
Magnetic Helicity Reversal in the Corona at Small Plasma Beta

Philippe Bourdin1 , Nishant K. Singh2,3 , and Axel Brandenburg3,4,5,6
1 Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, A-8042 Graz, Austria; Philippe.Bourdin@oeaw.ac.at

2 Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen, Germany
3 Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden

4 JILA and Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80303, USA
5 Department of Astronomy, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden

6 Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303, USA
Received 2018 April 11; revised 2018 October 17; accepted 2018 October 17; published 2018 December 5

Abstract

Solar and stellar dynamos shed small-scale and large-scale magnetic helicity of opposite signs. However, solar
wind observations and simulations have shown that some distance above the dynamo both the small-scale and
large-scale magnetic helicities have reversed signs. With realistic simulations of the solar corona above an active
region now being available, we have access to the magnetic field and current density along coronal loops. We show
that a sign reversal in the horizontal averages of the magnetic helicity occurs when the local maximum of the
plasma beta drops below unity and the field becomes nearly fully force free. Hence, this reversal is expected to
occur well within the solar corona and would not directly be accessible to in situ measurements with the Parker
Solar Probe or SolarOrbiter. We also show that the reversal is associated with subtle changes in the relative
dominance of structures with positive and negative magnetic helicity.

Key words: dynamo – magnetohydrodynamics (MHD) – methods: numerical – Sun: corona – Sun: magnetic fields –
solar wind

1. Introduction

Magnetic helicity is an important invariant in ideal and
nearly ideal magnetohydrodynamics (MHD); see Biskamp
(2003) and the original work of Woltjer (1958). It plays a
crucial role in characterizing the topological complexity of
coronal magnetic fields (Berger & Field 1984), and it is also
responsible for the possibility of premature quenching of the
underlying dynamo (Gruzinov & Diamond 1994). An obvious
remedy to the dynamo problem is to let excess magnetic
helicity escape through the boundaries (Blackman &
Field 2000; Kleeorin et al. 2000), especially through coronal
mass ejections (Blackman & Brandenburg 2003) and the solar
differential rotation, which also acts on open field lines rooted
in magnetically quiet regions of the photosphere
(DeVore 2000); see Berger & Ruzmaikin (2000) for estimates
of the relative importance of different contributions to the total
magnetic helicity flux. Much of the magnetic helicity
transported by differential rotation out through the surface
has entered through the equator; see Brandenburg & Sandin
(2004). Its contribution to the net magnetic helicity loss may
therefore be subdominant. Nevertheless, estimates for the Sun
invariably result in a total loss of 10 Mx46 2 per 11 year cycle
(Berger & Ruzmaikin 2000; DeVore 2000; Brandenburg &
Sandin 2004; Brandenburg 2009) in the northern and southern
hemispheres, respectively. One would therefore expect to see
that the magnetic helicity shed at the solar surface agrees with
what is passing through the solar wind at larger distances.
However, this does not seem to be the case because in the solar
wind, the magnetic helicity was found to have mostly a positive
sign in the northern heliosphere (Brandenburg et al. 2011),
whereas at the solar surface it is mostly negative in the north
(Seehafer 1990). A similar result was also obtained in
numerical simulations of dynamos with a coronal exterior
(Warnecke et al. 2011, 2012). This unexpected behavior is
what is referred to as magnetic helicity reversal. Such reversals

have also been found in analytic solutions of simple dynamo
models with a force-free exterior (Bonanno 2016) and in
mean-field models with magnetic helicity fluxes included
(Brandenburg et al. 2009).
Numerical simulations are currently the best way of testing

and studying in detail the idea of the magnetic helicity reversal.
Here, we consider the magnetic helicity that was found to
emerge from the MHD simulations of Bourdin et al. (2013,
hereafter BBP), who used a solar magnetogram of an active
region (AR) as a boundary condition. Reconnection and the
associated coronal heating were driven by random footpoint
motions, as envisaged in the early work of Parker (1972). The
simulations of BBP used the PENCIL CODE7 and covered a
larger domain ( ´235 156 Mm2 3) compared to earlier ones
with the STAGGER CODE (Gudiksen & Nordlund 2002, 2005a,
2005b).
The AR model of BBP is observationally driven by line-of-

sight magnetograms taken from HINODE/SOT-NFI (Kosugi
et al. 2007; Tsuneta et al. 2008). The model provides a
sufficient amount of energy to the corona (Bourdin et al. 2015).
It also compares well with various coronal observations (BBP)
and shows similarities to coronal scaling laws, e.g., for the
temperature along loops that were derived from earlier
observational and theoretical works (cf. Bourdin et al. 2016).
The coronal EUV emission is synthesized from the MHD

model using the CHIANTI atomic database (Dere et al. 1997;
Young et al. 2003) using the method of Peter et al.
(2004, 2006). The 3D structure of the AR loop system matches
the reconstruction from STEREO observations. Also, the plasma
flow dynamics along those loops matches the Doppler shift
pattern observed by HINODE/EIS (Culhane et al. 2007) in the
coronal Fe XII emission line.
The magnetograms for driving these simulations from the

bottom boundary give just the line-of-sight magnetic field, or
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Bz near disk center. During the first hour of solar time, we do
not yet apply any large-scale driving motions derived from the
observed movements of magnetic patches in the photosphere.
We only apply the horizontal small-scale velocities that mimic
granulation. Therefore, these photospheric horizontal motions
are purely stochastic and statistically mirrorsymmetric, and
there is no obvious mechanism to break the statistical
mirrorsymmetry of the model. In particular, there is no Coriolis
force or differential rotation. Nonetheless, it turns out that
helicity emerges readily within the initial phase of our model.

Although there is no direct injection of helicity, the model
can still produce magnetic helicity through a complex
arrangement of multipolar spots (Bourdin & Brandenburg
2018). We use a magnetogram of a small and stable AR
observed during 2007November14 in the southern hemi-
sphere. Indeed, we find helicity, as is readily demonstrated by
looking at the vertical profile of the mean current helicity
density, á ñ·J B xy, where m= ´J B 0 is the current density,
B is the magnetic field, m0 is the vacuum permeability, and
á ñ... xy denotes horizontal averages. We find that the profiles
generally show a sign reversal within the first 5–15Mm above
the surface. This is equally remarkable because the upper
regions are topologically connected with the lower ones
through the same large-scale structures. Any small-scale
magnetic fields seem to be interspersed within other structures
and are still associated with the large-scale magnetic loops
extending from one footpoint to the other.

The purpose of this work is to quantify the magnetic helicity
reversal in detail and to associate it with coronal heating along
EUV-emissive loops. We further characterize the magnetic
helicity reversal in spectral space and demonstrate that it occurs
in different wavenumber intervals at the same height.

2. Our Approach

In the present work, we use a snapshot from the simulations
of BBP to analyze the production and vertical variation of
magnetic and current helicity densities as well as their spectra.
Before discussing those aspects in detail, we begin with the
basic equations solved in BBP and present a brief summary of
the physical properties of those simulations.

2.1. Basic Equations

BBP solved the continuity equation, the equation of motion,
the induction equation, and an energy equation, which includes
the necessary energy sinks to get realistic and self-consistent
coronal heating and cooling terms:

r = - · ( )u
D

Dt

ln
, 1

Sr r nr = - + + ´ + · ( ) ( )u
g J B

D

Dt
P 2 , 2

Sr r m h rn= - - L + +· ( ) ( )F JT
Ds

Dt
T 2 , 32

0
2 2

m h
¶
¶

= ´ - ( )A
u B J

t
, 40

where  m r= ( )P T is the gas pressure, is the universal gas
constant, m = 0.67 is the mean atomic mass, T is the
temperature, r c= - F c Ti P ij j is the conductive heat flux,

r= - +s c P c sln lnV P 0 is the specific entropy, s0 is a
constant, cP and cV are the specific heats at constant pressure

and constant volume, respectively, c c d c= + ˆ ˆB Bij ij i j0 Spitz is

the thermal diffusivity, B̂ is the unit vector of the magnetic
field, n is the kinematic viscosity, h is the magnetic diffusivity,
cSpitz is the Spitzer field-aligned heat conductivity, c0 is an
isotropic contribution, g is the gravitational acceleration, and S
is the traceless rate-of-strain tensor with the components
S d= + -( )u u uij i j j i ij k k

1

2 , ,
1

3 , . Here, we solve for A because
then B is automatically divergence free. Instead of solving for
s, we use the logarithmic temperature Tln , which is directly
related to s and rln . Using the logarithmic density rln , we are
able to capture many orders of magnitude in the density
stratification that our model atmosphere covers.

2.2. Physical Details about the Simulations

For the radiative cooling function rL( )T , we use a realistic
tabulation of Λ provided by Cook et al. (1989). In that work,
the important emission peak from highly ionized iron lines is
included, which efficiently cools the model corona. The
characteristic half-time of this cooling is below 30 minutes.
During the first 35 minutes of physical time, however, this

loss term is turned off together with the heat conduction along
the field. This is to prevent excessive cooling of the corona
during the initial phase in which the granular motions cause
magnetic disturbances that still need to propagate from the
photosphere into the corona. The simulation is then continued
for another about 35 minutes after all physical terms in the
equations are turned on. Further details about the switching on
can be found in Bourdin et al. (2014) and Bourdin (2014). We
use here data from a fully developed state at 63 minutes
physical time.
Unlike ideal models of MHD, where η=ν=0 and

dissipation is modeled by highly nonlinear diffusion operators
that cannot easily be stated in concise form and effective
Reynolds or Lundquist numbers are difficult to specify, we use
in our model constant values of ν, η, and also χ0. The value of
the magnetic diffusivity h = -10 m s10 2 1 (= -10 cm s14 2 1) is
about eight orders of magnitude bigger than that estimated for
the solar corona. This choice is required for numerical stability
and for having a grid Reynolds number near unity. On the other
hand, we use a realistic value for the viscosity,
n = -10 m s10 2 1, which results in a Prandtl number of unity
because η=ν. However, as pointed out by Rempel (2017), the
relative importance of Ohmic and viscous heating changes
toward the latter when realistically large values of the magnetic
Prandtl numbers are taken into account; see Brandenburg
(2014) for the relation between the dissipation ratio and the
magnetic Prandtl number. The isotropic heat conduction is set
to c = ´ -5 10 m s0

8 2 1 (= ´ -5 10 cm s12 2 1). We use a
realistic coronal value of k = L-· T1.8 10 ln CSpitz

10 5 2 with
L =ln 20C being the Coulomb logarithm. We obtain the field-

aligned Spitzer conductivity as

c k r= ( )
c

T
1

. 5
P

Spitz Spitz
5 2

2.3. Boundary Conditions

The model is periodic in the horizontal directions and
employs a potential-field extrapolation on the top boundary. To
formulate the potential-field boundary condition, we define the
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Fourier-transformed magnetic vector potential as

ò=˜ ( ) ( ) ( )·A A rk k z t x y z t e d, , , , , , , 6k r
x y

i 2

where = ( )k k k,x y and = ( )r x y, . On the lower and upper z
boundaries, we thus have

*
¶
¶

= -
˜

∣ ∣ ˜ ( ) ( )A
k A

z
k k z t, , , , 7x y

where z* denotes the locations of the boundaries. Apart from
this, the top boundary is closed for any plasma flows and is
thermally insulating.

At the bottom boundary, realistic atmospheric temperature and
density are imposed. We also adopt Equation (7) at the bottom
boundary, but keep the minus sign on the right-hand side. This
corresponds to an inverted potential-field extrapolation, whereby
contrasts in the magnetic field are increased, instead of smearing
them out like for the top boundary. This mimics the effect of flux
tubes becoming narrower when entering below the photosphere.
Because this increase of contrast would quickly lead to artifacts,
like wiggles in the Bz component, this increase of contrast is
limited to about one-third of the pressure scale height some
100 km below the photosphere so that artifacts in Bz are avoided.
With this method, we obtain the ghost zones for all three
components of A just beneath the lower photospheric boundary.

2.4. Gauge Dependence of Magnetic Helicity

In general, the local magnetic helicity density

 = · ( )A B 8M

depends on the gauge of the vector potential A. On the lower
and upper boundaries of the simulation domain, our magnetic
field is driven toward a potential state. The resulting A at these
boundaries is in the Weyl gauge. However, the gauge could in
principle still drift because we have no boundary restrictions
other than periodicity along x and y. Therefore, we must check
if such a gauge drift occurs and if it significantly changes our
simulation results.

We use the relative helicity from Equation (5) of Finn &
Antonsen (1985), similar to the formulation of Berger & Field
(1984), to obtain a gauge-independent helicity as

 = + -
¥

∭( ) ( ) · ( ) ( )A A B Bz dz dy dx
1

2
. 9

z
M,rel pot pot

Apot and Bpot are the nonhelical potential fields extrapolated
from the known state of ( )B zz at the height z. On the upper
boundary =z Lz, our magnetic field is already almost potential
and very close to the nonhelical extrapolation ( )B Lzpot .
The magnetic helicity therefore vanishes toward the top of
the domain and we may omit the volume from Lz to ¥ in the
integrals of Hrel. Our factor of one-half compensates for
the addition of the two similar quantities A and Apot in
Equation (9), which allows the relative magnetic helicity to be
quantitatively similar to the magnetic helicity M. Because the
components of B and Bpot are normal to all nonperiodic
boundaries (here, the top and bottom of the simulation
domain), they are either identical by construction or their
differences are negligible. Equation (9) gives us therefore a

gauge-independent relative helicity (Berger & Field 1984; Finn
& Antonsen 1985).
To compare a vertical profile of M and M,rel, we compute

the horizontal averages of both quantities. To get á ñ( )z xyM of
the magnetic helicity density  ( )zM , we simply average over
horizontal slices from the height z and with a thickness of Dz
equal to our vertical grid spacing. For the profile of  ( )zM,rel ,
we simply subtract the volume integrals above the heights z
and + Dz z. Each integral uses different potential fields,
A B, pot,z and +DA B, pot,z z, which we extrapolate from the
known states ( )B zz and + D( )B z zz , respectively. The average
relative magnetic helicity density contained in this xy layer is
then just the difference


 

á ñ =
- + D

D
( ) ( ) ( ) ( )z

z z z

V
, 10xy

xy z
M,rel

M,rel M,rel

which we normalize to the volume of the layer DVxy z to be
comparable to á ñ( )z xyM ; see Figure 1.
We find that the horizontal averages of our magnetic helicity

density M and the relative helicity density M,rel are very
similar. Both magnetic helicities do show sign reversals that are
located roughly at the same height, like the maxima and
minima; see the dotted and red lines in Figure 1. The vertical
profile of the current helicity,  m= ·j BC 0 , shows a
qualitatively similar trend also with a sign reversal in the
corona, albeit higher up; see the blue dashed line. We show that
our magnetic helicity density is therefore not significantly
influenced by the gauge drift along the periodic directions.
Therefore, we may continue to use the gauge-dependent
magnetic helicity M as a good proxy of the gauge-
independent relative helicity M,rel.

Figure 1. Horizontal averages of the gauge-dependent magnetic helicity, the
gauge-independent relative helicity, and the current helicity normalized to B2

vs. height.
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2.5. Magnetic and Current Helicity Spectra

Through most of this work, we show both current and
magnetic helicity. In particular, we consider two-dimensional
current and magnetic helicity spectra defined as

* *


å= +
<- +

( ) ( ˜ · ˜ ˜ · ˜ ) ( )
∣ ∣

J B J BH k , 11
k kk

C
1

2

* *


å= +
<- +

( ) ( ˜ · ˜ ˜ · ˜ ) ( )
∣ ∣

A B A BH k , 12
k kk

M
1

2

where d= k k k 2 and d p=k L2 with =L 235 Mm
being the size of the magnetograms and tildes denote, again,
Fourier transformation. Under horizontally isotropic condi-
tions, we have

m =( ) ( ) ( )H k k H k , 130 C
2

M

i.e., the current helicity spectrum is directly related to the
magnetic helicity spectrum, but weighted with a k2 factor, so
high wavenumber contributions in ( )H kM get enhanced.

It is sometimes convenient to define the magnetic and current
helicity densities as

 = =· · ( )A B J B, . 14M C

Note, in particular, that at each value of z, we have

 ò ò= á ñ = á ñ ( )H dk H dk, . 15xy xyM M C C

In the following, however, we often retain the more explicit
notation in terms of ·A B and ·J B.

3. Results

3.1. Magnetic Helicity Reversal

To set the stage, we show in Figure 2 vertical profiles of
á ñH xyM , á ñ á ñBH xy xyM

2 , and the plasma beta, m á ñ á ñBP2 xy xy0
2

(cf. Bourdin 2017). For comparison, we also plot the
corresponding profiles for averages over the AR core and the
complementary quiet-Sun (QS) area. For the plasma beta,
we also show minimum and maximum values (dotted). In the
lower part, for z 5 Mm, á ñ·A B xy is positive, while for
z 5 Mm it is negative. In fact, for the full field of view

(FOV), and in a small z interval very close to the lower

boundary, the sign of á ñ·A B xy changes once again. We return
to this aspect again later.
The main focus of this paper is instead the sign reversal of

á ñ·A B xy at »z 5 Mm. This happens at a height where the
magnetic field begins to become almost force free; see
Figure 2(a). To assess this quantitatively, we plot in Figure 3
vertical profiles of the characteristic nondimensional wave-
numbers k ·J B and k ´J B defined through (Warnecke &
Brandenburg 2010)

k kº
á ñ

á ñ
º

á ´ ñ

á ñ´
( · ) ( )

( )·
J B

J B

J B

J B
, . 16J B J B

xy

xy

xy

xy

2
2

2 2
2

2

2 2

Note that k k+ =´· 1J B J B
2 2 , so the two are complementary in

the sense that when k ´ 0J B , we have k · 1J B , and
vice versa. Looking at Figure 3, we see that in

 z5 Mm 50 Mm, the magnetic field is indeed nearly force
free and k ·J B reaches values close to unity, the largest possible
value. Consequently, k ´J B is very small in this range for AR
and QS.

3.2. Magnetic Helicity Reversal within a Flux Rope

In Figure 4, we show a visualization of ·A B. We see that
the magnetic helicity density changes in a horizontal plane at
approximately 5 Mm. We also show the magnetic helicity
density in several yz planes through two particularly prominent
magnetic field lines labeled as CL1 and CL2, where CL1 is a
EUV-emissive loop in the core of the AR. While one of the two
field lines passes through regions where ·A B is positive (red)
throughout, the other field line traverses yz planes in which

·A B is positive near the apex of the line (denoted by CL2)
and negative in the xy plane through 5 Mm (denoted by CL1).
This shows that at least one magnetic helicity reversal is
possible right in the middle of a field line or loop.
The loops SL1–3 connect from one of the main polarities to

the periphery of the AR. SL1–3 show strongly asymmetric
heating and EUV emissivity. We find that the coronal heating is
particularly strong on that side, where SL1–3 are rooted in
strong negative magnetic helicity (blue in Figure 4). The other
end of these side loops connects to low-helicity areas and there
we also see less heating and EUV emissivity. Note that under
the assumption of horizontal isotropy leading to Equation (13),

Figure 2. (a) Magnetic helicity for the full FOV, the AR core, and only the QS area as a profile of horizontal averages vs. height. (b) Magnetic helicity normalized to
B2. (c) Plasma beta value ranges for AR and QS.
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both the current helicity and magnetic helicity spectra are
related. In particular, since the spectral magnetic helicity
reflects the large-scale properties of current helicity, it
corresponds to the integral over all large-scale patches of the
current helicity density.

We also note that the most strongly heated core-loop CL1 is
rooted in two strong positive helicity regions (red in Figure 4),
and at the same time, we find a negative helicity (blue) near the
loop apex. While we do not want to claim a direct relation of
magnetic helicity and the coronal Ohmic dissipation of currents
that heats our model loops, we need to point out that local
injection of helicity is a way of transporting magnetic energy to
the corona and induce currents there. Nonetheless, this could
only demonstate that the volumetric heating and the EUV
emissivity is of course strongly modulated by density
variations. In particular, when the density is low, the heating

per particle is high. Therefore, one would not see a clear one-
to-one correlation of helicity and the coronal heating or EUV
emission.

3.3. Spectral Magnetic Helicity Reversal

The study of magnetic helicity spectra has revealed
important insights about the nature of the turbulent dynamo;
see Brandenburg & Subramanian (2005) for a review. Owing to
magnetic helicity conservation, the α effect in mean-field
electrodynamics (Moffatt 1978; Krause & Rädler 1980) can
only produce positive and negative magnetic helicities to equal
amounts, but at different length scales (Seehafer 1996; Ji 1999).
This leads to a bihelical magnetic field (Blackman &
Brandenburg 2003; Yousef & Brandenburg 2003) with one
sign at the scale of the energy carrying eddies (referred to as
“small scale”) and another sign at the scale of the domain
(referred to as “large scale”). In the solar wind, the spectrum is
also found to be bihelical, but the signs at both small and large
scales are reversed (Brandenburg et al. 2011). In the MHD
model, the photospheric structures are “small scale” and smear
out when reaching higher atmospheric layers. Coronal loops
then define the “large scale” structures. The basic question is
now whether this apparent swap in sign at small and large
scales happens abruptly at one particular height and across all
scales, or gradually through an effective shift of the spectrum in
wavenumber, as perhaps suggested by the idea of an inverse
cascade behavior, where the height in the domain plays the role
of time in a decaying MHD simulation; see Christensson et al.
(2001) for an example in the cosmological context.
The result is shown in Figure 5 where we compare

visualizations of both ·A B and ·J B in six horizontal planes
with the corresponding spectra ( )k H k2

M and ( )H kC obtained in
the same six planes. Note first of all that the two spectra look
similar in shape and magnitude at corresponding heights,
suggesting that the relation between them, as given in
Equation (13) for isotropic turbulence, is reasonably well
obeyed. The spectra vary over more than 10 orders of
magnitude, falling steeply with wavenumber, with its largest
values corresponding to the smallest few wavenumbers that
dominate the overall sign of the total integrated magnetic and
current helicities. In the first three slices up to »z 5 Mm, the
dominant signs of ( )k H k2

M and ( )H kC are negative for
> -k 3 Mm 1 and positive for < -k 3 Mm 1. Above this layer,

the sign of ( )k H k2
M reverses abruptly in the sense that it is now

negative (positive) for k smaller (larger) than -3 Mm 1.
However, the sign of ( )H kC varies more gradually with height,
showing a similar reversal only at »z 13 Mm; see also
Figure 7. Interestingly enough, at a fixed height, both below
and above the transition layer at »z 5 Mm where the sign
reversal of the magnetic helicity occurs, the spectrum ( )k H k2

M
changes its sign in k space at roughly the same value of k,
namely at » -k 3 Mm 1. This supports the notion that this
phenomenon is related to a change in the relative dominance of
structures of opposite sign of ·J B, as discussed above in
Section 3.2, and is not due to a shift in k, which would be more
reminiscent of an inverse cascade-type behavior.
We reiterate that ( )H kM is gauge independent. It is therefore

important to emphasize that the magnetic and current helicity
reversals are also seen in specific wavenumber intervals (e.g.,
for k larger or smaller than -3 Mm 1). Moreover, the reversals
occur at the same height as those in ·A B. This supports the
notion that the sign change in ·A B is not compromised by its

Figure 3. Force-free parameters k ·J B and k ´J B for the AR core area and the
complementary QS area. At =z 10 Mm, the magnetic field is nearly fully
force free, so k ´ 0J B and k · 1J B .

Figure 4. Visualization of coronal loops (field lines) with EUV emission
(orange–green volume rendering) above an AR magnetogram (grayscale at the
bottom). The semi-transparent layer at 5.5 Mm shows the magnetic helicity
density with positive to negative values color-coded from red to blue, saturated
at ´ -0.2 10 T3 2 Mm. The black circles mark where the field lines cross this
horizontal layer. Three vertical opaque planes cut through the cross section of
the loops in the core of the AR and also indicate the magnetic helicity density,
but saturated at  ´ -0.1 10 T Mm3 2 ; see Section 3.2.
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Figure 5. Horizontal maps of the magnetic helicity (column 1; leftmost) and current helicity (column 2) densities for six different heights. Spectra of the magnetic
helicity (column 3) and current helicity (column 4) densities. Positive (negative) values are shown in red (blue).
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gauge dependence; see also Figure 1 and Section 2.4.
Furthermore, the upper boundary condition Equation (7)
always tends to relax A back to zero, as any contrasts get
smeared out by the potential-field extrapolation. The Ax and Ay

components are set through the lower boundary condition to
match the observed Bz component. Hence, any drift in A will
be suppressed.

3.4. Nearly Perfectly Field-aligned Currents

Within the lower corona, in the range  z5 Mm 50 Mm,
the plasma beta is around 10−2 or less; see Figure 2(c). The
magnetic field here is nearly fully force free; see Figure 3. In
this range, the angle

=( ) ( · (∣ ∣ ∣ ∣)) ( )J B J B J B, arccos 17

between J and B is on average very small. Closer to the
surface, for <z 5 Mm, larger values can be found, but even
then the angles are hardly much larger than  2 ; see Figure 6.
Only above the AR can larger angles of up to  8 be found.

3.5. An Additional Current Helicity Reversal

Very near the surface, we have seen in Figure 2 for the full
FOV an additional reversal in magnetic helicity very close to
the surface. Looking at a similar plot of current helicity, we see
that this secondary reversal is now more pronounced and
includes even the AR. In current helicity, the secondary
reversal is seen at »z 2 Mm. Furthermore, the primary
reversal occurs higher up at about 13 Mm. The reason for this
secondary reversal becomes more plausible when looking at the
horizontal distribution of ·J B in Figure 7, which shows that
there are always nearly equally many and nearly equally large
patches of both helicities. Thus, the dominance of one sign over
the other depends on small changes in the relative strengths of
structures with positive and negative contributions to ·J B.
The second reversal in current helicity is obviously a real
phenomenon in the present simulations, but it is unclear
whether it is also a generic phenomenon of stratified and
magnetized atmospheres in general. Furthermore, in magnetic
helicity, it was only seen in the full FOV and not above the AR.
Comparing the maps of magnetic and current helicities shown
in Figure 5, we see that C is more noisy, and therefore the
additional reversal does not appear to be a systematic feature.
More important to note is that the magnetic helicity associated

with the AR is positive near the surface, exactly as would be
expected for the southern hemisphere based on an α effect-
driven turbulent dynamo.
Looking once more at Figure 5, it becomes clear that the

negative sign of magnetic helicity in the uppermost layers can
be associated with a single structure that persists in all the
horizontal maps of ·A B between 3 and 22 Mm. This
persistent helicity patch is located in the AR core near the
legs of the loop CL1 that are indicated by black circles in
Figure 5. Structures of opposite sign tend to be associated with
the periphery of the core of the AR.

3.6. Isotropy Assumption for Magnetic Helicity Spectra

As discussed above, under the assumption of isotropy, the
magnetic and current helicity spectra are related to each other
through Equation (13). It was already clear from Figure 5 that
this assumption holds reasonably well. The purpose of this
section is to analyze this in more detail. Therefore, we show in
Figure 8 scatter plots of m ( )H k0 C versus ( )k H k2

M for the same
six height as in Figure 5. It turns out that most of the data points
lie on the diagonal, which covers about eight orders of
magnitude. Some of the data points, however, have mutually
opposite signs, which correspond to an anticorrelation. Thus,
Equation (13) holds primarily for the moduli of ( )H kC
and ( )H kM .
The fact that some of the data points have the opposite sign

was already evident when examining the colors in Figure 5.
Below =z 5 Mm, about 80% of the points have the expected
sign, but at higher levels, the number of exceptions increases.
For large values of ∣ ( )∣H kM , and especially for >z 5 Mm, there
is a noticeable number of data points below the diagonal, i.e.,
∣ ( )∣H kC is somewhat smaller than expected.

It is clear from Figure 5 that ( )H kM shows fewer sign
reversals with k than ( )H kC and shows a more systematic
behavior in that sense. One would therefore be tempted to trust
the magnetic helicity spectra more than the current helicity
spectra. However, two other considerations come to mind.

Figure 6. Average angle between J and B.

Figure 7. Current helicity for AR and QS vs. height.
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First, both spectra are intrinsically noisy and one can expect
meaningful results only after some degree of averaging. This
could be accomplished by averaging the spectra over broader
wavenumber bins. Second, Equation (13) is only valid under
the assumption of isotropy. Again, this statement only applies
in the statistical sense, i.e., after sufficient averaging. This is
particularly evident in the present case where there is only one
AR with its resulting coronal structure. In view of these
caveats, one must say that the agreement found in Figure 8 is
actually rather remarkable.

4. Conclusions

The present work has elucidated the phenomenon of a
magnetic helicity reversal above a magnetized layer in general
and along a coronal loop in particular. We have seen that this
reversal is the result of a change in the relative dominance of
structures of opposite magnetic helicity. As a consequence, in a
particular simulation, this change in sign happens abruptly. It
also happens at all wavenumbers at the same height. Of course,
given that this change of sign depends on the subtle dominance
of structures of one sign over the other, we should expect that
in other simulations or at other times in the same simulation,

such a reversal can occur at different heights. However, we also
have found that the magnetic helicity reversal happens near the
location where the plasma beta changes from values above
unity to values below unity, i.e., when the field becomes almost
force free; see the horizontal gray dashed line in Figure 2, as
well as the crossing red and black lines in Figure 3. This gives
us for the first time a fairly strong handle on this remarkable
phenomenon of a magnetic helicity reversal above a dynamo-
active region.
It is important to note that the helicity in the lower

atmosphere of our simulations has the sign expected for the
southern hemisphere, even though there is neither a direct
injection of helicity nor a mechanism to break the north–south
symmetry in the model, except for the imposed photospheric
magnetogram. A possible explanation is that the dynamo and
the differential rotation inside the Sun leave imprints in the
photospheric magnetic fields. These should then be sufficient to
infer the signs of the average helicities in the lower and upper
corona. As shown in Bourdin & Brandenburg (2018), any
arrangement of more than two spots of unequal strength implies
a non-mirrorsymmetric pattern, which can give rise to a certain
sign of magnetic helicity in the force-free magnetic field above
the surface.
Thinking now about the Sun and the solar wind, we expect

the magnetic helicity reversal to occur well within the solar
corona and not between the corona and the location of the
Earth. Thus, we expect that the magnetometers on the Parker
Solar Probe and SolarOrbiter will measure the same sign of
magnetic helicity as what is observed in Earth’s neighborhood,
which is opposite to what is found at the solar surface. The sign
of course should flip if one of the measurement points is
magnetically connected to the other magnetic hemisphere of
the Sun, which typically happens if one crosses the heliospheric
current sheet (HCS). This becomes more likely during high
solar activity because then the HCS may strongly deviate from
the ecliptic plane. Perhaps the only feasible way to verify a
magnetic helicity reversal so close to the surface is by
determining the wavelength at which Faraday depolarization
from intrinsic coronal emission is minimized (Brandenburg
et al. 2017). This would require observations at infrared and
millimeter wavelengths just above the limb.
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