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ABSTRACT

Context. Analytic solutions of the mean-field induction equation predict a nonoscillatory dynamo for homogeneous helical turbulence
or constant α effect in unbounded or periodic domains. Oscillatory dynamos are generally thought impossible for constant α.
Aims. We present an analytic solution for a one-dimensional bounded domain resulting in oscillatory solutions for constant α, but
different (Dirichlet and von Neumann or perfect conductor and vacuum) boundary conditions on the two boundaries.
Methods. We solve a second order complex equation and superimpose two independent solutions to obey both boundary conditions.
Results. The solution has time-independent energy density. On one end where the function value vanishes, the second derivative is
finite, which would not be correctly reproduced with sine-like expansion functions where a node coincides with an inflection point.
The field always migrates away from the perfect conductor boundary toward the vacuum boundary, independently of the sign of α.
Conclusions. The obtained solution may serve as a benchmark for numerical dynamo experiments and as a pedagogical illustration
that oscillatory migratory dynamos are possible with constant α.
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1. Introduction

The magnetic fields in stars and galaxies are believed to be gen-
erated and maintained by large-scale dynamos that convert ki-
netic energy into magnetic energy through an inverse cascade
(Pouquet et al. 1976). With the development of mean-field the-
ory (Parker 1955; Steenbeck et al. 1966), this complicated three-
dimensional process became amenable to simpler analytic and
numerical treatments in one and two dimensions.

The best known mean-field effect is the α effect, which
emerges from the parameterization of the turbulent electromo-
tive force in terms of the mean field in the form

u × b = αB − ηt∇ × B, (1)

where u and b are the fluctuating velocity and magnetic fields,
overbars denote averaging, and B is the mean magnetic field.
Here, α quantifies the α effect and ηt is the turbulent magnetic
diffusivity. Both are in principle functions of position, but in the
present paper we treat them as constants.

The earliest model of a dynamo for the Sun goes back to
Parker (1955), who considered the additional presence of differ-
ential rotation, which is referred to as the Ω affect. In the pres-
ence of both α and Ω effects, there are self-excited oscillatory
plain wave solutions in unbounded domains. They take the form
of traveling waves (Parker 1955). Specifically, if α is positive in
the north and negative in the south, and the differential rotation
has a negative radial gradient, waves are traveling equatorward,
providing thus an explanation for the shape of Maunder’s but-
terfly diagram (Maunder 1904). The first global axisymmetric
two-dimensional models of such dynamos go back to the sem-
inal work of Steenbeck & Krause (1969a). These dynamos are
referred to as αΩ dynamos.

In the absence of differential rotation, a plain wave solu-
tion ansatz leads to non-oscillatory dynamos if α exceeds a cer-
tain threshold (α > ηtk, where k is the wavenumber). Such dy-
namos are referred to as α2 dynamos. The dynamo of the Earth
is believed to be an example of an α2 dynamo, because shear
is expected to be weak. Axisymmetric models of dynamos of
this type where presented by Steenbeck & Krause (1969b). The
non-oscillatory property of such dynamos is consistent with the
noncyclic nature of the Earth’s magnetic field. In galaxies, on
the other hand, shear is important, so they are examples of αΩ
dynamos. However, asymptotic solutions have shown that such
dynamos are non-oscillatory owing to the flat geometry in which
such dynamos are embedded (Vainshtein & Ruzmaikin 1971).

Numerical investigations of α2 dynamos revealed only
nonoscillatory solutions (Rädler 1980), until Shukurov et al.
(1985) found that, under certain conditions, oscillatory solu-
tions are here possible, too. They associated this with the non-
selfadjointness of the problem. In fact, the possibility of oscil-
latory solutions to an α2 dynamo was already mentioned earlier
by Ruzmaikin et al. (1980) in a study of disk dynamos with a
strongly localized α effect. In 1987, there appeared two back-to-
back papers that demonstrated conclusively that α2 dynamos can
in principle be oscillatory provided the α effect is non-constant
(Baryshnikova & Shukurov 1987; Rädler & Bräuer 1987). This
possibility remained mainly an academic curiosity without real
astrophysical interest at the time.

In subsequent years, attention was drawn to the possibil-
ity that global dynamos with radially dependent α can exhibit
oscillatory solutions (Stefani & Gerbeth 2003). Meanwhile, di-
rect numerical simulations of helically forced turbulence have
shown a strong similarity between α effect dynamos and tur-
bulent three-dimensional dynamos with fluctuating magnetic
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fields and nonvanishing mean fields. These dynamos turned
out to be equivalent to those predicted from α-effect dynamos
(Brandenburg 2001). Mitra et al. (2009) applied such dynamos
to spherical wedges with helically forced turbulence. When
the helicity of the forcing was assumed such that it changes
sign about the equator, Mitra et al. (2010) found oscillatory so-
lutions with equatorward migration similar to what occurs in
the Sun. Käpylä et al. (2013) argued that such an effect can
explain the equatorward migration in their spherical wedge-
geometry dynamos, even though shear was still present and, as
it turned out later, responsible for an αΩ-type dynamo in this
case (Warnecke et al. 2014). In other simulations, however, the
argument in favor of an α2 dynamo could still be supported
(Masada & Sano 2014).

Corresponding mean-field solutions were presented by
Brandenburg et al. (2009) for dynamos in Cartesian geometry
with α profiles proportional to z. Cole et al. (2016) showed that
such dynamos are not necessarily expected to operate in spheri-
cal shells that extend all the way to the poles, unless the turbulent
magnetic diffusivity becomes small at high latitudes. The true
applicability of such α2 dynamos to stars remains therefore ques-
tionable. Nevertheless, such dynamos are gaining in importance
in view of the many numerical studies of turbulent dynamos,
in which the helicity profile is non-uniform (Mitra et al. 2014;
Jabbari et al. 2016) and/or the boundary conditions on the two
sides of the domain are different (Jabbari et al. 2017). This has
led to the possibility that oscillatory α2 dynamos might actually
be possible for constant α, provided the boundary conditions are
indeed different and the two sides. If this is the case, it should be
possible to construct exact analytical solutions of such an oscil-
latory migratory α2 dynamos. The purpose of the present paper
is therefore to present such a solution. The fact that such a so-
lution can be obtained analytically is significant not only as a
benchmark for numerical studies, but also as a clear textbook-
style demonstration of oscillatory α2 dynamos.

2. Statement of the problem

The equation for an α2 dynamo with total (sum of microphysical
and turbulent) magnetic diffusivity, ηT = η + ηt, is given by

∂A
∂t

= α∇ × A − ηT∇ × ∇ × A, (2)

where A is the mean magnetic vector potential in the Weyl
gauge, and the mean magnetic field is B = ∇ × A. We nondi-
mensionalize by measuring lengths in units of k−1

1 , where k1 is
the wavenumber of the most slowly decaying mode, and time is
measured in units of the turbulent-diffusive time, τtd = (ηTk2

1)−1.
Velocities are measured in units of ηTk1, so in the following we
denote by α the nondimensional α effect, α/ηTk1. We now con-
sider a one-dimensional domain, so the governing equations are,

∂Ax

∂t
= −α

∂Ay

∂z
+
∂2Ax

∂z2 , (3)

∂Ay

∂t
= +α

∂Ax

∂z
+
∂2Ay

∂z2 , (4)

and Az = 0. In the following, all quantities are dimensionless.
We consider perfect conductor boundary condition on one side
of the domain (z = 0). This means that the electric field in the

xy plane vanishes on the boundary. Owing to the use of the Weyl
gauge, the electrostatic potential gradient is absent in Eq. (2), so
the perfect conductor condition implies that Ax = Ay = 0.

On the other side of the domain, we assume a vacuum bound-
ary condition. For our one-dimensional domain, this means that
Bx = By = 0 (Ruzmaikin et al. 1988), which corresponds to
∂zAx = ∂zAy = 0. The most slowly decaying mode is a quar-
ter sine wave, that is, Ax or Ay are proportional to sin z in
0 ≤ z ≤ π/2 (Brandenburg et al. 2009).

3. Complex notation and integral constraints

The basic approach used here is similar to that in other prob-
lems with constant coefficients and in finite domains with bound-
ary conditions, such as the no-slip condition in Rayleigh-Bénard
convection (Chandrasekhar 1961) or the pole-equator boundary
conditions in αΩ dynamos (Parker 1971). Unlike convection,
which is non-oscillatory at onset, we allow here for oscillatory
solutions. Furthermore, we combine Eqs. (3) and (4) into a single
equation for the complex variable

A ≡ Ax + iAy. (5)

Thus, Eqs. (3) and (4) can be written as

∂A

∂t
= iα

∂A

∂z
+
∂2A

∂z2 · (6)

We now assume the solution to be of the form

A(z, t) = Â(z) e−iωt, (7)

where Â(z) obeys the ordinary differential equation

Â′′ + iαÂ′ + iωÂ = 0, (8)

where primes denote z derivatives. The boundary conditions are

Â = 0 on z = 0, (9)

Â′ = 0 on z = π/2. (10)

In general, ω can be complex, but since we are here interested in
marginally excited dynamos, we restrict ourselves in the follow-
ing to ω being real.

We now also assume that α is constant. In that case,
oscillatory solutions were previously thought impossible
(Rädler & Bräuer 1987). Analogously to their approach, we mul-
tiply Eq. (8) by Â∗, where the asterisk denotes complex conju-
gation, and integrate by parts. Using Eqs. (9) and (10), we obtain

∫ π/2

0
Â′′Â∗ dz = −

∫ π/2

0

∣∣∣Â′∣∣∣2 dz. (11)

Furthermore, (ÂÂ∗)′ = Â′Â∗ + ÂÂ′∗ = 2 Re(Â′Â∗), so

Â′Â∗ =

(
1
2

∣∣∣Â ∣∣∣2)′ + i Im(Â′Â∗). (12)

Equation (8) yields altogether four terms, two of which are real
and the other two imaginary. We obtain two integral constraints

α = −

∫ π/2

0

∣∣∣Â′∣∣∣2 dz
/ ∫ π/2

0
Im(Â′Â∗) dz, (13)

ω = − 1
2α

∣∣∣Â ∣∣∣2
π/2

/∫ π/2

0

∣∣∣Â ∣∣∣2 dz, (14)

A117, page 2 of 7



A. Brandenburg: Analytic solution of an oscillatory migratory α2 stellar dynamo

Fig. 1. Plots of a) real, b) imaginary, and c) absolute parts of D(α, ω). In
a) and b), the zero lines are marked in white, while in c) those of ReD
are dotted blue and those of ImD are solid red.

where |Â |2π/2 denotes the value of |Â |2 on the second boundary
at z = π/2. This implies that αω ≤ 0 (negative frequencies for
positive α) and ω , 0 if |Â |π/2 > 0 and α , 0.

Similar integral constraints can also be formulated for the
complex magnetic field, B̂(z) = iÂ(z). Unfortunately, the per-
fect conductor boundary condition, iηTB̂

′ = αB̂, is more cum-
bersome. Instead, one could formulate the problem for an artifi-
cially modified boundary condition, B̂′ = 0 on z = 0. Together
with the condition B̂ = 0 on z = π/2, the problem for B̂(z)
becomes equivalent to that for Â(z). In either case, the integral
constraints are analogous to those of Rädler & Bräuer (1987);
see Appendix A for details.

4. The solution

Given that Eq. (8) has constant coefficients, it has solutions pro-
portional to

Âi(z) ∝ eikiz, (15)

where the index i denotes one of two independent solutions. The
ki are in general complex and obey the characteristic equation

k2 + αk − iω = 0. (16)

It has two solutions,

k± = −α/2 ±
√
α2/4 + iω. (17)

To satisfy the boundary conditions (9) and (10), we write the so-
lution as a superposition of eik+z and eik−z. Equation (9) is readily
satisfied by writing

Â(z) = eik+z − eik−z, (18)

where we have ignored the possibility of an arbitrary (complex)
constant in front of Â. To satisfy Eq. (10), we now require that

D(α, ω) = k+eik+π/2 − k−eik−π/2 (19)

vanishes. The existence of solutions to D(α, ω) = 0 is demon-
strated by looking at a contour plot of |D|; see Fig. 1, where we
also plot separately the real and imaginary parts of D. We see
two zeroes in D(α, ω), which is confirmed by the crossing of
the lines where ReD and ImD vanish. (At α = ω = 0, there is
no such crossing, so D(0) is not a solution.) The transcendental
equation relating α to ω can be written in more explicit form as

eiπ
√
α2/4+iω +

(
α/2 +

√
α2/4 + iω

)2/
(iω) = 0. (20)

To find solutions to D(α, ω) = 0, it is convenient to introduce the
complex variable

Z ≡ α + iω. (21)

We seek solutions to D(Z) = 0 via complex interpolation,

Z = Z0 − D0 (Z0 − Z−1)/(D0 − D−1), (22)

where subscripts 0 and −1 refer to the current and previous iter-
ation. This yields the first critical value as

Z∗ = α + iω ≈ 2.5506504 − 1.4296921 i, (23)

with the corresponding complex wavenumbers

k+ ≈ 0.10161896 − 0.51915398 i, (24)
k− ≈ −2.6522693 + 0.51915398 i. (25)

The wavenumbers k+ and k− obey the relation

k+ + k− + α = 0, (26)

which follows from Eqs. (9) and (18). The critical values of α
and ω were first obtained by Jabbari et al. (2017) using explicit
time integration.

Additional solutions exist in the second and fourth quadrant
of the αω plane; see Fig. 2. They are all oscillatory, in agree-
ment with the integral constraints; see Eqs. (13) and (14) and
Table 1. However, those higher modes would generally be un-
stable in a nonlinear calculation and therefore only of limited
interest (Brandenburg et al. 1989).
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Fig. 2. Similar to Fig. 1c, but for the next higher modes (+ signs).

Table 1. Critical values of α and ω for the higher modes.

Mode α ω

1 2.5506504 −1.4296921
2 6.7152255 −4.9166082
3 10.779288 −8.9553785
4 14.815829 −13.351365
5 18.840111 −18.013101
6 22.857683 −22.886942
7 26.871119 −27.937488
8 30.881799 −33.139583

The solution is now completely described by the value of Z∗.
It is convenient to write the solution in the form

Â = rA(z) eiφA(z), (27)

where rA(z) and φA(z) are amplitude and phase of Â. In view of
computing magnetic field and current density, we also define

B̂ ≡ iÂ′ = rB(z) eiφB(z) (28)

and

Ĵ ≡ −Â′′ = rJ(z) eiφJ (z), (29)

respectively. In Fig. 3 we plot the moduli and phases of Â(z),
B̂(z), and Ĵ(z). Note that rA(0) = 0, as required by Eq. (9), and
r′A(π/2) = φ′A(π/2) = 0, as required by Eq. (10). In general,
however, Ĵ(0) ≡ −Â′′(0) , 0. The derivative of the phase is
an “effective” wavenumber, k(B)

eff
= dφB/dz, and determines the

z-dependent phase speed c = ω/k(B)
eff

, which is positive for posi-
tive α, so the wave moves in the positive z direction.

In Fig. 3c we plot the magnetic and current helicity densities,
as well as the z component of the Lorentz force,

A·B = ReÂ∗B̂, J ·B = ReĴ∗B̂, (J×B)z = ImĴ∗B̂, (30)

normalized by
∫

B
2
dz ≡

∫
|B̂ |2dz and

∫
J

2
dz ≡

∫
|Ĵ |2dz for the

first, and second and third quantities, respectively. The Lorentz
force has a maximum at z = 0.937, which is also the point where
the magnetic helicity density in the Weyl gauge has a maximum.

Fig. 3. a) Moduli and b) phases of Â(z), B̂(z), and Ĵ(z), as well as
c) normalized magnetic and current helicity densities together with the
z component of the Lorentz force.

The current helicity density, however, has a maximum at z = 0.
The ratio between the integrals of the two helicity densities is

k2
m ≡

∫
ReĴ∗B̂dz

/ ∫
ReÂ∗B̂dz, (31)

where km denotes the wavenumber of the mean field; see Eq. (25)
of Blackman & Brandenburg (2002). For α2 dynamos in pe-
riodic domains, one finds km/k1 = 1, but here we obtain
km/k1 ≈ 2.253027. Interestingly, this is also the value of the
magnetic Taylor microscale wavenumber of the mean field,
kT, defined through k2

T =
∫
|Ĵ |2dz

/∫
|B̂ |2dz, i.e., kT = km.

Finally, for the fractional current helicity of the mean field
(Blackman & Brandenburg 2002),

εm =

∫
ReĴ∗B̂ dz

/ (∫
|Ĵ |2dz

∫
|B̂ |2dz

)1/2

, (32)
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Fig. 4. Butterfly diagrams for Bx and By, with z increasing downward.

we find εm ≈ 0.883315, which is close to the value εm = 1 for α2

dynamos in periodic domains (Blackman & Brandenburg 2002).
To plot butterfly diagrams of Bx and By, we can now write

the fully time-dependent magnetic field as

Bx(z, t) = rB(z) cos[φB(z) − ωt],
By(z, t) = rB(z) sin[φB(z) − ωt].

(33)

This also demonstrates that the magnetic energy density,

EM = 1
2 B

2
= 1

2 rB(z)2 = EM(z), (34)

is independent of time and only a function of z. In fact, the mag-
netic and current helicity densities, as well as the z component
of the Lorentz force, all shown in Fig. 3c, are also independent
of time. The results for Bx(z, t) and By(z, t) are shown in Fig. 4,
where z increases downward so as to facilitate comparison with
Fig. 2 of Brandenburg et al. (2009), who adopted a perfect con-
ductor boundary condition at high latitudes and a vacuum con-
dition at the equator. In their case, however, α was non-constant
and vanishing on the equator.

5. Discussion

The graphs of the solutions obtained here look rather simple, but
would have been impossible to guess based on previous expe-
rience with one-dimensional dynamos with vacuum field condi-
tions on both ends of the domain. The field components of those
dynamos are proportional to cos z eiz. Such dynamos have been
studied extensively in connection with demonstrating the asymp-
totically equal growth rates of even and odd dynamo modes
(Brandenburg et al. 1989), the behavior of dynamos in the highly
nonlinear regime (Meinel & Brandenburg 1990), and the effects
of magnetic helicity fluxes (Brandenburg & Dobler 2001). Thus,
one might have expected that the solution to the present problem
could have been expanded in terms of sine functions proportional
to sin (2n + 1)z with integers n ≥ 0. Such functions obey the
boundary conditions of Ax on z = 0 and π/2. However, one sees
immediately that such a solution for Ax would imply that Ay has
terms proportional to cos (2n + 1)z, which would then violate the

Table 2. Values of α and |ω| using one-sided (1s) finite difference for-
mulae on the boundaries and symmetry/antisymmetry (s) conditions for
different meshpoint numbers Nmesh.

Nmesh α (1s) |ω| (1s) α (s) |ω| (s)

32 2.55213 1.4350 2.55228 1.4289
128 2.55071 1.4298 2.55074 1.4297
512 2.55065 1.4297 2.55065 1.4297

exact 2.55065 1.4297

Notes. Agreement with the analytic solution (“exact”) is indicated in
bold face.

boundary conditions on Ay on both boundaries; see Appendix B
for details. This is indeed be a problem for spectral codes that
employ sine or cosine transforms; see Vasil et al. (2008a,b) for
detailed studies and alternative approaches. It can also be a prob-
lem for codes that use symmetry conditions to populate the ghost
zones outside the computational mesh, as is done by default in
the Pencil Code1. This highlights once more the significance of
having an independent and analytic solution of such a dynamo.
To demonstrate this, we summarize in Table 2 the values of α
and |ω| for a marginally excited dynamo obtained by using ei-
ther one-sided (1s) finite difference formulae on the boundaries
or symmetry/antisymmetry (s) conditions (Brandenburg 2003)
for different meshpoint numbers Nmesh. The 1s scheme does not
restrict the second derivative and is found to be slightly better
than the s scheme.

We have here also been able to find higher order modes.
They all lie in the same two quadrants in the αω plane. Thus,
for positive α, we always have ω < 0. When determining ω em-
pirically from the period of the oscillation, it would not have a
definite sign, although the sign has implications for the phase
speed. For αΩ dynamos with differential rotation gradient Ω′ in
periodic domains with real wavenumber k, self-excited solutions
exist only when sgn [(kαΩ′)ω] > 0; see Appendix C and Table 3
of Brandenburg & Subramanian (2005). However, unlike αΩ dy-
namos, where both migration directions are possible, depending
just on sgn (αΩ′), for oscillatory α2 dynamos, the migration di-
rection is always away from the (perfect) conductor toward the
vacuum. This agrees with earlier findings for oscillatory α2 dy-
namos with nonuniform α profiles (Brandenburg et al. 2009).

In the context of oscillatory αΩ dynamos, boundary condi-
tions have long been known to introduce behaviors that are not
obtained for infinite domains (Parker 1971). The antisymmetry
condition at the equator was found to play the role of an absorb-
ing boundary that led to localized wall modes (Worledge et al.
1997; Tobias et al. 1997). Subsequent work using complex am-
plitude equations for the envelope of a wave train demonstrated
that boundary conditions can play a decisive role in determining
the migration direction of traveling waves (Tobias et al. 1998).
They emphasized that the traveling wave behavior is linked to the
symmetry-breaking in the mean-field dynamo equations. This
rather general result could explain the migration direction of the
α2 dynamo studied here. The symmetry breaking, which occurs
here through the boundary conditions, might also be responsible
for the occurrence of an oscillatory mode rather than the non-
selfadjointness mentioned in the introduction (Shukurov et al.
1985).

1 https://github.com/pencil-code
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6. Conclusions

The present work has shown that α2 dynamos with constant α
can have oscillatory solutions provided the boundary conditions
on the two ends of the domain are different. It is possible to
construct a one-dimensional analytic solution characterized by a
complex function Â(z), which obeys Dirichlet and von Neumann
boundary conditions on the two ends of the domain. The solution
has been obtained as a superposition of two harmonic functions
with complex wavenumbers. In principle, we could have solved
the problem directly for B̂(z) = iÂ(z), but the boundary condi-
tion on z = 0, namely iηTB̂

′ = αB̂, would be more complicated.
Integral constraints on B̂ would then be harder to impose, un-
less one changed the perfect conductor boundary condition to
B̂′ = 0. In that case, the problem becomes equivalent to the one
considered here if we replace Â → B̂. In this connection, it
should be noted that the very assumption of a finite α effect on
a perfect conductor boundary, while mathematically sound, is
physically not strictly realistic, because an impenetrable bound-
ary would necessarily make α anisotropic such that its tangential
components would vanish (Rädler 1982). Nevertheless, various
DNS with helically forced turbulence extending all the way to
the walls confirm the presence of oscillatory migratory solutions
(Mitra et al. 2010; Warnecke et al. 2011; Jabbari et al. 2017).

Owing to our restriction to Cartesian geometry, the main ap-
plication of this model lies in the comparison with other numeri-
cal solutions in the same geometry (see, e.g., Jabbari et al. 2017).
The present solution demonstrates clearly that a model with con-
stant α is possible and has time-independent magnetic energy
density. Thus, when looking only at the rms value of the mag-
netic field or the volume-integrated energy, one will not notice
the presence of an oscillatory solution.

When the α2 dynamo is applied to a star, α would have the
opposite sign on the other side of the equator (here for z > π/2)
and would then be described by a step function. In that case, the
field could be either symmetric or antisymmetric about the equa-
tor. Earlier work with a linear α profile suggests that the antisym-
metric solution is more easily excited (Brandenburg et al. 2009;
Cole et al. 2016). Such solutions would have a discontinuity in
the derivative of the current density at the equator. More dra-
matic, however, would be the case of symmetric solutions when
a vacuum or vertical field condition is assumed on the outer
boundary, because in that case the current density itself would
be discontinuous at the equator. Interestingly, the critical values
of α are the same in both cases. While a step function profile
of α is artificial, it does pose a simple benchmark for numerical
schemes. The analytic solution presented here applies also to this
case. This solution may also serve as a pedagogical illustration
that oscillatory migratory dynamos with constant α are possible.
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Appendix A: Integral constraint in multi-dimensions

The purpose of this appendix is to demonstrate the analogy
between Eqs. (13) and (14) and the corresponding one of
Rädler & Bräuer (1987). However, instead of assuming the dy-
namo region to be surrounded by vacuum and extending some
of the volume integrals over all space, we adopt here perfect
conductor and vertical field boundary conditions. In a multi-
dimensional domain, the latter is no longer a proper vacuum
condition, but it can be motivated as being a more realistic repre-
sentation of stellar surface fields affected by magnetic buoyancy
effects (Yoshimura 1975). Multiplying by B̂∗, the dynamo eigen-
value problem takes the form

−B̂∗ · (∇ × ∇ × B̂) + B̂∗ · ∇ × (αB̂) + iω|B̂|2 = 0. (A.1)

Using

2iα Im
(
B̂∗ · ∇ × B̂

)
= ∇ ·

(
αB̂ × B̂∗

)
− ∇α ·

(
B̂ × B̂∗

)
, (A.2)

but assuming now constant α in a volume V , we obtain

α = −

∫
V

∣∣∣∇ × B̂
∣∣∣2 dV

/∫
V

Im
(
B̂ · ∇ × B̂∗

)
dV (A.3)

and, as in Rädler & Bräuer (1987),

ω = − 1
2α

∮
∂V

Im
(
B̂ × B̂∗

)
· dS

/∫
V

∣∣∣B̂∣∣∣2 dV. (A.4)

These equations are analogous to Eqs. (13) and (14). By com-
parison, Rädler & Bräuer (1987) assumed a potential field on all
boundaries, so B̂ = −∇Φ, where Φ is the magnetic scalar po-
tential. Writing the integrand of the surface integral in Eq. (A.4)
as ∇ × (Φ∇Φ∗) and turning the surface integral back into a vol-
ume integral, one sees that the divergence of the curl vanishes,
and therefore ω = 0. However, this does not apply to our case
where we have different boundary conditions on the two ends.
By comparison, in one-dimensional dynamos with vacuum con-
ditions on both ends, |Â|2 has, in a non-transient state and with
the gauge

∫
Â dz = 0, the same value on both boundaries, so

Eq. (14) does indeed predict ω = 0.

Appendix B: Quarter sine wave expansion

In this appendix we give the results for a quarter sine wave ex-
pansion of Â,

Â(z) =

∞∑
n=0

Ân sin (2n + 1)z, (B.1)

where each element of the expansion obeys Eqs. (9) and (10).
The coefficients are given by Ân =

∫ π/2
0 Â sin (2n+1)z. We have

strictly Â′′(0) = 0, although the analytic value is nonvanishing,
Â′′(0) ≈ 7.0242061 − 2.6483598 i. For Â′(0) we have

Â′(0)→ SN ≡

N∑
n=0

(2n + 1) Ân, (B.2)

Table B.1. Coefficients Ân and Sn.

n Re Ân Im Ân ReSn ImSn

0 2.512 0.493 2.512 0.493
1 −0.052 0.557 2.355 2.165
2 −0.114 0.054 1.788 2.437
3 −0.024 0.013 1.622 2.527
4 −0.015 0.006 1.486 2.578
5 −0.006 0.003 1.418 2.609
6 −0.005 0.002 1.358 2.631
8 −0.002 0.001 1.287 2.659

10 −0.001 0.000 1.242 2.677
100 −0.000 0.000 1.060 2.746
500 0.000 0.000 1.044 2.752

Analytic solution −→ 1.038 2.753

which converges extremely slowly to the analytic value obtained
from Eq. (18), which is Â′(0) ≈ 1.0383077 + 2.7538882 i; see
Table B.1, where we list the first few values of Sn and Ân.

Appendix C: Comparison with the αΩ dynamo

The purpose of this appendix is to show that for αΩ dynamos,
αωΩ′k > 0 and αcΩ′ > 0, where c = ω/k is the phase speed.
We assume a linear shear flow velocity U = (0, xΩ′, 0), where
Ω′ is the velocity gradient. Using the advective gauge, U · A = 0
(Brandenburg et al. 1995; Candelaresi et al. 2011), we have

∂Ax

∂t
= −Ω′ Ay + ηT

∂2Ax

∂z2 , (C.1)

∂Ay

∂t
= +α

∂Ax

∂z
+ ηT

∂2Ay

∂z2 · (C.2)

The dispersion relation is then

−iω ≡ −ikc = −ηTk ± (−ikαΩ′)1/2. (C.3)

Using (2 i)1/2 = 1 + i and (−2 i)1/2 = (1 + i)i = −1 + i, we have

−iω ≡ −ikc = −ηTk ±
[
i − sgn (kαΩ′)

] ∣∣∣kαΩ′/2
∣∣∣1/2 . (C.4)

For positive (negative) values of kαΩ′, only the lower (upper)
sign yields marginally excited dynamos, so

sgnω = sgn (kαΩ′) and sgn c = sgn (αΩ′). (C.5)

Thus, the migration direction depends just on the sign of αΩ′,
but the frequency depends also on the sign of k.
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