curve just below the short-dashed line corresponds
to the f modes, and the curves further below indicate g modes.

Table 1. Summary of simulations without magnetic field, q0 = 0.1 and
F = 0.05.

Run Domain Grid q Re Ma

A 8π× 2π 1024 × 600 0.093 1.94 0.004 (Fig. 3)
B 8π× π 1024 × 300 0.092 0.95 0.002 (Fig. 4)
C 4π× π 512 × 300 0.091 0.93 0.002

Figure 3. kω diagram for Run A (8π× 2πdomain, no magnetic field). The
dotted and long-dashed lines shows ω = csukx and ω = csdkx, respectively.
The triple–dot–dashed and dashed curves show ωf0 and ωf, respectively.

Figure 4. Same as Fig. 3 but for Run B (8π× π, no magnetic field). Dash–
dotted (blue): some of the estimated p modes according to equations (13)
and (15).

Especially in the lower left corner of Fig. 4 one can distinguish
several different branches for them.

3.1 p modes

The p modes, also known as pressure modes, are acoustic waves that
are trapped in a resonant cavity. In a stratified isothermal medium
(without interface), their dispersion relation is in two dimensions
approximately given by

ω2 ≈ ω2
c + c2

s

(
k2

x + k2
z

)
, (13)

where kx and kz adopt discrete values depending on the extent
of the cavity and ωc = g/2cs is again the Lamb acoustic cut-off
frequency (equation 11). In equation (13) the contribution ∼N2/ω2

with the Brunt–Väisälä frequency N = (γ − 1)1/2g/cs (Stein &
Leibacher 1974) has been ignored, as typically ω � N for acoustic
modes. Impenetrable z boundaries let the waves be standing in the
z direction, whereas periodic x boundaries allow them to travel in
the x direction. For the vertical wavenumber kz, the discrete values
nπ/Lz with integer n are possible and thus from equation (13) a set
of eigenvalue curves ωn(kx) can be formed. In a kω diagram they
are bound from below by the asymptotic line ω = cskx.

Turning to our two-layer setup and inspecting the kω diagrams
in Figs 3 and 4, we note that the asymptotic line is now found to
be ω = csdkx, just as the cavity were given by the lower subdomain.
As a major difference from the picture expected for a single layer,
gaps coinciding with apparent discontinuities in the ωn(kx) curves
occur. They seem to line up along

ω = csukx, (14)

which would be the asymptotic line if the cavity were given by
the upper subdomain alone. The higher complexity of the kω di-
agram in comparison with the single layer is due to the existence
of three different families of p modes instead of only one: while
in a single isothermal layer all standing waves have the z depen-
dence exp (−κz)sin (kzz + φ), the two-layer setup allows addition-
ally waves which are purely exponential (or evanescent) in one of the
subdomains and (damped) harmonic in the other. Those which are
evanescent in the bulk are in Hindman & Zweibel (1994) identified
with the line (14) and called ‘a modes’, although the actual mode
frequencies follow a pattern that is referred to as ‘avoided crossings’
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Figure 5. Eigenfunctions of the f and the first three p modes (p0, p1, and
p2) at k̃x = 2. Black curves correspond to Run B, whereas the red (short-
dashed) curve (with filled circles) shows the f mode corresponding to Run
B8, which has horizontal magnetic field. The vertical (triple–dot–dashed)
line shows the location of the interface.

with the p and f modes. In the following we refer to the line (14)
as separatrix. The suppression of the mode amplitude around the
separatrix is, however, not explained by ideal linear theory.

To determine the shape of the f and p mode eigenfunctions,
we derived them from the z-dependent spectrum of uz by selecting
k̃x = 2 and ω̃ = 1.31, 2.09, 2.77, 3.67 corresponding to the f mode
and the first three p modes, p0, 1, 2, respectively, see Fig. 6. The result
is shown in Fig. 5, corresponding to Runs B and B8. For p0, the
eigenfunction is approximately a (damped) quarter wave with a
node at the bottom and a maximum at the interface. Accordingly,
we make the following tentative ansatz for the vertical wavenumbers
(analogous to those of organ pipes):

kz = π(n + 1/2)

Lzd
, n = 0, 1, 2, . . . , (15)

where n is the number of nodes in the z direction. It is interesting
to recall here Duvall’s law, which was applied to solar observations
(Duvall 1982):

kz = π(nD + α)

Lzd
, nD = 1, 2, 3, . . . . (16)

Any mode with radial node number nD = 0, was excluded from
this formula, and the best-fitting value for α was found to be ≈3/2,
which is intended to account for the fact that the interface is ‘soft’
instead of rigid. In general, α has to be considered frequency depen-
dent (see Gough 1987; Christensen-Dalsgaard 2003). We also note
that the possibility of misidentification of the radial node number
(nD) was explicitly discussed in Duvall (1982).

Given that our model setup is quite different from the real Sun,
we should perhaps not seek direct comparison between equations
(15) and (16), although it is noteworthy to mention that, as shown
in Fig. 5, both the f mode and the p0 mode, corresponding to n = 0
in equation (15), do not have any node within the bulk. Hence one
could ask whether a qualitative distinction between those modes
is tenable. This might help in resolving the observational issue of
proper identification of the radial node number, when the eigen-
functions of various trapped modes are not readily accessible. Also,
note that equations (15) and (16) are equivalent if α = 1/2 and nD

is allowed to include the value 0, too.

Figure 6. P̃ (ω̃; k̃x = 2) as a function of ω̃ in the absence of a magnetic
field for Runs A, B, and C (top to bottom); see Table 1. Dash–dotted (blue)
and dashed (red): theoretical locations of the f and p modes according to
equations (17) and (13) with (15), respectively. (Blue) dotted lines: position
of the separatrix (14) shown dotted in the kω diagrams (see e.g. Fig. 3).

In Figs 6 and 7 we plot the dimensionless spectral mode amplitude
P̃ as a function of ω̃ for k̃x = 2 and 4, respectively, for Runs A, B,
and C; see also Table 1. The dash–dotted (blue) and dashed (red)
lines mark the locations of the f and p modes as expected from
equations (17) and (15), respectively. The group of peaks to the
left of the f mode indicates g modes. The (blue) dotted lines mark
the ω = csukx line, which is shown by the dotted line in Figs 3
and 4. We find that various peaks of the p mode appear at the
locations predicted by equation (15), although there are some slight
frequency shifts, as may be seen from Figs 6 and 7. We also note that
the frequency shift changes sign across the ω = csukx line, shown
by blue dotted lines.

Comparing the different panels in each of Figs 6 and 7, we first
note that the number of p mode peaks are two times smaller in
Runs B and C compared to Run A. This is expected as the vertical
extent (Lz) in Run A is twice as large as in Runs B and C. From
Fig. 6, corresponding to k̃x = 2, we see that the dimensionless mode
amplitudes P̃ (ω) of the corresponding peaks of the p mode are in all
three cases comparable, even though the domain sizes are different.
The same holds true for Fig. 7 corresponding to k̃x = 4, although
the mode amplitudes have generally decreased compared to the
k̃x = 2 case. We find that the Mach number in the lower subdomain
decreases by the same factor as we decrease the vertical extent of
the cavity in spite of the same strength of forcing in all cases (see
Table 1 and note that F = 0.5 for all three cases). This might be due
to the fact that a larger number of p modes are present in a larger
cavity (in our case, twice as many), thus contributing to the random
motion, which increases the value of Ma.

Frequency shifts of the p modes due to the presence of a hot
layer above the cavity have been calculated in Hindman & Zweibel
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Figure 7. Same as Fig. 6, but for k̃x = 4.

(1994) and Dzhalilov, Staude & Arlt (2000). The first of these pa-
pers deals with p modes in an infinitely extended volume filled with
a gas obeying an adiabatic equation of state. Temperature and hence
sound speed are considered height dependent with a minimum close
to the solar surface. Eigensolutions are obtained by requiring regu-
larity at infinity. The second work employs a piecewise isothermal
three-layer model in which between two layers, allowing sound
waves to propagate, a further one is embedded where the waves are
evanescent. This setup resembles the conditions in the neighbour-
hood of the temperature minimum in the lower chromosphere. It is
demonstrated that, if the cool layer is sufficiently shallow, p modes
can ‘tunnel’ through it from one propagation layer to the other. The
results of both papers cannot easily be applied to our two-layer
model.

3.2 f mode

The classical f mode, also known as the fundamental mode, is a
surface wave which exists due to a discontinuity in the density. In
the absence of a magnetic field, the dispersion relation for the f
mode is given by (see e.g. Gough 1987; Campbell & Roberts 1989;
Evans & Roberts 1990)

ω2
f = gkx

1 − q

1 + q
, ω2

f0 = gkx, (17)

where ωf0 is the frequency in the limit when ρu = 0, that is q = 0. The
dashed and triple–dot–dashed curves in Figs 3 and 4 show ωf and
ωf0, respectively. For linear perturbations, the dispersion relation as
given by equation (17) is independent of the background stratifica-
tion and the thermodynamic properties of the fluid. Consequently
the f mode, in contrast to the p modes, was traditionally expected
to be of less diagnostic value, and received less attention. However,
observations (Fernandes et al. 1992; Duvall et al. 1998) revealed
significant deviations of the frequencies of the solar f modes from

Figure 8. Line profiles of the f mode at k̃x = 6 in the absence of a magnetic
field for Runs A and B. Dotted: data from DNS; solid: Gaussian fit.

the simple relation given in equation (17), so their diagnostic impor-
tance grew significantly (Rosenthal & Gough 1994; Ghosh, Antia
& Chitre 1995; Rosenthal & Christensen-Dalsgaard 1995; Mȩdrek
et al. 1999; Murawski 2000a,b). Attempts were made to explain
the frequency shifts of the high spherical harmonic degree solar f
modes by considering them as interfacial waves, which propagate
at the chromosphere–corona transition (Rosenthal & Gough 1994;
Rosenthal & Christensen-Dalsgaard 1995). Another hypothesis
mentioned earlier invokes frequency shifts and line broadening of
the f mode due to turbulent motions (Murawski & Roberts 1993a,b;
Mȩdrek et al. 1999; Murawski 2000a,b). It is at present unclear
which of these explanations is more relevant for the Sun.

In our simulations, the f mode frequencies lie significantly below
ωf0 and are much closer to ωf for small kx values (see Figs 3 and 4).
However, for large values of kx the line centre falls progressively
below the theoretically expected ωf curve. We also notice a line
broadening for large values of kx. It is discussed in earlier works
(Mȩdrek et al. 1999; Murawski 2000a,b) that, for large horizontal
wavenumbers, both frequency shift and line broadening may be
caused by incoherent background motions that we simply refer to
as ‘turbulence’. However, it may be more appropriate to characterize
shift and broadening as nonlinear (finite Mach number) effects.

In order to quantify our results, we focus on the line profiles of
the f mode under various physical conditions. To that end, we fit the
quantity P̃ (ω, kx) for a fixed value of kx to a Gaussian by a robust
non-linear least-squares method using publicly available standard
procedures (Markwardt 2009). The fit parameters include the central
frequency, the line width, the peak value, and the vertical shift. In
Fig. 8, dotted lines indicate P̃ (ω, kx) at k̃x = 6 for Runs A and
B, while the Gaussian fit is given by bold lines. The vertical shift
characterizes the ‘turbulence continuum’, whereas the Gaussian
profile represents the mode proper.

Let us denote the numerical estimate of the line centre from the
fit by ωf# and characterize the relative frequency shift by

δω2
f

ω2
f

≡ ω2
f# − ω2

f

ω2
f

(18)

as a measure of the departure of the detected f mode frequency from
its theoretical value (equation 17). For characterizing the amplitude
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3714 N. K. Singh et al.

Figure 9. Relative frequency shift (a), mode mass (b), and line width (c) of
the f mode as a function of k̃x in the absence of a magnetic field. Symbols
‘+’, ‘∗’, and ‘
’: Runs A, B and C, respectively (see Table 1) and the solid
(red) line in (a) represents an approximate fit to the data.

of an f mode we define the normalized mode mass as the area under
the Gaussian fit after subtracting the continuum

μf = 1

νt

∫
|ûz| dω, (19)

where |ûz| denotes the excess over the continuum and
ν t = urms, d/3kf is an estimate for the turbulent viscosity, which
has been used on purely dimensional grounds. The dimensionless
measure of the line width of an f mode at the central frequency ωf#

is defined by

�f = ωFWHM

ωf#
, (20)

where ωFWHM is the full width at half-maximum of the line profile.
Frequency shift, mode mass, and line width will now be employed
to analyse DNS results under a variety of physical conditions.

Noting the fact that the Mach number is larger in a deeper domain
(see Table 1), we find that (i) the peak value of P̃ (ω̃) decreases with
increasing kx and is larger for a shallower domain at any value of
kx than for a deeper one, (ii) the line width of the f mode increases
with kx and is smaller for a shallower domain.

In Fig. 9 we show the dependences of δω2
f /ω

2
f , μf, and �f on kx

for the Runs A, B, and C, which have different domain sizes and
Mach numbers (see Table 1). Remarkably, the values of δω2

f /ω
2
f for

Runs A, B, and C almost coincide in Fig. 9(a) and show a linearly
decreasing trend with kx, indicated by the red line with slope −0.01.
However, such kx-dependent frequency shifts of the f mode are
expected both from the influence of turbulent motions (Mȩdrek et al.
1999; Murawski 2000a,b; Mole et al. 2008, where shifts are linear
in k), as well as for interfacial waves propagating in the transition
region between chromosphere and corona (Rosenthal & Gough
1994; Rosenthal & Christensen-Dalsgaard 1995). By comparison,
purely viscous effects proportional to νk2 would yield a relative

frequency shift δω2/ω2 ≈ 2νk̃3/2
x /

√
g, which is around 10−3 for

k̃x = 10. Although this correction would be linear in kx, just like in
our simulations, it is clearly negligible. Note also that the mode mass
decreases only slightly with kx for the deeper domain, while for the
shallower one it stays nearly constant. The line width increases in
all cases somewhat with kx. Also, both μf and �f are considerably
smaller in the shallower domains of Runs B and C, compared to
the deeper one of Run A, but it is worthwhile to note that the
corresponding Mach numbers are also smaller, as will be discussed
in Section 4.2. We return to this in the next section, where we show
that in our simulations magnetic fields also affect the Mach number
and thus the mode mass.

3.3 g modes

When inspecting Figs 3 and 4, we note that the g modes appear
sharper in the latter case (Run B, shallower domain) compared
to the former (Run A, deeper domain). Individual g modes can
be identified for small values of k̃x up to k̃x = 4 and 6, respec-
tively. The envelope surrounding the g modes shows saturation for
k̃x � 7 and 4, respectively. For larger values of k̃x , the envelope
seems to continue with a mild increase in frequency. Although this
effect is more clearly seen for the deeper domain (Fig. 3), the cen-
tre line is nevertheless in both cases compatible with a straight
line going through zero with almost the same slope and almost the
same intersection point, (k̃x , ω̃) ≈ (7, 0.8), with the saturated part
of the envelope. The latter can be explained from the analysis of a
single isothermal layer, applied to the lower subdomain. A further
linear increase of the g mode frequencies is possible due to the
existence of g modes in the upper subdomain of a two-layer setup;
see Hindman & Zweibel (1994). These are also expected to satu-
rate at some constant, but for much higher values of kx. Wagner &
Schmitz (2007), while studying the effect of a hot layer above the
photosphere, find that there is a continuous spectrum below the f
mode, with frequencies linearly increasing with kx for intermediate
values of k̃x .

4 H O R I Z O N TA L M AG N E T I C FI E L D

We impose a uniform horizontal magnetic field (Bx0, 0, 0) in the
entire domain and study its effect on the different modes for varying
domain sizes, density jumps, and field strengths Bx0, with a focus
on its effect on the f mode. Details of the simulations discussed in
this section are summarized in Table 2, where we have employed
Alfvén velocities which are different in the bulk and the corona
according to

vAx d,u = Bx0/
√

μ0ρd,u(0). (21)

On the other hand, the ratio vAx/cs is approximately the same above
and below the interface. So, for definitiveness, we denote by vA/cs

in the following the average of both values.
The kω diagrams for some of our runs are shown in Figs 10–14.

The p, g, and f modes appear clearly in all the diagrams and are
seen to be affected by the magnetic field. As before, the dotted and
long-dashed lines show ω = csukx and ω = csdkx, respectively.

4.1 p modes

The results of Nye & Thomas (1976) demonstrate that already
for small values of the parameter vA(0)/cs there can be a noticeable
influence on the eigenfrequencies (see their fig. 1). However, it has to
be considered that vA(z)/cs grows to infinity due to the exponential
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p and f modes in hydromagnetic turbulence 3715

Table 2. Summary of simulations with horizontal magnetic field. Runs A1–A6h: Lz/L0 = 2π; Runs B8
and B8h: Lz/L0 = π.

Run Grid q0 q vAxd/csd vAxu/csu Ma Re F

A1 1024 × 600 0.1 0.097 0.004 0.004 0.0030 0.71 0.025
A2 1024 × 600 0.1 0.091 0.025 0.025 0.0032 0.61 0.020 (Fig. 10)
A3 1024 × 600 0.1 0.095 0.042 0.041 0.0027 0.52 0.020
A3’ 1024 × 600 0.1 0.093 0.042 0.041 0.0028 0.54 0.020
A4 1024 × 600 0.1 0.095 0.106 0.102 0.0029 0.68 0.025
A5 1024 × 512 0.1 0.089 0.124 0.123 0.0032 0.76 0.025 (Fig. 11)

A3h 1024 × 600 0.01 0.0110 0.042 0.039 0.0014 0.27 0.020 (Fig. 12)
A5h 1024 × 512 0.01 0.0091 0.119 0.116 0.0021 0.50 0.025
A6h 1024 × 512 0.01 0.0096 0.162 0.156 0.0015 0.34 0.020 (Fig. 13)

B8 1024 × 300 0.1 0.099 0.296 0.283 0.0016 0.78 0.050 (Fig. 14a)
B8h 1024 × 300 0.01 0.0098 0.290 0.273 0.0015 0.71 0.050 (Fig. 14b)

Figure 10. kω diagram for Run A2 with horizontal magnetic field. The
dotted and long-dashed lines show ω = csukx and ω = csdkx, respectively.
The triple–dot–dashed and dashed curves (nearly on top of each other as the
field is weak; but cf. Fig. 11) show ωf and ωfm, respectively; see Table 2.

Figure 11. Same as Fig. 10, but for Run A5 with a five times stronger
magnetic field.

Figure 12. Same as Fig. 10, but for Run A3h with hotter corona.

Figure 13. Same as Fig. 12, but for Run A6h with a stronger magnetic field.
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3716 N. K. Singh et al.

Figure 14. kω diagrams for a domain 8π × π and a magnetic field with
vAxd/csd = 0.29. Top: Run B8, q = 0.099; bottom: Run B8h, q = 0.0098.

decrease of density with height and the lack of an upper boundary
in their setup. Hence, their findings cannot directly be transferred
to our model of finite thickness. Therefore we restrict ourselves to
a comparison with the non-magnetic case to infer the magnetically
induced departures of frequency, mode amplitude, mode mass, and
line width.

In the kω diagrams, such as Fig. 14, we notice again the apparent
gap in the p mode spectrum coinciding with the separatrix ω = csukx

(dotted). In Fig. 15 we plot P̃ as a function of ω̃ at k̃x = 2 for six
cases with different field strengths, domain depths, and the two q
values, 0.1 and 0.01; for details see Table 2. The dash–dotted blue
lines show the theoretically expected locations of the non-magnetic
f mode; see equation (17). The group of peaks to the left of the f
mode are the g modes, whereas those to the right are p modes. The
blue dotted lines mark the position of the separatrix shown dotted
in the kω diagrams. The red dashed lines show the locations of
theoretically expected p modes corresponding to the non-magnetic
case; see equations (13) and (15).

Looking at different panels of Fig. 15 and also making some
comparisons with the non-magnetic case in Fig. 6, we notice that
the frequencies of the individual peaks of the p modes are not
much affected by the presence of a magnetic field when q0 = 0.1.
However, for the stronger density jump at the interface (q0 = 0.01),
slight frequency shifts of the p modes may be seen from the right-

hand panels of Fig. 15. The mode amplitudes also seem to have
increased compared to the corresponding cases with q0 = 0.1.

According to the work of Hindman & Zweibel (1994), albeit in the
absence of a magnetic field, the p modes are expected to be strongly
affected by a hot outer corona. Indeed, we see from our results that
for the larger coronal temperature, there is a noticeable effect on
the p modes, which might not be connected with the magnetic field,
at least in the parameter regimes explored. Also, for higher coronal
temperatures, the high-frequency peaks appear sharp in a shallower
domain (Run B8h), while for the deeper domain (Runs A3h and
A6h) the data look more noisy.

4.2 f mode

Given that the Alfvén speeds in the layers above and below the inter-
face are different due to the density jump at z = 0, our setup mimics
the ‘single magnetic interface’ of Roberts (1981), Miles & Roberts
(1989, 1992), and Miles et al. (1992). It is capable of supporting a
surface wave which, in the absence of gravity, propagates with the
phase speed cfm, given by (Dungey & Loughhead 1954; Kruskal &
Schwarzschild 1954; Gerwin 1967; Miles & Roberts 1989)

c2
fm = ρuv

2
Axu + ρdv

2
Axd

ρu + ρd
= 2ρuv

2
Axu

ρd + ρu
= 2ρdv

2
Axd

ρd + ρu
; (22)

thus, vAxd ≤ cfm ≤ vAxu. We note that this expression is valid for
an incompressible fluid. A more general result is given by Roberts
(1981), but in our parameter regime the difference is small. The
presence of gravity modifies the dispersion relation (Chandrasekhar
1961; Roberts 1981; Miles & Roberts 1989, 1992; Miles et al.
1992):

ω2
fm = c2

fmk2
x + gkx

1 − q

1 + q
, (23)

where c2
fmk2

x always adds to the (squared) frequency of the classical
f mode given by equation (17).

In Figs 10–14, the triple–dot–dashed and dashed curves show
the expected f mode frequencies in the absence and presence of a
horizontal magnetic field, given by ωf and ωfm, respectively; see
equations (17) and (23). In Fig. 10, we show the kω diagram for
a case with a weak horizontal magnetic field, vA/cs = 0.025. The
frequencies of the f mode are not yet noticeably affected. How-
ever, when the field is increased by a factor of about 5, there is a
clear frequency increase relative to ωf and we find reasonably good
agreement with ωfm; see Fig. 11.

On the other hand, the amplitude of the f mode diminishes sig-
nificantly for k̃x � 9. To investigate the reasons for the suppression
of the f mode at large horizontal wavenumbers, we performed more
simulations (not shown here) with much stronger hydrodynamic
forcing. We found that this did not significantly affect the value
of kx at which suppression apparently sets on, suggesting that this
cannot be a non-linear effect. From Fig. 5 we find that the eigenfunc-
tions of the f modes, corresponding to non-magnetic (open circles;
Run B) and horizontal magnetic field cases (red filled circles; Run
B8), lie nearly on top of each other. Thus arguments based solely on
dissipative effects might not be sufficient either to explain the mode
suppression. We therefore speculate that this effect could arise due
to the inhibition of vertical motions in the presence of a horizontal
magnetic field which is more pronounced for larger kx.

In the case of a hotter corona (q0 = 0.01), the f mode has larger
amplitudes relative to the corresponding case with the same mag-
netic field, but q0 = 0.1, and they extend up to k̃x ≈ 15; see Fig. 12
for vA/cs = 0.042 and compare with, for example, Fig. 10, which
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p and f modes in hydromagnetic turbulence 3717

Figure 15. P̃ (ω̃; k̃x = 2) as function of ω̃ with horizontal magnetic field for Runs A1, A5, and B8, each with q0 = 0.1, whereas q0 = 0.01 for Runs A3h,
A6h, and B8h; see Table 2. Dash–dotted (blue) and dashed (red) lines: theoretically expected locations of the f and p modes, respectively. Dotted (blue) lines:
position of the ω = csukx line, shown dotted in the kω diagrams (see, e.g., Fig. 11).

is also for a weak (but different) field. Again, however, significant
frequency shifts can only be seen for stronger magnetic fields; see
Fig. 13 for vA/cs = 0.16. Quantitative details and comparisons are
discussed later.

Following the procedure presented in Section 3 to analyse the f
modes, we determine the fit parameters at different values of kx for
the cases in Table 2. Let us denote the numerical estimate of the
line centre from the fit by ωfm# and compute the relative frequency
shifts as

δω2
fm

ω2
f

= ω2
fm# − ω2

f

ω2
f

. (24)

In addition, we define the theoretically expected line shift due to the
magnetic field as(

δω2
fm

ω2
f

)
th

≡ ω2
fm − ω2

f

ω2
f

= 2q

1 − q

v2
Axukx

g
. (25)

Note that (δω2
fm/ω2

f )th is, for q � 1, proportional to q so it in-
creases with decreasing density contrast. Furthermore, (δω2

fm/ω2
f )th

increases also with kx, so it should become more noticeable at small
length-scales. Expressing it in terms of the Alfvén speed in the bulk,
we have(

δω2
fm

ω2
f

)
th

= 2

1 − q

v2
Axdkx

g
= 2

1 − q

v2
Axd

c2
sd

k̃x . (26)

For the definitions of mode mass μf and line width �f, see equations
(19) and (20).

We have already noted that an increase of the magnetic field
diminishes the f mode mass already for smaller values of k̃x . To
understand this quantitatively, we compare with the non-magnetic
case, where we have seen a decrease of the mode mass with decreas-
ing Mach number. It turns out that the magnetic effect on the mode
mass can be understood solely as a consequence of the reduction
of Ma, for a given q0. This is shown in Fig. 16, where we plot μf

versus Ma for magnetic and non-magnetic cases: both sets exhibit
the same Ma dependence.

The dependence of δω2
fm/ω2

f , μf, and �f on the horizontal
wavenumber kx in the presence of a magnetic field is shown in
Fig. 17 for some of the cases of Table 2, covering both q0 = 0.1
and 0.01. We recall that, while magnetic fields tend to increase the
f mode frequencies (Chandrasekhar 1961; Roberts 1981; Miles &
Roberts 1992; Miles et al. 1992), turbulent motions lead to a de-
crease (Murawski 2000a,b); see Section 3.2. For weak magnetic
fields (Runs A1 and A3 with vAxd/csd = 0.004 and 0.042, respec-
tively) we find at large values of k̃x considerable frequency decre-
ments compared to the theoretical estimates when q0 = 0.1; see
panel (a) of Fig. 17. The magnetic field might here not be sufficient
to compensate for the decrease caused by the turbulence. As the
strength of the imposed field is increased, ωfm# also increases and
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3718 N. K. Singh et al.

Figure 16. Mode mass of the f mode as a function of Ma for q0 = 0.1 and
two values of k̃x (see Tables 1 and 2). Symbols: values from DNS. Solid
(red) lines: linear fits with slopes ≈16.9 (a) and ≈18.3 (b).

shows reasonably good agreement with the theoretically expected
values from equation (23) for Runs A4 and A5. For the hotter
corona with q0 = 0.01, numerical findings and theoretical estimates
lie even nearly on top of each other, see panel (b). Depending on the
strength of the field, the frequencies can be much higher than those
of the classical f mode given by equation (17). It is interesting to
note that, although vA/cs = 0.042 for both A3 and A3h, the relative
frequency shifts are different and smaller for the stronger density
jump; compare panels (a) and (b) of Fig. 17. From panels (c)–(f)
we note:

(i) The mode mass μf decreases with kx for all runs. It decreases
more rapidly when the density jump is smaller.

(ii) The distinguishing effect of the imposed field is that the f
mode is suppressed beyond some kf max

x , which decreases as we
increase Bx0; compare, e.g. the kω diagrams Fig. 3 with Fig. 11
or Fig. 4 with Fig. 14a, for q0 = 0.1 and Fig. 12 with Fig. 13 for
q0 = 0.01, respectively.

(iii) For q0 = 0.1, μf does not show any systematic variation
with Bx0 at a fixed kx; see panel (c). But for q0 = 0.01, μf decreases
drastically with increasing Bx0 for all kx; see panel (d).

(iv) For small Bx0, μf is larger for q0 = 0.01 compared to q0 = 0.1;
compare runs A3 and A3h, for both of which vAd/csd = 0.042.

(v) For large Bx0, kf max
x is smaller for q0 = 0.01 than for q0 = 0.1;

compare both panels of Fig. 14. This is the reason why μf of

Figure 17. Properties of the f mode as functions of k̃x , for q0 = 0.1 (left) and q0 = 0.01 (right). Lines in panels (a) and (b): theoretical estimates from
equation (25). The ‘+’ (dotted), ‘∗’ (dashed), ‘
’ (dash–dotted), and ‘�’ (triple–dot–dashed) in panels (a), (c), and (e) correspond to Runs A1, A3, A4, and A5,
respectively. The ‘∗’ (dashed), ‘�’ (triple–dot–dashed), and ‘�’ (long-dashed) in panels (b), (d), and (f), correspond to Runs A3h, A5h, and A6h, respectively.
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p and f modes in hydromagnetic turbulence 3719

Figure 18. Relative frequency shift δω2
fm/ω2

f as a function of v2
Ad/c

2
sd at

k̃x = 6. Lines: estimates from equation (26); symbols: values from DNS.

Run A5 is, for small k̃x , larger compared to Run A5h (both with
vA/cs ≈ 0.12), despite the latter having stronger density contrast.

(vi) For most runs, the line width �f increases with kx; see panels
(e) and (f). Although it does not show any systematic variation with
Bx0 for fixed kx when q0 = 0.1, it increases with Bx0 at all kx when
q0 = 0.01.

To quantify the magnetically produced line shifts, we now con-
sider Runs A1–A6h. It turns out that δω2

fm/ω2
f is approximately

proportional to v2
Axd/c

2
sd, as expected from theory; see Fig. 18 and

equation (26). We find somewhat larger frequency shifts compared
to theory when q0 = 0.1, but better agreement when q0 = 0.01.

To assess the effect of a hotter corona, we plot in Fig. 19 the kx

dependences of δω2
fm/ω2

f , μf, and �f for models B8 (q0 = 0.1) and
B8h (q0 = 0.01). Both runs are for a shallower domain with Lz = π,
and have vAxd/csd ≈ 0.3; see Table 2. Interestingly, the line shifts are
slightly reduced for a hotter corona. This behaviour is in agreement
with the q dependence of the shifts expected from the theoretical
result in equation (25). However, the numerically obtained shifts lie
below the theoretical estimates for both runs. As the imposed field
Bx0 is large, the f mode is truncated beyond relatively small values
of k̃x , as may be inferred from Fig. 14. For strong magnetic fields,
the Mach numbers are small despite strong forcing; see Table 2.
Consequently, the mode mass μf is small in both runs, but it drops
more rapidly with kx for q0 = 0.01 than for q0 = 0.1; compare
panels (c) and (d) of Fig. 17 with panel (b) of Fig. 19 (note the
different ranges of the k̃x axes). From panel (c) of Fig. 19 we note
that the line width �f increases with kx and is larger for smaller q0.
All these observations are in qualitative agreement with what we
noted before in the case of deeper domains; see Fig. 17.

4.3 g modes

Remarkably, the g modes are strongly suppressed beyond some
value kgmax

x , which is found to decrease with increasing Bx0; com-
pare, e.g. Fig. 3 with Figs 10 and 11, or Fig. 4 with Fig. 14(a).
Varying q0 for fixed Bx0 does not seem to have much effect on the
g modes; cf. Figs 14(a) and (b).

Figure 19. Effect of hot corona on mode parameters for horizontal magnetic
field. Open/filled circles: Run B8/B8h, both with vA/cs ≈ 0.3. Dotted/dashed
lines in upper panel: theoretical estimates for B8/B8h.

5 V E RT I C A L A N D O B L I QU E FI E L D S

We now turn to cases where the imposed magnetic field is either
vertical or points in an oblique direction in the xz plane. There have
been earlier attempts to study the interaction of the f and p modes
with a vertical magnetic field to provide some explanation for the
observed absorption of these modes (Cally & Bogdan 1993; Cally,
Bogdan & Zweibel 1994; Cally & Bogdan 1997). Although the
physics of mode absorption is yet to be understood, some expla-
nations in terms of slow mode leakage due to vertical stratification
were discussed in these works: it is thought that the partial con-
version of the f and p modes to slow magnetoacoustic modes, or s
modes, takes place whenever they encounter the region of a vertical
magnetic field, such as a sunspot. Parchevsky & Kosovichev (2009)
numerically investigated the effects of an inclined magnetic field on
the excitation and propagation of helioseismically relevant magne-
tohydrodynamic waves. They found that the f modes are affected by
the background magnetic field more than the p modes. Such results
emphasize the diagnostic role of f modes to reveal the subsurface
structure of the magnetic field.

In Table 3 we summarize the simulations with vertical and oblique
magnetic fields. With a vertical magnetic field (0, 0, Bz0), the Alfvén
velocities vAz d, u in bulk and corona are defined analogously to
equation (21).

In Fig. 20 we present the kω diagram for Run A6Vh. Remark-
ably, the frequency shift of the f mode shows a non-monotonic
behaviour, unlike those in other kω diagrams. Here the frequencies
lie above those of the classical f mode given by equation (17) (triple–
dot–dashed curves in kω diagrams) for intermediate wavenumbers,
while falling below it for larger wavenumbers. Interestingly, both
tendencies have been reported in observational results of Fernandes
et al. (1992).
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Table 3. Summary of simulations with vertical and oblique magnetic fields in domain 8π× 2π. θ – inclination
of B0 to z-axis.

Run θ Grid q0 q vAd/csd vAu/csu Ma Re F

A2V 0◦ 1024 × 600 0.1 0.087 0.020 0.020 0.0030 0.536 0.02

A6Vh 0◦ 1024 × 512 0.01 0.0089 0.117 0.118 0.0011 0.256 0.02 (Fig. 20)
A7Vh 0◦ 1024 × 512 0.01 0.0096 0.185 0.176 0.0016 0.730 0.04
Obl 45◦ 1024 × 512 0.01 0.009 0.22 0.22 0.0015 0.35 0.02

Figure 20. kω diagram for Run A6Vh with vertical magnetic field; see
Table 3. Triple–dot–dashed: ωf as defined in equation (17). Long-dashed:
ω = csdkx.

We report on one simulation where the magnetic field points in a
direction of 45◦ to the z-axis. It was performed with q0 = 0.01, and
vAxd/csd = vAzd/csd = 0.157, or vA/cs = 0.22 for the total field as
v2

A = v2
Ax + v2

Az.

5.1 p modes

In Fig. 21 we plot P̃ (ω̃) at k̃x = 4 for three runs with vertical field
(A2V, A6Vh, A7Vh), and for the one with oblique field (Obl); see
also Table 3. As before, the dash–dotted (blue) and dashed (red)
lines in all panels mark the theoretically expected locations of the f
and p modes, respectively, all for the non-magnetic case. The group
of peaks to the left of the f mode are the g modes, whereas those
to the right are p modes. Note that for higher coronal temperatures,
the modes are much more noisy and there appears to be a larger
continuum; cf. panels (a) and (d) of Fig. 21. For weaker jumps in
the thermodynamic quantities at the interface, we find that p mode
amplitudes are not much affected by the presence of a weak vertical
field; compare, e.g. Runs A (non-magnetic) and A2V shown in
Figs 7 and 21, respectively, both having q0 = 0.1. Compared to other
cases, we notice a significant reduction in the p mode amplitudes
in the case of the inclined magnetic field, which has q0 = 0.01; see
panel (d). The g and f modes are also strongly suppressed, which
might be caused by the large strength of the magnetic field, leading
to the truncation of these modes beyond some wavenumber, k̃x ≈ 4.

5.2 f mode

An analytical dispersion relation of the f mode for vertical magnetic
field suitable for our setup is yet to be derived. For quantitative

Figure 21. P̃ (ω̃; k̃x = 4) for a vertical magnetic field for (a) A2V, (b) A6Vh, (c) A7Vh, and (d) for the 45◦ inclined magnetic field; see Table 3. Dash–dotted
(blue) and dashed (red): theoretically expected f and p modes, respectively, all for the non-magnetic case.
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Figure 22. (a) Relative frequency shift, (b) mode mass, and (c) line width of
the f mode as functions of k̃x in the presence of a vertical/oblique magnetic
field. Diamonds and open circles: Runs A2V and A6Vh, respectively, with
vertical field; filled circles: Run Obl with 45◦ inclined magnetic field.

analysis, we compute relative frequency shift δω2
fm/ω2

f , mode mass
μf, and dimensionless line width �f of the f mode for different kx,
following the procedures described in Section 3. In Fig. 22 we show
the dependence of the line parameters on kx for Runs A2V (with
q0 = 0.1), A6Vh, and Obl (with q0 = 0.01 for the latter two runs).
Some noteworthy observations are:

(i) The relative line shift δω2
fm/ω2

f shows a non-monotonic be-
haviour as a function of kx for sufficiently strong Bz0, unlike our
findings of Sections 3 and 4 without field or with horizontal field.
This holds also for Run A6Vh where we find that δω2

fm/ω2
f reaches

a maximum at k̃x = 6, and becomes negative at k̃x = 11.
(ii) For weak field, δω2

fm/ω2
f is negative and decreases with in-

creasing kx as in non-magnetic cases.
(iii) For large Bz0, with or without Bx0, we find that δω2

fm/ω2
f

attains positive values for small k̃x .
(iv) For Run Obl, we notice a larger positive frequency shift

compared to Run A6Vh. It increases up to about k̃x ≈ 6, beyond
which it tends to decrease. Fewer points (filled circles) are shown
as the f mode is truncated for larger k̃x due to the stronger magnetic
field compared to the other runs shown. This truncation effect is
also discussed earlier.

(v) The mode masses from Runs A2V and A6Vh are comparable,
despite the latter having smaller Mach number; see Table 3. This is
due to the stronger density jump at the interface in Run A6Vh, and
thus consistent with our earlier findings.

(vi) As the field strength is increased in Run Obl compared with
Run A6Vh, μf decreases at all kx although both runs have similar
Mach numbers.

(vii) The line width �f increases with kx and is larger for stronger
fields.

(viii) Compared to the horizontal magnetic field cases, the f mode
suppression is not seen for large values of kx; cf. Figs 13 and 20.
For vertical magnetic fields, the energy could in principle leave the
interface, leading to a reduction of f mode power. This however
does not apply in our case owing to the perfect conductor boundary
condition.

5.3 g modes

The g modes are found to behave similarly as with horizontal mag-
netic field and are suppressed beyond some kgmax

x , which decreases
with increasing field. This may be inferred from Fig. 21 where the
g modes are seen to be suppressed at k̃x = 4 with increasing field
for both the vertical and the oblique field; compare also with the
non-magnetic case in Fig. 7.

6 C O N C L U S I O N S

The prime objective of this work was to assess the effects of an
imposed magnetic field on the f mode, which is known to be partic-
ularly sensitive to magnetic fields. One of our motivations is the ul-
timate application to cases where magnetic flux concentrations are
being produced self-consistently through turbulence effects (see,
e.g. Brandenburg et al. 2013, 2014). Those investigations have so
far mostly been carried out in isothermal domains, which was also
the reason for us to choose a piecewise isothermal model, where
the jump in temperature and density is needed to allow the f mode
to occur.

The resulting setup is in some respects different from that of the
Sun and other stars, so one should not be surprised to see features
that are not commonly found in the context of helioseismology.
One of them is a separatrix within the p modes as a result of the hot
corona, which we associate with the a mode of Hindman & Zweibel
(1994).

Regarding the f mode, there are various aspects that can be studied
even in the absence of a magnetic field. Particularly important is a
reduction of ωf compared to its theoretical value, increasing with
kx . The f mode mass increases with the intensity of the forcing and
hence with the Mach number. Interestingly, this is also a feature that
carries over to the magnetic case where an increase in the magnetic
field leads to a decrease in the resulting Mach number and thereby
to a decrease in the mode mass in much the same way as in the
non-magnetic case. Magnetic fields also lead to a truncated f mode
branch above a certain value of kx.

One of the most important findings is the systematic increase
of the f mode frequencies ωfm# observed in DNS with horizontal
magnetic field. It follows essentially the theoretical prediction and,
contrary to the non-magnetic cases, shows an increase with kx such
that the relative frequency shift is approximately proportional to
v2

A/c2
s . This is best measured when kxL0 = 5–7, i.e. kxHp = 3–

4, and with a solar radius of 700 Mm, being 2000 times larger
than Hp ≈ 300 km, the corresponding spherical harmonic degree
would be 6000–8000. In this range, the relative frequency shift is
δω2

fm/ω2
f ≈ 0.1 when vA/cs ≈ 0.1. Since δω2

fm/ω2
f ≈ 2δωfm/ωf , the

increase of the f mode frequencies is about 5 per cent. The observed
f mode frequency increase during solar maximum is about 1 μHz
at a moderate spherical harmonic degree of 200 (Dziembowski &
Goode 2005). This corresponds to a relative shift of about 0.06 per
cent, but this value should of course increase with the spherical
degree.

We note that in our case, the magnetic field is the same above
and below the interface. Furthermore, ρc2

s is also the same above
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and below the interface, and so is therefore also v2
A/c2

s . One of the
goals of future studies will be to determine how our results would
change if the magnetic field existed only below the interface.

Interestingly, for vertical and oblique magnetic fields, the kx-
dependence of ωfm# becomes non-monotonic in such a way that for
small values of kx, ωfm# first increases with kx and then decreases and
becomes less than the theoretical value in the absence of a magnetic
field, although it stays above the value obtained numerically without
magnetic field, whose reduction is believed to be due to turbulence
effects (Mȩdrek et al. 1999; Mole et al. 2008).

We confirm the numerical results of Parchevsky & Kosovichev
(2009) that p modes are less affected by a background magnetic
field than the f mode. Relative to the non-magnetic case, no signif-
icant frequency shifts of p modes are seen in a weakly magnetized
environment. For a larger density contrast at the interface, with the
rest of the parameters being the same, the mode amplitudes and line
widths increase, but the data look more noisy and the frequency
shifts, which can be of either sign (Hindman & Zweibel 1994), may
not be primarily due to the magnetic field.

The present investigations allow us now to proceed to more com-
plicated systems where the magnetic field shows local flux con-
centrations which might ultimately resemble active regions and
sunspots. As an intermediate step, one could also impose a non-
uniform magnetic field with a sinusoidal variation in the horizontal
direction. This will be the focus of a future investigation.
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