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Abstract. We investigate the statistical properties of isotropic, stochastic, Gaussian dis-
tributed, helical magnetic fields characterized by different shapes of the energy spectra at
large length scales and study the associated realizability condition. We discuss smoothed
magnetic fields that are commonly used when the primordial magnetic field is constrained
by observational data. We are particularly interested in scale-invariant magnetic fields that
can be generated during the inflationary stage by quantum fluctuations. We determine the
correlation length of such magnetic fields and relate it to the infrared cutoff of perturbations
produced during inflation. We show that this scale determines the observational signatures of
the inflationary magnetic fields on the cosmic microwave background. At smaller scales, the
scale-invariant spectrum changes with time. It becomes a steeper weak-turbulence spectrum
at progressively larger scales. We show numerically that the critical length scale where this
happens is the turbulent-diffusive scale, which increases with the square root of time.
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physics of the early universe
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1 Introduction

The origin of cosmic magnetic fields is one of the big open questions in astrophysics and
space physics [1–3]. It is generally thought that these magnetic fields are the result of the
amplification of weak initial seed fields. It is also clear now that µG-strength magnetic fields
were already present in spiral galaxies (like our Milky Way) when the universe was about
a third of its present age [4–6]. This poses strong constraints on the initial seed magnetic
field strength and its amplification timescale. There are two basic magnetogenesis scenarios
currently under discussion: a bottom-up (astrophysical) scenario, where the seed is typically
very weak and magnetic fields are transferred from local sources within galaxies to larger
scales [7], and a top-down (primordial) scenario where a significant seed field is generated
prior to galaxy formation in the early universe on scales that are now large [8]. The primordial
magnetogenesis scenario is supported by recent observations suggesting that lower bounds
of the order of 10−18 to 10−19 G exist for the intergalactic magnetic fields,1 (see refs. [9–18],
also ref. [19] for discussions on possible uncertainties in the measurements of blazar spectra).
In addition to these lower limits from observations, there exist also upper limits of the order
of a few nG for the intergalactic magnetic field [2, 3].

1Initially, the 10−15–10−16 G limit had been obtained [9, 10] based on studying blazar TeV photons which
produce a cascade flux in the GeV band after absorption by the extragalactic background light (EBL). Con-
sidering the expected cascade flux with the assumption of a constant TeV flux gives this estimate. These
bounds have been subsequently reconsidered after accounting for the fact that the source observation period
(of the order of a few years) limits the flux activity in the TeV blazars [16]. The simultaneous observations of
blazars in the GeV and TeV bands lead to weaker limits of the order of 10−18–10−19 G [12, 16].
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A cosmological magnetic field contributes to the radiation-like energy density, and
sources all three helicities of linear gravitational perturbations [20]2 which lead to correspond-
ing temperature and polarization anisotropies of the cosmic microwave background (CMB).
In addition it induces Faraday rotation of the CMB polarization direction, and affects large-
scale structure (LSS) formation; see ref. [3] and references therein. All these effects can be
used to constrain the magnetic field strength, and as we show below, the magnetogenesis
scenarios. Upper limits for cosmological magnetic fields can also be obtained through CMB
constraints on Faraday rotation [21], and these limits are independent of those from magnetic
helicity [22–24]. In addition, upper limits on extragalactic magnetic fields can be derived from
Faraday rotation measurements of polarized emission of distant quasars [25–28]. Other tests
leading to upper limits on large-scale correlated magnetic fields are based on their effects on
big bang nucleosynthesis (BBN) [29], the CMB (including CMB fluctuations, polarization,
distortions, non-gaussianity, etc, see ref. [30] and references therein), or LSS formation (for
a recent review, see [3]). The lower limit on the intergalactic magnetic field in voids, of the
order of 10−18 G on 1 Mpc scales, is a relatively recent constraint in modern astrophysics (see
ref. [31]), and could very well be the result of the amplification of a primordial cosmological
field [15].

One of several plausible mechanisms for the origin of these cosmic magnetic fields is to
assume that a seed magnetic field has been generated in the early universe [3]. Below we
discuss two basic possibilities for primordial magnetogenesis — inflation and cosmological
phase-transitions. The purpose of this paper is to discuss magnetic energy and helicity
spectra produced by these mechanisms and to investigate relevant length scales, which is no
longer straightforward in inflationary magnetogenesis.

Inflationary magnetogenesis. Magnetogenesis can occur during inflation by the ampli-
fication of quantum vacuum fluctuations, as was shown in several pioneering works [32, 33].
The rapid exponential growth and the induced stretching of the field during inflation can
produce a very large correlation length of the observed magnetic fields today. In addition,
inflation also provides a natural way to generate modes from quantum fluctuations of the field
inside the Hubble radius, which are subsequently converted into classical fluctuations as they
exit the Hubble horizon. Such fields can have a scale-invariant (or a nearly scale-invariant)
spectrum. These, among several other properties, make inflationary magnetogenesis an at-
tractive scenario (see [3] for a recent review).

The Maxwell action describing the electromagnetic field is conformally invariant, and
the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric describing the evolution of the
universe is conformally flat. Therefore, the process leading to quantum excitation of the
magnetic field must break conformal invariance. For this, one has to introduce couplings
of the electromagnetic field that break conformal invariance. There are several possibili-
ties to achieve this. These include coupling of the field to the inflaton, or to the curvature
(the Riemann tensor). Several authors [8, 32–64] have explored a range of models dealing
with inflationary magnetogenesis. The inflation-generated magnetic field scenarios should be
considered with some caution due to the possibility of a “strong coupling problem” and signif-
icant backreaction [65–70], which is not a problem for the phenomenological, effective classical
model, see ref. [71], for Lorentz-violating magnetogenesis [72], or if the function that couples
the inflaton to the electromagnetic field has sharp and non-monotonic features [73, 74].

2These are (i) the scalar mode — density perturbations, (ii) the vector mode — vorticity perturbations,
and (iii) the tensor mode — gravitational waves, that do not have an analogy within Newtonian physics, while
Newtonian physics admits the analogy for density (and vorticity) perturbations as magnetosonic (and Alfvén)
waves.

– 2 –
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Phase transition magnetogenesis. Some magnetogenesis mechanisms make use of the
symmetry breaking during cosmological phase transitions (e.g. electroweak or QCD) [75–101].
If the magnetic field originated during a cosmological phase transitions, its spectrum is con-
strained by the causality requirement [102], in particular the magnetic field correlation length
must be less than or equal to the Hubble length scale at the moment of generation.

Usually, a first-order phase transition is needed for magnetic fields of substantial strength
and correlation scales to arise, the idea being that bubbles of the new phase start nucleating
in the space filled with the old phase; these bubbles then expand and collide with each
other, ultimately filling the entire space with the new phase. Such processes are highly out of
equilibrium (and violent), and can generate significant turbulence, amplifying the fields [103].
In this scenario, the correlation length of the magnetic field (i.e., the magnetic domain length
scale) can be associated with the phase transition bubble size [104]. One can also associate
processes like baryogenesis with these phase transitions [88].

There are two phase transitions of interest in the early universe — the electroweak
phase transition occurring at a temperature of T ∼ 100 GeV, and the QCD phase transition
occurring at T ∼ 150 MeV [1–3, 105]. However, these transitions are usually (i.e., within
the standard model of particle physics) not of first-order, but are simple crossovers, so the
transition occurs smoothly [106–108]. There has been much research about the conditions
or extensions of the standard model under which these transitions become first-order (pos-
sibilities include having a large leptonic chemical potential for the QCD transition [109],
supersymmetric extensions for electroweak phase transitions [110], etc).

One of the most important properties of the primordial magnetic fields is their helicity.
Magnetogenesis mechanisms that involve a parity violation can lead to magnetic fields with
non-zero helicity (see for example refs. [42, 46, 61, 62, 72, 78, 79, 82, 88, 90, 94–96, 111–114]).
It is a well known fact that magnetic helicity is an important factor defining the evolution
of turbulent magnetic fields in the early universe. In particular, helicity conservation sets
constraints on the decay of magnetic fields in the early universe leading to an inverse cascade
of energy in the helical fields. Thus, helicity leads to magnetic fields with a larger correlation
length that decay slower compared with non-helical fields [115–117]. However, in the case of
nearly scale-invariant magnetic fields, the correlation length is almost frozen in [118].

The mean magnetic energy and helicity densities are related by the realizability condi-
tion — one of the topics of the present study (see section 3). The realizability condition limits
the maximal helicity that random magnetic fields can sustain [119]. Hence, magnetic fields
with a lower value of helicity can be defined as states with fractional helicity. On the other
hand, numerical simulations show that magnetic fields with zero helicity can still undergo a
slower non-helical inverse transfer of magnetic fields [2, 120].

We study the evolution of magnetic fields in the expanding universe by solving the
magnetohydrodynamic (MHD) evolution equations for these fields and the fluid density and
velocity. These equations describe the coupling between random magnetic fields and tur-
bulent motions, as well as amplification and damping. To account for the expansion of the
universe, these equations are rewritten in terms of comoving quantities [121], The numerical
simulations are done using the Pencil Code (https://github.com/pencil-code) [122], which
is a high order finite-difference code for solving equations involving compressible magneto-
hydrodynamic flows.

As mentioned above, we study the statistical properties of random helical magnetic fields
generated during the early universe, with special emphasis on the realizability conditions and
its cosmological applications. In section 2, we review in some detail the spectral and statistical
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properties of magnetic fields, taking special care to relate the average quantities and the
various characteristic length scales to the magnetic field spectra, and define the smoothed
magnitudes of the magnetic field and the helicity, that are widely used when analyzing
observational data. In section 3, we discuss the realizability condition for generic magnetic
fields, and relate it to the smoothed magnitudes. In section 3.1, we consider two different
types of shape for the energy spectrum, and formulate a method to make the realizability
condition hold consistently at all scales also for inflationary, nearly scale-invariant fields.
In section 4, we present the results of numerical simulations, such as the evolution of the
magnetic mean energy density, the correlation length, and the fractional helicity, which grows
owing to magnetic energy decay.

One of the major points of the present paper is the study of cosmological applications.
In section 5 we discuss cosmological magnetic field amplitudes and helicity limits obtained
from CMB and LSS data. Readers familiar with MHD might want to skip over sections 2
and 3 since much of what we present there can be found in books.

In this paper, we propose to extend the results from the Planck satellite [30], taking
into account the magnetohydrodynamic evolution of the primordial plasma until the epoch
of reionization. To the best of our knowledge, such an analysis has not been done before.
This is important since fields with partial initial helicity become fully helical at a later stage
in their evolution [124]. Furthermore there is some confusion in the literature regarding the
dependence of scalar quantities like the total magnetic energy density and the rms density on
helicity. This arises from the fact that the expression for, e.g., the spectrum of the magnetic
energy density — a fourth order correlation function in the magnetic field — includes the
helicity power spectrum. We have explicitly shown that, after integration, the helicity drops
out and does not contribute to the energy density power spectrum. This has not previously
been demonstrated, it seems. Similar integrals involving the Lorentz force, for example, can
still remain finite, however. Further investigation is needed, which is beyond the scope of this
paper. We show that the best way to constrain the helicity is to use parity odd CMB spectra
like CTB` or CEB` , [125, 126] that are zero if there is no magnetic helicity (and/or other parity
violating other sources). We revisit the current upper limits of ref. [30] on the magnetic field,
accounting for the magnetic field coupling with the primordial plasma, and consequently
MHD turbulence evolution from the moment of generation until the recombination epoch.
We also obtain the upper bounds on maximal inflationary, nearly scale-invariant magnetic
helicity accounting for magnetic field evolution [118] and the combined upper limits on the
magnetic field strength (through CMB and LSS data) [127]. In section 6, we present some
concluding remarks.

Throughout the paper, we set ~ = c = kB = 1, and we use the Lorentz-Heaviside
units to express magnetic fields, such that the magnetic energy density is ρM(x) = B2(x)/2.
Unless otherwise specified, we imply a summation over repeated indices, and Latin indices
run through 1, . . . , 3.

2 Modeling a helical magnetic field

Seed magnetic fields are generated in the early universe (see ref. [3] for a review of possible
primordial magnetogenesis scenarios) from either random quantum fluctuations during infla-
tion, or from a first order phase transition, which proceeds via bubble nucleation, a violent
and stochastic process. It is not surprising, therefore, that the generated magnetic fields are
themselves random and stochastic. As already mentioned, the considerations presented in
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this section are not new, but in order to eliminate recent confusions in the literature, we
want to lay them out carefully and clearly.

To define correlation functions or power spectra, we take an ensemble average, i.e., an
average over many realizations. We assume that the generated magnetic field is statistically
homogeneous and isotropic and that it obeys Gaussian statistics.

2.1 Magnetic field spectrum

All statistical information of a stochastically homogeneous and isotropic Gaussian magnetic
field can be obtained through its two-point correlation function, Bij(r)≡〈Bi(x)Bj(x+r)〉 [128],
which, in its most general form, can be written as

Bij(r) = MN(r)δij +
[
ML(r)−MN(r)

]
r̂ir̂j +MH(r)εijlrl, (2.1)

where 〈· · · 〉 denotes the average over the statistical ensemble and r̂i = ri/|r|. In this case,
it is equivalent to the volume average over all x due to homogeneity. The functions MN(r),
ML(r), and MH(r) are the lateral (normal, N), longitudinal (L), and helical (antisymmetric,
H) components of the magnetic field correlation function, respectively. Due to isotropy, all
components depend only on r ≡ |r| (as there is no a preferred direction, 〈B(x)〉 = 0, for a
stochastic magnetic field). Since εijk is invariant under rotation, the rotational symmetry is
preserved also for antisymmetric helical fields.

Although Bij(r) is rotationally invariant, the presence of the antisymmetric part (∝
εijlrlMH(r)) means that parity (mirror) symmetry is violated. It is easy to see that

Bij(r) = Bji(−r) . (2.2)

The contribution of the helical part to each diagonal term Bii (no summation here) of the
magnetic field two-point correlation function vanishes. Thus, the diagonal terms, and hence
the trace, do not contain any information on the asymmetric part. This statement is true
for both solenoidal (divergence-free) and irrotational (curl-free) fields.

The normal, MN(r), longitudinal, ML(r), and helical, MH(r) components of the mag-
netic correlation function are obtained from the correlation function Bji via the following
projection operations:

Pij(r̂)Bij(r) = 2MN(r), (2.3)

r̂ir̂jBij(r) = ML(r), (2.4)

εijmr̂mBij(r) = 2rMH(r), (2.5)

where Pij(r̂) = δij− r̂ir̂j is the projector tensor into the plane normal to r. Indeed, the trace,
given by Bii(r) = δijBij(r) = 2MN(r) +ML(r), is independent of the antisymmetric part.

Since the magnetic field is divergence-free, ∇ ·B = 0, ML and MN are not independent
but related by

MN(r) =
1

2r

d

dr

[
r2ML(r)

]
= ML(r) +

r

2

d

dr
ML(r). (2.6)

Hence, there are only two independent functions ML(r) and MH(r) that determine the full
magnetic two-point correlation function. Requiring that the magnetic field has a well defined
power spectrum also for k → 0, we have∫

d3r |Bii(r)| <∞. (2.7)

As we will show below, this inequality also ensures that the average (mean) magnetic energy
density EM = 〈B(x) ·B(x)〉/2 is well defined in wavenumber space k.

– 5 –
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Let us now consider the spectral (Fourier) decomposition of our stochastic magnetic
field amplitudes3 B(k). Reality of B(x) implies B(k) = B?(−k), and due to statistical
homogeneity the 2-point statistical average is of the form

〈B?
i (k)Bj(k

′)〉 = (2π)3δ(3)(k− k′)F (B)
ij (k), (2.9)

where 〈· · · 〉 again denotes ensemble average, but now in wavenumber space. The matrix

F (B)
ij (k) is called the three-dimensional (3D) power spectrum of the magnetic field, and in

fact, it is the Fourier transform of the magnetic field two-point correlation function Bij(r)
(see appendix A):

Bij(r) =
1

(2π)3

∫
d3k e−ik·rF (B)

ij (k), (2.10)

F (B)
ij (k) =

∫
d3r eik·rBij(r). (2.11)

Translational invariance of the magnetic field is reflected in the presence of the Dirac delta
function δ(3)(k − k′) on the right hand side of equation (2.9). For the general case, when
the isotropic stochastic Gaussian magnetic field has non-zero helicity (MH(r) 6= 0), the 3D

spectrum matrix components F (B)
ij (k) satisfy the following reality conditions:

F (B)
ij (k) = F (B)

ji (−k) = [F (B)
ij ]?(−k) = [F (B)

ji ]?(k) . (2.12)

Defining Pij(k̂) = δij − k̂ik̂j , the projection operator onto the plane normal to k with

k̂i = ki/k, k = |k|, the divergence-free condition of the magnetic field requests the following
form for Fij(k)

F (B)
ij (k)

(2π)3
= Pij(k̂)

EM(k)

4πk2
+ iεijlkl

HM(k)

8πk2
. (2.13)

The most general form for the function Fij(k) is

Fij(k) = Pij(k̂)FN(k) + k̂ik̂jFL(k) + iεijlklFH(k) . (2.14)

The functions FN(k), FL(k), and FH(k) represent the normal, longitudinal, and helical (anti-
symmetric) parts of the magnetic 3D spectrum, and they are integrals over the corresponding
function in real space4 Using integrals given in eqs. (2.15), as well as the spherical Bessel

3We define the Fourier transform of the magnetic field, B(x), with the following normalization:

B(k) =

∫
d3x eik·xB(x), B(x) =

1

(2π)3

∫
d3k e−ik·xB(k). (2.8)

4The functions FN(k), FL(k), and FH(k) can be expressed in terms of MN, ML, and MH as

FL(k) = 4π

∫ ∞
0

dr r2
[
j0(kr)ML +

2j1(kr)

kr
(MN −ML)

]
,

FN(k) = 4π

∫ ∞
0

dr r2
[
j0(kr)MN +

j1(kr)

kr
(ML −MN)

]
,

FH(k) = −8π

∫ ∞
0

dr r2
[
j1(kr)

kr
MH

]
, (2.15)

where jn(x) is the spherical Bessel function of order n. The divergenceless condition of the magnetic field
implies kiFij(k) = kjFij(k) = 0, and thus the longitudinal component FL(k) must be vanishing for the
divergence-free field.

– 6 –
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function identity (x2j1(x))′ = x2j0, one sees immediately that (2.6) implies FL(k) ≡ 0
for a divergence-free field. The function EM(k) is determined by the symmetric part of
the magnetic field 3D spectrum, it is usually referred to as the spectral energy density,∫
dk EM(k) = EM, see section 2.2, below, and it can be expressed in terms of the Fourier

transform of the normal component of the correlation function given in equation (2.1), FN(k)
as EM(k) = FN(k)/(4πk2). The function HM(k) is the antisymmetric part of the 3D mag-
netic field spectrum, usually referred to as the spectral density of the magnetic helicity,∫
dkHM(k) = HM, see section 2.4 below. It can be expressed in terms of the helical component

of the Fourier transform of the correlation function equation (2.1), HM(k) = FH(k)/(2πk).
The magnetic field spectral energy and helicity densities are typically given by simple power
laws in a certain wavenumber range; generally different spectral ranges are characterized by
different spectral indices,

EM(k) ∝ knE , HM(k) ∝ knH . (2.16)

Of particular interest are the spectral shapes at large length scales, i.e., small wavenumbers,
and, from now on, whenever unspecified, “spectral index” refers to the spectral index at the
large-scale asymptotics. These spectral indices nE and nH determine the shapes of spectral
energy and helicity of the magnetic field only at large length scales (small wavenumbers).
They are defined by limk→0EM/k

nE = finite and limk→0HM/k
nH = finite.

2.2 Mean and rms energy densities

The mean magnetic energy density per unit volume, EM, is given by

EM = 〈ρM(x)〉 =
1

2
〈|B(x)|2〉 =

1

2
Bii(0) = MN(0) +

1

2
ML(0) . (2.17)

Since MN(0) = ML(0),5 we have

MN(0) = ML(0) =
2

3
EM. (2.18)

Note again that the mean energy is independent of the helicity given by MH(r) or FH(k).
The quantity Bii(0) is given by the trace of the 3D spectrum, Fii(k) (which is continuous
at k → 0, provided the magnetic energy density does not diverge at infinity), and thus
Bii(0) = δij limr→0 Bij(r). We have

EM =
1

2(2π)3
δij lim

r→0

∫
d3k e−ik·rF (B)

ij (k) =

∫
dk EM(k) . (2.19)

Thus EM(k) describes the distribution of the magnetic energy density in wavenumber space,
which justifies its definition as the spectral energy density of the magnetic field.6 The re-
quirement that the magnetic energy density converges toward infinity (k → 0) implies that

5The equality can be shown as follows. We rotate the coordinate frame x → x′, so that the axis e1 is
now in the direction of r. Then there will only be two independent components of the matrix B′ij(r′). These
components correspond to the normal and longitudinal components, and they must be equal to each other at
r = 0. This is also obtained from (2.6), assuming M ′L(r)|r=0 <∞. See [128] for details.

6The symmetric spectra MN(r) and ML(r) in terms of EM(k) and the spherical Bessel functions jn(x) can
be written as:

ML(r) = 2

∫ ∞
0

dkEM(k)
j1(kr)

kr
, MN(r) =

∫ ∞
0

dk

[
j0(kr)− j1(kr)

kr

]
EM(k). (2.20)

These are just the inverse Fourier transforms of the expressions in footnote 4 for the case FL = 0.
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nE > −1. A spectrum with nE → −1, i.e., E(k) ∝ k−1 is a scale-invariant spectrum. Such
a magnetic field can be generated during the inflationary epoch; for a review see [3] and
references therein.

We denote the integral
∫∞

0 dk EM(k) by
∫
dk EM(k). In reality, the power law (with

different spectral shapes in the different regimes) for EM(k) only holds below the magnetic
field cutoff scale kD, i.e. EM(k)→ 0 for k > kD.7

The magnetic root mean square (rms) energy density is defined as

Erms
M =

[
〈|ρM(x)|2〉

]1/2
=

1

2

√
〈|B(x)|4〉. (2.21)

Hence,

Erms
M =

1

2
lim
r→0

√
Bii,jj(r), (2.22)

where Bij,lm is the four-point correlation function of the magnetic field, defined as

Bij,lm(r) = 〈Bi(x)Bj(x)Bl(x + r)Bm(x + r)〉. (2.23)

As we consider a Gaussian magnetic field, we can apply Wick’s theorem and express the
four-point correlation function in terms of the two-point correlation functions,

Bij,lm(r) = Bij(0)Blm(0) + Bil(r)Bjm(r) + Bim(r)Bjl(r). (2.24)

We emphasize that the first term on the r.h.s. of equation (2.24) is usually discarded (see,
for example, ref. [129]) because it cannot be obtained through k-space considerations.

From the definition of the 4-point function it is clear that,

Bij,lm(r) = Blm,ij(r) = Bji,lm(r) = Bij,ml(r). (2.25)

We now calculate the trace of (2.23) and obtain,

Bii,ll(r) = 9M2
N(0) + 4M2

N(r) + 2M2
L(r) + 4r2M2

H(r) . (2.26)

Reconstructing equation (2.26) from the magnetic field rms energy density power spectrum
must be done with caution: the first constant term 9M2

N(0) will be missing when naively
taking the direct Fourier transform of Bii,ll(k). To find the rms magnetic energy density, we
now take the limit of Bii,ll(r) as r→ 0. Equation (2.22) then gives (see appendix B)

Erms
M =

1

2

√
15MN(0) =

√
5

3
EM. (2.27)

We conclude that the rms magnetic energy density Erms
M , just like the average magnetic energy

density ρ̄M = EM, does not depend on magnetic helicity.8 For this it is important that we
define the helical component as εijlr

lMH(r) so that it vanishes as r→ 0, which it must as a
consequence of its antisymmetry under parity.

7More precisely for k > kD the magnetic field spectral energy density experiences the exponential cutoff,

EM(k) ∝ e−(k/kD)2 for k > kD.
8Note that ref. [129] gives a potentially misleading expression in their equation (3.4), implying the presence

of a helical contribution to the rms energy density. That expression is only the O(k0) term of the fuller
expressions given in their appendix B, and could be misunderstood. The bottom left panel of their figure 1
indicates positive and negative contributions from small and large k, suggesting vanishing rms energy density,
although it is not explicitly mentioned.
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Figure 1. The damping scale is the length segment that is cut off on the abscissa by a parabola that
can be locally fit to the Bii(r) curve at its apex (r = 0), see also ref. [128].

2.3 Characteristic length scales

In this section we define the relevant characteristic length scales for the magnetic fields that
are related to the correlation and damping length scales. We distinguish between statistically
relevant length scales and smoothing length scales: statistical length scales are determined
fully by the magnetic field configuration and the properties of the plasma (viscosity, diffu-
sivity, etc), while smoothing length scales are introduced for convenient interpretation and
normalization purposes. In cosmology, it is often convenient to use a smoothing length of
1 Mpc since an amplitude of about 10−9 Gauss on this scale is required to form the observed
magnetic fields in clusters by pure contraction, without a dynamo mechanism [130, 131]. De-
pending on the magnetic field generation mechanism, this scale of 1 Mpc can be substantially
larger than the magnetic correlation length (e.g., for magnetic fields generated during the
electroweak phase transition), while for other mechanisms, 1 Mpc can be a small fraction
of the magnetic correlation length (e.g., for inflationary magnetic fields). We discuss the
normalization aspects in section 2.5.

Let us first consider the characteristic length scales that are constructed solely from
integration of the spectral magnetic energy. The magnetic integral scale is defined as [128]

ξM(t) = k−1
M =

∫∞
0 dk k−1EM(k, t)

EM(t)
. (2.28)

There are various possibilities to construct additional length scales from the second
derivative of the magnetic two-point correlation function. In particular, we define the differ-
ential scale for the magnetic field as [128]

λM =

∣∣∣∣Bii(0)

B′′ii(0)

∣∣∣∣1/2 . (2.29)

The differential length scale characterizes the scale beyond which correlations between two
points are significantly washed out. In figure 1 we illustrate the meaning of the differential
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length scale. The wavenumber corresponding to the differential length scale λM is known as
the magnetic Taylor microscale wavenumber,

k2
MT =

∫∞
0 dk k2EM(k)

EM
(2.30)

with λM = k−1
MT. In Kolmogorov’s hydrodynamic turbulence theory, dissipation is described

through the mean kinetic energy dissipation per unit mass: εK = 2ν
∫
dk k2ẼK(k), where ν

is the kinematic viscosity, and the tilde on E (and later also on E) is used here and below to
indicate energies or spectral energies per unit mass, applying normalization by p+ ρ, where
p and ρ denote the pressure and the energy density of the plasma. Thus, analogously to εK,
the magnetic energy dissipation is given by εM ∝ 2η

∫
dk k2ẼM(k). The magnetic dissipation

wavenumber is defined through

k4
MD =

εM
η3

=
2
∫∞

0 dk k2ẼM(k)

η2
, (2.31)

where η is the magnetic diffusivity. In the present case, however, the turbulent flow is driven
entirely by the magnetic field and the magnetic energy spectrum follows a weak turbulence
(WT) spectrum of the form

ẼM(k) = CWT (εMvAkM)1/2 k−2, (2.32)

where CWT≈1.9 is a Kolmogorov-type constant for magnetically dominated turbulence [117],
and vA = (2ẼM)1/2 is the Alfvén speed. Defining now a k-dependent Lundquist number
as Lu(k) = vA(k)/ηk with v2

A(k) = 2kEM(k) and defining a WT dissipation wavenumber
through Lu(kWT) = 1, we find9

k6
WT = (2CWT)2 Lu k2

M k4
MD. (2.33)

In section 5 below, we show the values of some of the characteristic length scales during the
MHD decay.

2.4 Current and magnetic helicity

The antisymmetric part of the magnetic field spectrum, MH(r), is related to the magnetic
helicity. It is also related to the current helicity, but this is usually less crucial than the
magnetic helicity, which satisfies a conservation equation. The mean magnetic helicity density
over a volume V is defined as

HM = lim
V→∞

1

V

∫
V
d3x A ·B = lim

V→∞

1

V

∫
V
d3x

(
curl−1B

)
·B . (2.34)

In the mathematical literature, this is called a generalized asymptotic form of the Hopf in-
variant [132], or the measure of line linkage of the B field. This quantity cannot be defined
locally, and in a realistic situation the infinite volume should be understood as a 3D volume
where the magnetic field is determined.

9Inserting k = kWT into Lu(kWT) = 1, we have 1 = (ηkWT)−1
√

2kWTCWT (εMvAkM)1/2 k−2
WT. Raising this

to the fourth power and solving for kWT yields k6WT = (2CWT)2εMvAkM/η
4. The combination εM/η

3 is just
k4MD from equation (2.31) and Lu ≡ vA/ηkM is now defined as a k-independent Lundquist number.
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Note that the form of HM is gauge-dependent, unless the domain is periodic [133] or the
normal component of B vanishes at infinity [134]. However, this only affects the magnetic
helicity spectrum at the largest scales [135]. Let us also note that in hydrodynamics, the
kinetic helicity of the velocity field v is

HK =
1

V

∫
V
d3x

[
v ·
(
∇× v

)]
. (2.35)

By analogy, it is customary to define the current helicity of the magnetic field B as

HC =
1

V

∫
V
d3x

[
B ·
(
∇×B

)]
, (2.36)

which is gauge-invariant.
Replacing 1

V

∫
d3x by an ensemble average, 〈· · · 〉, and using the definition of HM(k) in

equation (2.13), we find that the magnetic helicity can be written as

HM =

∫
dkHM(k) , (2.37)

while the current helicity can be expressed as

HC =

∫
dk k2HM(k) . (2.38)

2.5 Smoothed magnetic field and helicity

We also define the smoothed magnetic field amplitude and magnetic helicity density over a
smoothing length scale ∼ λ using a Gaussian window function e−λ

2k2 ,

B2
λ =

∫
EM(k) e−λ

2k2 dk, Hλ =

∫
HM(k) e−λ

2k2 dk, (2.39)

which can be related to the average energy by eliminating the normalization. This gives rise to

B2
λ

EM
=

∫
EM(k) e−λ

2k2 dk∫
EM(k) dk

,
Hλ

HM
=

∫
HM(k) e−λ

2k2 dk∫
HM(k) dk

. (2.40)

3 The realizability condition

If the magnetic diffusivity is very small, as it is for the highly conductive plasma of the
early universe, it can be shown that the magnetic helicity is conserved. This leads to the
theorem [136]

The eigenfield of curl−1 corresponding to the eigenvalue L of the largest modu-
lus has minimum energy in the class of divergence free fields obtained from the
eigenfield under the action of volume-preserving diffeomorphisms.

In other words, if L− and L+ denote the smallest and largest eigenvalues of the curl−1

operator respectively, with L− < 0 < L+, then for every divergence-free field B, we have

L−|B(x)|2 ≤
(
curl−1B

)
·B ≤ L+|B(x)|2, (3.1)
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which implies ∣∣∣∣∣
(
curl−1B

)
·B

L

∣∣∣∣∣ ≤ |B(x)|2. (3.2)

Here L = max{−L−, L+} is the larger of the moduli of the two eigenvalues. Taking an
ensemble average leads to

〈
|B(x)|2

〉
= 2EM ≥

∣∣∣∣∣
〈(

curl−1B
)
·B
〉

L

∣∣∣∣∣ =

∣∣∣∣HM

L

∣∣∣∣ . (3.3)

For a field with eigenvalue ±L, the equality sign holds but in general we have |HM| ≤ 2|L|EM .
It is justified to assume that |L| is of the order of the magnetic integral length scale,

|L| . ξM, since this is the maximal length scale that can be associated with the size of a
domain. This leads to the well-known realizability condition

|HM| ≤ 2ξMEM. (3.4)

This equation, together with the definitions in equations (2.19), (2.28) and (2.40), leads to

|Hλ| ≤ f(λ)B2
λ, (3.5)

where

f(λ) = 2

∣∣∣∣∣
∫
HM(k) e−λ

2k2 dk∫
HM(k) dk

∣∣∣∣∣
/∫

EM(k) e−λ
2k2 dk∫

k−1EM(k) dk
. (3.6)

In the examples discussed below, which are all for the fully helical case with kHM = 2EM,
we show that for λ� ξM, we have f(λ) ' ξM, while for λ� ξM, we have f(λ) ' λ. This is
simply because in the Batchelor subinertial range, we have HM(k) ∝ k3, while EM(k) ∝ k4

(see section 3.2 below), so Hλ ∝ λ−4 and B2
λ ≡ Eλ ∝ λ−5.

3.1 Normalized magnetic field and helicity

To satisfy the condition (3.5) on all scales, we need to ensure that the realizability condition
embodied by equation (3.6) holds on all scales. For this purpose we analyze magnetic fields
with different spectral energy distributions employing statistical properties of random fields
from the theory of turbulence. In this approach, we split the stochastic field into its large-
scale and small-scale spectra in wavenumber space. We define the large-scale spectrum
at wavenumbers smaller than the integral scale of the random field k < k1 = ξ−1

M . By
comparison, the small-scale spectrum, corresponding to the inertial range of turbulence,
occurs at k > k1. We proceed with detailed calculations for two relevant cases.

3.2 Batchelor spectrum

The large-scale part of the spectrum of the turbulent fluctuations is often described by a
Batchelor spectrum. In this case the energy spectrum at large scales grows as ∼ k4. This
behavior at large scales is a consequence of causality [102]: if the correlation function in real
space has finite support, and since correlations have been generated in the finite past and
can spread out no faster than with the speed of light, its Fourier transform, Fij(k), must be
analytic. The nonanalytic prefactor Pij(k̂) then requires that FN ∝ k2 and hence EM ∝ k4.
On scales where the spectrum has already been affected by turbulence, i.e., above the integral
wavenumber (in the following referred to as k1), the spectral energy decreases according to
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Figure 2. The spectral distribution of the energy of random magnetic fields matching the Batchelor
spectrum at large scales (k < k1) and Kolmogorov spectrum at small scales (k > k1) in arbitrary
units. The dissipative cutoff occurs at k > k2.

Figure 3. The function f(λ) defined in (3.6), for a Batchelor spectrum at large scales. We assume
a maximally helical field where the inequality (3.8) is saturated. For λk1 � 1, we have f(λ)→ k−1

1 ,
while for λk1 > 1, f(λ) ∼ λ. For intermediate values, λk1 ≈ 0.3, we find f(λ) ∼ λ0.2.

the classical Kolmogorov exponent k−5/3, often described as the inertial range of turbulence.
At length scales smaller than some dissipative length scale (with corresponding wavenumber
defined as k2) the spectral energy undergoes an exponential cutoff. The spectral distribution
of the energy of random magnetic field can be modeled as

EM(k) ∝ k4 exp[−(k/k2)2][
1 + (k/k1)(5/3+4)q

]1/q , (3.7)

and HM(k) = 2k−1EM(k). We use q = 5 to make the transition between the two subranges
sufficiently sharp, see figure 2. Note that the correlation length ξM for such a spectral shape
is finite. The function f(λ) is plotted in figure 3.
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Expanding the field in terms of the polarization basis, on can write the magnetic energy
spectrum as the sum of two positive definite contributions and the magnetic helicity spectrum
is then related to the difference of these two contributions [102, 137]. This leads directly to
the realizability condition in wavenumber space,

|HM(k)| ≤ 2k−1EM(k) . (3.8)

Note that a maximally helical magnetic field for which this inequality becomes an equality,
is either in a purely positive or in a purely negative helicity configuration.

There is a special case when the integral scale of the random field matches the spectral
cutoff wavenumber k1 = k2. In this case, the initial increase of the spectral energy at large
scales is followed by an exponential cutoff at the integral scale, where the energy reaches
a maximum. Hence, no turbulence occurs past the integral scale and a laminar regime
dominates. Such a situation can be realized at very low Reynolds number, which is not
relevant to cosmology. For cosmological applications the inertial range of the spectrum,
where spectral energy decays with wavenumber in k1 < k < k2 is an important component
contributing to the general form of the random magnetic field configuration.

3.3 Scale-invariant spectrum

A scale-invariant spectrum has E(k) ∼ knE , with nE → −1 for k0 < k < k1. For length scales
smaller than ∼ k−1

1 , turbulence is fully developed and the spectrum may be a Kolmogorov
spectrum proportional to k−5/3 or a WT spectrum proportional to k−2, as given by equa-
tion (2.32). However if nE = −1 at very large scales, the correlation length is unbounded
and the integral proportional to

∫
dk k−1E(k) does not converge. We therefore cannot use

equation (3.8) directly. To deal with this situation, we have to modify the spectrum at very
large scales for k < k0. In the inflationary case we may consider this to be the horizon scale
at the beginning of inflation [118]. We assume the spectrum to have a k4 dependence at
k < k0, a k−1 intermediate range for k0 < k < k1, a k−5/3 inertial range for k1 < k < k2, and
an exponential cut-off for k > k2. We can model it as (see figure 4)

EM(k) ∝ k−1 exp[−(k/k2)2][
1 + (k/k0)−(4+1)q + (k/k1)−(ñE+1)q

]1/q , (3.9)

where we choose again, q = 5. We consider the fully helical case, HM(k) = 2k−1EM(k), and
ñE is chosen to be either −5/3 or −2. Owing to the Batchelor subinertial range for k < k0,
the correlation length is always finite, and we can use equation (3.8) for k → 0. The function
f(λ) is plotted in figure 6 for different values of k1/k0 between 1 and 104, comparing two
values for the spectral inertial range exponent ñE of −2 and −5/3. The difference between
these cases with different ñE is significant only for k0λ � 1 and if k1/k0 small. For large
values of k1/k0, there is now a clear λ1/3 subrange for 0.1 < k0λ < 1. As shown in the inset
of figure 6, this slope emerges non-trivially from both Eλ and Hλ being non-power laws.

Inflation-generated magnetic fields have a large integral scale, because it becomes expo-
nentially amplified by a factor of ∼ e60. Turbulence develops and gradually leads to a k−5/3

or k−2 spectrum, followed by an exponential cutoff at a damping wavenumber kMD or kWT.

The dependence of the smoothed magnetic field on the smoothing scale λ is shown in
the right panel of figure 5.
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Figure 4. The scale-invariant spectrum, with a k4 dependence at low k. We have chosen k1 = 20k0.

Figure 5. Left: we show k0ξM(k1), as a function of k1/k0. Right: B2
λ for kturb/k0 ≡ k1/k0 = 10

(red) and 1000 (blue).

4 Numerical simulations

Our considerations above have not addressed the time evolution of the magnetic energy
spectrum. This is the purpose of the present section. To see how the spectrum changes with
time, we solve the hydromagnetic equations for an isothermal relativistic gas with pressure
p = ρ/3 [118, 121]

∂ ln ρ

∂t
= −4

3
(∇ · u + u ·∇ ln ρ) +

1

ρ

[
u · (J×B) + ηJ2

]
, (4.1)

∂u

∂t
= −u ·∇u +

u

3
(∇ · u + u ·∇ ln ρ)− u

ρ

[
u · (J×B) + ηJ2

]
− 1

4
∇ ln ρ+

3

4ρ
J×B +

2

ρ
∇ · (ρνS) , (4.2)

∂B

∂t
= ∇× (u×B− ηJ), (4.3)

where Sij = 1
2(ui,j + uj,i)− 1

3δij∇ · u is the rate-of-strain tensor, ν is the viscosity, and η is
the magnetic diffusivity. We consider a periodic domain with sidewalls L and volume L3, so
the smallest wavenumber is kmin = 2π/L.
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Figure 6. The function f(λ) for a scale-invariant spectral subrange between k0 and k1, followed by
a turbulent inertial range with either ñE = −2 (solid lines) or ñE = −5/3 (dotted lines) for k1/k0 = 1
(red), 10 (blue), 102 (green), and 104 (black). The inset shows that the 1/3 slope emerges non-trivially
from both Eλ and Hλ being non-power laws.

Figure 7. Magnetic (red) and kinetic (blue) energy spectra at early times after having initialized the
magnetic field with a spectrum of the form equation (3.9). The green symbols on the red lines denote
the position of k?(t), as given in equation (4.4), while the black symbols on the upper abscissa denote
the location of the horizon wavenumber khor(t). The times for spectra indicated by the letters A–G
are ck0t = 0.05, 0.13, 0.34, 0.8, 2.1, 5.3, and 15 respectively.

In ref. [118], we have already considered the case with an initial k−1 spectrum that
extends all the way to k = kmin, i.e., with no k4 subinertial range for small k. However, as
discussed above, somewhere beyond the event horizon, the spectrum must effectively have
a k4 subrange. To resolve the full wavenumber range, we consider a numerical resolution
of 23043 mesh points, restricting ourselves to early times only. We clearly see that at early
times the spectrum does not change at small wavenumbers. As time goes on, smaller and
smaller values of k are affected by the growing velocity field. In figure 7 we show the temporal
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Figure 8. Similar to figure 7, but for k0/kmin = 10 and 11523 meshpoints resolution. The times are
indicated by the letters A–E for ck0t = 9, 70, 270, 900, and 2500. The red triangles and red filled
symbols on the respective magnetic energy spectra denote the positions of kMD and kWT, respectively,
provided they fall inside the plot range. Note that kWT is significantly smaller than kMD, for which
all earlier times are still outside the plot range.

evolution of the value of k where the spectrum begins to depart from the initial k−1 spectrum.
We see that this growth is well described by a turbulent-diffusive growth like

k?(t) ≈ ξM(t) (ηturbt)
−1/2 ≈ (urmskMt/3)−1/2, (4.4)

where ηturb ≈ urms/3kM is an approximation to the turbulent magnetic diffusivity [138].
The ratio 3ηturb/η is the magnetic Reynolds number, which has values of around 20, 000
in Run A and 500 in Run B. The values of k?(t), indicated by green dots, agree well with
the positions where the spectrum departs from the initial k−1 subrange. Note also that
the horizon wavenumber khor(t) = (ct)−1 is always smaller than k?(t). Note that the k4

subinertial range begins to appear within the horizon for ck0t > 5, corresponding to symbol
F in figure 7.

The late time evolution is shown in figure 8, where we see that soon kM drops well
below the initial value k0. This indicates the begin of the regular inverse cascade of magnetic
helicity. The speed at which ξM increases is then governed by the usual helicity evolution
with ξM ∝ tq, as can easily be derived from dimensional arguments.

5 Applications in cosmology

The Planck collaboration has recently published a comprehensive study deriving upper limits
for a primordial magnetic field based on the measurements of CMB anisotropies and polar-
ization; see ref. [30]. They used the value of the magnetic field smoothed over 1 Mpc to define
upper bounds on the magnetic energy density and the magnetic helicity density; see their
equations (2) and (13).
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The smoothed fields used in [30] are simply related to the ones defined in section 2.510

via B2
λ = 2B̄2

λ and B̄2
λ = HC In ref. [30] the magnetic field spectrum is supposed to have a

fixed spectral shape in all regions with k < k2 = kD = the damping scale. They neglect the
presence of a turbulent regime for kI = k1 < k < kD and characterize the symmetric magnetic
power spectrum by EM(k) ∝ knE and the antisymmetric spectrum by HM(k) ∝ knH . As we
have shown above, such a description assumes that kI ≡ kD where kD is determined through
the Alfvén wave damping scale and is related to the amplitude of the magnetic field; see
equation (3) of ref. [30]. For a stochastic magnetic field that has a fixed spectral slope up to
the damping scale, EM(k) ∝ knE for k ≤ kD, the Alfvén wave damping wavenumber depends
on the rms magnetic field, Brms ≡

√
2EM and the spectral index nE as [139], and is given by

kD

1 Mpc−1 = 1.4

√
(2π)nE+1h

Γ
(
nE+3

2

) (10−7 Gauss

Brms

)
, (5.2)

where h is the Hubble constant in units of 100 km s−1 Mpc−1.

As we have described above, we determine the magnetic damping scale as a scale where
the magnetic energy spectrum decays exponentially, and the magnetic field power (in the
short-wave length scales) is negligible when compared to the long-wave length or inertial
regimes. In figure 8, we indicate the positions of kMD and kWT. In all cases, they are
indeed much larger that the values of kM and are therefore only important on very small
length scales.

More importantly, the magnetic field is evolving from the moment of generation until
recombination when the CMB photons decouple: this evolution can be described as free decay
in MHD turbulence, which leads to a growth of the magnetic field correlation length and the
decay of the magnetic field amplitude, see section 4 and [120] for the decay laws. Here we
assume that the magnetic field has been generated with its maximal comoving strength of
order of 10−6 Gauss. This limit comes from BBN data, which limits the number or relativistic
species present at T = TBBN ∼ 0.1MeV. Since a magnetic field scales like a relativistic species,
we can translate this to a magnetic field amplitude, which is 10−6 Gauss (comoving).

Magnetic fields generated at the electroweak cosmological phase transition are well
below the current bounds (which are of the order of 10−9Gauss) at recombination, and thus
these fields will not leave any observable traces on the CMB unless a mechanism that will
significantly alter the magnetic field evolution via MHD which is discussed here (that seems
to be unlikely).

The situation is somewhat more optimistic for magnetic fields generated during the
QCD phase transition since the correlation length is larger. But again, the amplitude and
correlation scales of the obtained fields are far too small to leave a detectable imprint on the
CMB which requires Bλ & 10−9Gauss.

The bounds on the spectral index as obtained by the Planck collaboration was due to
their assumption of a flat prior distribution of the PMF. It has been shown that such a bound
vanishes when logarithmic priors are used [140]. This shows that a ‘blind trust’ in Markov
Chain Monte Carlo (MCMC) results is problematic and that the result depends on the choice

10In their convention,

B̄2
λ =

∫ ∞
0

dk k2

2π2
e−k

2λ2

FM(k), B̄2
λ = λ

∫ ∞
0

dk k3

4π
e−k

2λ2

FH(k). (5.1)

– 18 –



J
C
A
P
0
8
(
2
0
1
8
)
0
3
4

of the prior. It is probably fair to say that for a positive definite quantity, A, a flat prior in
log(A) is more appropriate than a flat prior in A.

In order to constrain the magnetic helicity, we need to observe parity odd CMB spectra
(such as EB) since the parity-even spectra (such as EE, BB, or cross correlations) depend
on both the symmetric and the helical parts [125, 126, 129, 134]. In other words, we need a
measurement that depends solely on the helical component in order to break the degeneracy
between EM(k) and HM(k). This cannot be provided by scalar quantities like the mean or rms
energy densities, since it is shown that they are independent of helicity, and can be constrained
through helicity-independent measurements such as the CMB Faraday rotation [22–24].

To constrain magnetic helicity, one has to consider parity odd CMB spectra as outlined
in [125, 134, 141]. An upper bound on magnetic helicity can also be obtained via the real-
izability condition if one can limit independently the amplitude of the magnetic field (i.e.,
the mean magnetic energy density, EM) and the correlation length of the field. There are
two independent ways of constraining the mean magnetic energy density: (i) the CMB Fara-
day rotation measurement that is independent of magnetic helicity [24]; (ii) magnetic field
effects on the matter power spectrum, i.e., the limitation of the magnetic field amplitude
through LSS (in particular Ly-α statistics) [127]. The later gives stronger bounds of the
order of nanoGauss. The CMB fluctuations can be expressed in terms of the mean magnetic
energy density and the magnetic helicity density. In fact, for maximally helical fields, a com-
bination that determines the strength of the parity-odd signal in the CMB, is EMHM, see
equation (18) of ref. [141]. Thus, the upper bound of this quantity for primordial magnetic
fields (independently of the magnetogenesis scenario) is of the order of 10−18ξM Gauss2. For
a causally generated magnetic field, the correlation length scale must be less than the Hubble
horizon at the moment of generation. For cosmological phase transitions, even accounting
for hydromagnetic turbulence decay, in the most optimistic scenario, the comoving value of
the correlation length is of the order of 30–50 kpc, and thus EMHM is limited to be less than
a few 10−20 Gauss2 Mpc, while the CMB parity odd fluctuations might be sourced if EMHM

is of the order of 10−17 Gauss2 Gpc which is 5–6 orders of magnitude larger than what can
be obtained from magnetic fields generated in a phase transition. Therefore, we conclude
that if magnetic helicity traces will be detected on the CMB, it will be a direct indication
that magnetic helicity has originated in the inflationary epoch.

6 Conclusions

In this paper we have addressed the main statistical properties of helical magnetic fields,
applying methods that are well established in the theory of turbulence, mainly following
statistical fluid dynamics à la Monin and Yaglom [128] and generalizing it to the helical case.
We have also described in detail the different definitions of helicity, such as magnetic, current,
and kinetic helicity, and we have made direct connections between them. An important focus
has been on the characteristic length scales of the magnetic field such as the correlation and
diffusion scales. We have argued that the Alfvén damping scale used in earlier work should
be replaced by the proper diffusion length scales of the turbulence where the scale-dependent
Reynolds number is unity.

As expected, the energy density of the magnetic field does not depend on the helical
part of the correlation function (or the spectrum). Also the rms value of the magnetic energy
density is independent of magnetic helicity, even though the four-point correlation function of
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the magnetic field does contain information on the antisymmetric part (quadratically) [125,
129, 134, 141].

In addition to a theoretical study of the properties of nearly scale-invariant helical
magnetic fields and their evolution, we have addressed its cosmological applications. We have
shown that, due to the magnetic decay since the moment of generation until recombination,
causally generated magnetic field cannot contribute to the CMB fluctuations at currently or
near-future observable levels. Firstly, even in the most optimistic situation, the magnetic
field strength at generation is limited by the BBN bound being of the order of 10−6 Gauss.
Secondly, even if the correlation length of the magnetic field is of the order of the Hubble
scale at the moment of magnetogenesis and the magnetic field experiences an inverse cascade,
the correlation length at recombination is much too small for such fields to leave an imprint
on the CMB, see also figure 11 of ref. [124].

At this point only a nearly scale invariant spectrum possibly generated during inflation
might sustain the amplitude order of 10−9−10−10 Gauss with large enough correlation length
scale and with substantial magnetic helicity (bounded by the realizability condition) can leave
of any traces on CMB maps which are accessible to present and near future observations.
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A Fourier transform of the magnetic two-point correlation function

We present here the derivation of equation (2.11). The treatment follows [142]. We begin
with the two-point correlation function

Bij(r1, r2) = 〈Bi(r1)Bj(r2)〉. (A.1)

To compute its Fourier transform, we first write

Bij(r1, r2) =
1

(2π)6

∫
d3k

∫
d3k′ 〈B?

i (k)Bj(k
′)〉e−i(k·r1−k′r2). (A.2)

Statistical homogeneity implies that Bij(r1, r2) is a function of r = r2 − r1 only, so we
must have

〈B?
i (k)Bj(k

′)〉 = (2π)3δ(3)(k− k′)Fij(k), (A.3)

for some function Fij(k). Then,

Bij(r) =
1

(2π)3

∫
d3k e−ik·rFij(k). (A.4)

– 20 –



J
C
A
P
0
8
(
2
0
1
8
)
0
3
4

B Root-mean-square magnetic energy density

The purpose of this appendix is to present the detailed derivation of equation (2.27). We
compute the rms magnetic energy density given as,

Erms
M =

(
1

(2π)3

∫
d3kRM(k)

)1/2

, (B.1)

where RM(k) is the power spectrum defined through

〈ρ?M(k)ρM(k′)〉 = (2π)3δ(3)(k− k′)RM(k). (B.2)

A short calculation using Wick’s theorem gives

RM(k) =
δ(3)(k)

4(2π)6

(∫
d3pFii(p)

)2

+
1

2(2π)6

∫
d3pFij(p)Fij(k− p) . (B.3)

In the next step we use expression (2.14) for Fij(k). With this we obtain

RM(k) =
δ(3)(k)

(2π)6

(∫
d3pFN(p)

)2

+
1

(2π)6

∫
d3pFN(p)FN(|k−p|)(1+µ2)+

4

(2π)6

∫
d3pFH(p)FH(|k−p|)µ, (B.4)

where µ = p̂ · ̂(k− p)
To compute the rms of the magnetic field energy density we use eq. (B.1), and we obtain

(Erms
M )2 = I1 + I2 + I3 (B.5)

with

I1 =
1

(2π)6

∫
d3k δ(3)(k)

(∫
d3pFii(p)

)2

=
1

(2π)6

(∫
d3pFN(p)

)2

, (B.6)

I2 =
1

(2π)6

∫
d3k

∫
d3pFN(p)FN(|k− p|) (1 + µ2) , (B.7)

I3 =
4

(2π)6

∫
d3k

∫
d3pFH(p)FH(|k− p|)µ . (B.8)

To proceed we use the variables transform q = k− p, so d3q = d3k.
The integral I1 is simply

I1 =
1

3
E2

M. (B.9)

Under the exchange of variables the integral I2 becomes

I2 =

∫
d3q

∫
d3pFN(p)FN(q)

[
1 +

(
p̂ · q̂

)2]
. (B.10)

Now, let us write

µ = (p̂ · q̂) =
4π

3

1∑
m=−1

Y ?
1m(p̂)Y ?

1m(q̂) , (B.11)
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where Ylm(k̂) are the spherical harmonics. Thus,

µ2 =
(4π

3

)2
1∑

m=−1

1∑
m′=−1

[
Y ?

1m(p̂)Y1m′(p̂)Y1m(q̂)Y ?
1m′(q̂)

]
, (B.12)

and we use ∫
Ωk

d2n̂Y ?
1m(k̂)Y1m′(k̂) = δmm′ , (B.13)

so that ∫
d2p̂

∫
d2q̂
[
1 +

(
p̂ · q̂

)2]
= (4π)2

[
1 +

1

3

]
, and I2 =

4

3
E2

M . (B.14)

Finally, to compute I3, as above, we use exchange of variables and get, using eq. (B.11),

I3 =
4

(2π)6

∫
d3q

∫
d3pFH(p)FH(q)

1∑
m=−1

Y ?
lm(p̂)Ylm(q̂) = 0, (B.15)

where we have used
∫
d2n̂Y1m(n̂) = 0. Collecting all the terms gives Erms

M =
√

5
3EM.

We have seen that I3 given by the double integral over p and k vanishes. However, the
angular k integral of eq. (B.7) is finite for small k, as seen in the bottom left panel of figure 1
of ref. [129]. This angular integral is defined as

J3(k) =

∫ ∞
−∞

d3p

∫
4π
k2dΩk FH(p)FH(q) p̂ · q̂ (B.16)

and it satisfies I3 = 4
(2π)6

∫∞
0 dk k2 J3(k) = 0.

To gain some insight into the functional form of J3(k), we adopt as an example a
Gaussian for FH(p), i.e.,

FH(p) = exp(−p2/2p2
0), (B.17)

with p0 = 0.3 and compute J3(k) numerically. The result is shown in figure 9. We see that,

although
∫∞

0 dk k2J3(k) = 0, the integral
∫ kmax

0 dk k2J3(k) does not vanish for sufficiently
small values of kmax.

In the early universe, due to the high conductivity, the Reynolds numbers are very high,
and it is reasonably expected that kmax � kI ,

11 but we see that the integral converges to
zero if kmax/kI & O(1). There might exist some integral measurable quantity determined by

the intermediate value kq, such that Ĩ3 =
∫ kq

0 dk k2 J3(k) is nonvanishing. In such a case,
care must be taken to interpret those quantities, since the dependence on helicity in that case
could be affected by measurement details. The sign of magnetic helicity, however, cannot
enter such a dependence.

11For Kolmogorov spectra, the Reynolds number is given by Re = (kD/kI)
4/3 thus kD � kI .
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Figure 9. Result for J3(k). The inset shows k2J3(k). The areas underneath the positive and negative
parts are equal, so

∫
dk k2J3(k) = 0.
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