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We study the evolution of kinetic and magnetic energy spectra in magnetohydro-
dynamic flows in the presence of strong cross helicity. For forced turbulence, we
find a weak inverse transfer of kinetic energy toward the smallest wavenumber. This
is plausibly explained by the finiteness of scale separation between the injection
wavenumber and the smallest wavenumber of the domain, which here is a factor of
15. In the decaying case, there is a slight increase at the smallest wavenumber, which
is probably explained by the dominance of kinetic energy over magnetic energy at
the smallest wavenumbers. Within a range of wavenumbers covering almost an order
of magnitude, the decay is purely exponential, which is argued to be a consequence
of a suppression of nonlinearity due to the presence of strong cross helicity.
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1 INTRODUCTION

Conservation laws fundamentally affect the cascade prop-
erties of hydrodynamic and magnetohydrodynamic (MHD)
turbulence. This can be seen both in forced and decaying
turbulence, but the effects are often more dramatic in the
decaying case. Decaying MHD turbulence is strongly affected
by the presence of nonvanishing magnetic helicity (Tevzadze
et al. 2012; Kahniashvili et al. 2013). The study of decaying
MHD turbulence has recently received increased attention in
connection with the study of the decay of primordial mag-
netic fields during the early universe because the possibility
of an inverse cascade leads to progressively larger length
scales of the turbulent magnetic field and can reach kilopar-
sec scales at the present time (Brandenburg et al. 1996) if
it was of subhorizon scales at the time of the electroweak
phase transition some 10−11 s after the Big Bang; see Dur-
rer & Neronov (2013) and Subramanian (2016) for recent
reviews. The possibility of an inverse cascade is believed to be
related to the conservation of magnetic helicity (Frisch et al.
1975). However, since the work of Woltjer (1958), we know
that there is another important conserved quantity, the cross
helicity. The question arises of whether finite cross helic-
ity can have similar effects. In particular, we wish to know
whether cross helicity causes a slow down of the decay of

MHD turbulence and whether there is accelerated growth
of correlation length when cross helicity becomes impor-
tant, as was found by Christensson et al. (2001), Banerjee
& Jedamzik (2004), and Tevzadze et al. (2012) for example.
In those cases, it was found that the fractional magnetic
helicity, that is, the magnetic helicity normalized by the mag-
netic energy and the correlation length, grows proportional
to t1/2; because magnetic helicity stays constant, the energy
decreases like t−1, and the correlation length increases like
t1/2. A qualitatively similar behavior has been found in the
shell model work of Frick & Stepanov (2010), although in
their case, the growth of fractional helicity may have been
the consequence of a true instability whose origin is not yet
understood.

As is well known, in homogeneous incompressible MHD
turbulence, the normalized cross helicity tends to grow in
magnitude, which is associated with the weakening of the
nonlinearities in the MHD equations (Dobrowolny et al.
1980a, 1980b; Grappin et al. 1982, 1983; Matthaeus et al.
1983; Matthaeus et al. 2008; Pouquet et al. 1986; Servidio
et al. 2008). The related question of a slow-down of the
growth of cross helicity has already been partly addressed
by Sur & Brandenburg (2009) who showed that, for the
nonhelical Archontis flow (Archontis 2000; Archontis et al.
2003), which is driven by a forcing that is proportional to
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(sin kz, sin kx, sin ky), the mean magnetic field at first grows
exponentially and then develops a slow saturation behav-
ior. However, this slow-down does not appear to depend on
the microphysical values of kinematic viscosity or magnetic
diffusivity.

For completeness, we note that cross helicity can also be
produced in strongly stratified turbulence in the presence of
magnetic fields parallel to the direction of gravity (Rüdi-
ger et al. 2011), which also leads to the growth of magnetic
fields at large length scales, which is suggestive of inverse
transfer behavior (Brandenburg et al. 2014). In that case,
however, cross helicity develops more rapidly, and it also dis-
appears quickly if the external magnetic field is removed.
This case is inhomogeneous owing to the presence of gravita-
tional stratification and will not be considered in the present
paper.

2 SIMULATION SETUP

Our main objective is to compute the decay of MHD turbu-
lence in the presence of cross helicity. As initial conditions,
we consider the result of an earlier simulation where both
velocity u and magnetic field B were driven by the same forc-
ing function, which ensures that finite cross helicity u ⋅ B is
injected into the system. We chose the injection wavenum-
ber to be large enough so that there is a chance to see
inverse transfer from the forcing wavenumber kf to the small-
est wavenumber of the domain, k1. The ratio kf/k1 is referred
to as the scale separation ratio, and we choose kf/k1 = 15 in
all our simulations.

Our setup for the driven case is identical to that of Branden-
burg & Rädler (2013), except that they also included rotation
and used a smaller scale separation ratio of kf/k1 = 5. As in
earlier work (Kahniashvili et al. 2013; Tevzadze et al. 2012),
we use an isothermal equation of state so that the pressure p
and the mass density 𝜌 are proportional to each other, that is,
p = 𝜌cs

2, where cs = const is the isothermal sound speed. The
magnetic field B, the fluid velocity U, and the mass density 𝜌

obey
𝜕A
𝜕t

= U × B − 𝜂𝜇0J + f M, (1)

DU
Dt

= −c2
s𝛻 ln 𝜌 + 1

𝜌
J × B + 1

𝜌
𝛻 ⋅ (2𝜌𝜈S) + f K, (2)

D ln 𝜌
Dt

= −𝛻 ⋅ U. (3)

Here, A is the magnetic vector potential, so 𝜵 × A = B is the
magnetic field, and J = 𝜵 × B/𝜇0 is the current density, where
𝜇0 is the vacuum permeability, 𝜂 is the magnetic diffusivity,
D/Dt = 𝜕/𝜕t + U⋅𝜵 is the advective time derivative, S𝑖𝑗 =
1
2
(Ui,j + Uj,i) − 1

3
𝛿𝑖𝑗𝛻 ⋅ U are the components of the traceless

rate of strain tensor, 𝜈 the kinematic viscosity, and f M and f K

define the magnetic and kinetic forcings, respectively. These
will be specified below. We consider small Mach numbers, so

compressibility effects are negligible. No uniform magnetic
field is imposed.

Equations (1–3) are solved numerically in a cubic domain
of side length L using periodic boundary conditions. Thus,
k1 = 2𝜋/L is the smallest possible (nonzero) wavenumber.
During the first part, before studying the decay, we drive the
system in a cross-helical fashion such that f K =𝜵 × f M (ignor-
ing a correction factor for units), with random functions that
are 𝛿-correlated in time.

We approximate a forcing that is 𝛿-correlated in time by
adding, after each time step of size 𝛿t, the contributions 𝛿tf M

and 𝛿tf K to A and U, respectively, and change f M and f K ran-
domly from one step to the next (Brandenburg 2001). Thus,
we have

f M = NMRe{f k(t) exp[ik(t) ⋅ x + 𝑖𝜙(t)]}, (4)

f K = NKRe{ik(t) × f k(t) exp[ik(t) ⋅ x + 𝑖𝜙(t)]}, (5)

where NM and NK are given by

NM = 𝒩Mcs

√
𝜇0𝜌0cs∕kf𝛿𝑡, (6)

NK = 𝒩Kcs

√
cs∕kf𝛿𝑡, (7)

and 𝒩M and 𝒩K are dimensionless amplitudes; 𝜌0 is the ini-
tial mass density, considered to be uniform; kf is the average
forcing wavenumber; 𝛿t is the size of the time step; and f k is
given by

f k(t) =
k(t) × e(t)√

k(t)2 − [k(t) ⋅ e(t)]2
, (8)

where e(t) is a unit vector that is in the same sense random as
k(t) but not parallel to it (Haugen et al. 2004). The wavevec-
tor k and the phase 𝜙 are random functions of time, that is,
k= k(t) and𝜙=𝜙(t), such that their values within a given time
step are constant. Note that 𝜵⋅f M =𝜵⋅f K = 0. The wavevec-
tors k are chosen such that their moduli k= |k| lie in a band
of width 𝛿k around a mean forcing wavenumber kf, that is,
kf − 𝛿k/2≤ k≤ kf + 𝛿k/2, and we choose 𝛿k= k1. In the limit
of small time steps, which we approach in our calculations,
the forcing may be considered 𝛿-correlated.

When a statistically steady state is reached, we set
NM = NK = 0 and study decaying turbulence in that way.
We describe the statistically stationary state of our simula-
tions using the magnetic Prandtl number PrM , the magnetic
Reynolds number ReM , and the Lundquist number Lu,

PrM = 𝜈∕𝜂, ReM = urms∕𝜂kf , Lu = vA∕𝜂kf , (9)

with urms and vA = brms∕
√
𝜇0𝜌0 being defined using aver-

ages over the full computational volume. While PrM is an
input parameter, ReM and Lu are used as diagnostics. We
analyze our results in terms of kinetic and magnetic energy
spectra, EK(k, t) and EM(k, t), which are normalized such that
∫ EK(k, t)dk= ⟨U2/2⟩≡K and ∫ EM(k, t)dk= ⟨B2/2𝜇0⟩≡M

are the mean kinetic and magnetic energy densities, respec-
tively.

For our numerical simulations, we use the PENCIL CODE

(https://github.com/pencil-code, DOI: 10.5281/zenodo.

https://github.com/pencil-code
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FIGURE 1 Power spectra of kinetic and magnetic energies (dashed and
dotted lines, respectively) during the driven phase. The fractional cross
helicity is 𝜎c ≈ 0.81. The lower panel shows spectra compensated by the
Kolmogorov scaling of 𝜀−2/3k5/3. Note the shallow kinetic energy spectrum
(dashed line) for small values of k

2315093), which is a high-order public domain code for
solving partial differential equations, including the hydro-
magnetic equations given above. It uses sixth-order finite
differences in space and the third-order 2N-RK3 low storage
Runge–Kutta time stepping scheme of Williamson (1980).

3 RESULTS

3.1 Driven turbulence

We begin by presenting results of simulations with a res-
olution of 5123 mesh points. In Figure 1, we show kinetic
and magnetic energy spectra in both uncompensated and
compensated forms. Note that, at the smallest wavenumbers
(k/kf = 1/15), the spectral kinetic energy exceeds the magnetic
spectral energy, and its spectrum is approximately flat. This
is reminiscent of simulations that exhibit an inverse cascade
(or at least inverse transfer) of kinetic energy owing to what is
known as the anisotropic kinetic alpha (AKA) effect of Frisch
et al. (1987); see also Brandenburg & von Rekowski (2001)
for simulations at larger Reynolds numbers. Here, however,
no AKA effect is expected to occur. Thus, the slight uprise
of EK(k, t) at low k is a new result that occurs now with the
addition of cross helicity. It is therefore tempting to associate
it with the conservation of cross helicity.

3.2 Decaying turbulence

We use a snapshot from the statistically steady phase
of the forced simulation with the forcing turned off. During

FIGURE 2 Kinetic and magnetic energy spectra (uncompensated) at
different times during the decay shown as dashed and solid lines,
respectively. Note that both spectra decrease strongly at large wavenumbers.
At small wavenumbers, the kinetic energy decreases in time, while the
magnetic energy increases, thus approaching equipartition. The spectra at
the last time are shown as a solid red line for EM(k, t) and as a dashed blue
line for EK(k, t)

the subsequent decay, the normalized cross helicity,

𝜎c =
2⟨u ⋅ B⟩

q⟨u2⟩ + ⟨B2⟩∕q
(10)

tracks the evolution of vA/urms, both of which attain peak val-
ues reaching 0.996 shortly after turning off the forcing and
then decay to about 0.8 after some 500 sound travel times. In
Equation (10), we have introduced q =

√
𝜇0𝜌 for dimensional

reasons (Zhang & Brandenburg 2018).
In Figure 2, we show magnetic and kinetic energy spectra in

logarithmically spaced time intervals during the decay phase
at t/csk1 = 5, 10, 20, 50, 100, 200, and 500 sound travel times,
corresponding to t/vA0kf = 1.23, ..., 123 Alfvén times, where
vA0 is the initial Alfvén speed. Note that the spectral kinetic
and magnetic energies decrease at large wavenumbers, while
at small wavenumbers, the kinetic energy decreases and the
magnetic energy increases so that the two quantities approach
each other at large scales (although they are still far from
being equal). We recall that MHD absolute equilibrium stud-
ies predict that the Alfvén ratio rA = K/M ≤ 1 (Stribling &
Matthaeus 1990), although the relationship of these results
to the particular initially forced situation considered here,
and decaying situations in general (Stribling & Matthaeus
1991), warrants further investigation. In our case, however,
rA increases from unity to about 1.5 during the course of the
simulation.

The magnetic Prandtl number is unity, and the Reynolds
number, based on the smallest wavenumber in the domain,
decreases from about 5000 to about 200 after about 500 sound
travel times. The decay is neither algebraic nor exponential;
see Figure 3. This is explained by the fact that the decay
of magnetic and kinetic energies is actually composed of
a continuous sequence of uncoupled modes, each decaying
exponentially with their own resistive decay rate, 𝜇k2, where
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FIGURE 3 Decay of kinetic and magnetic energies. The red dashed line
indicates kinetic energy and the blue dotted line indicates cross helicity. The
decay follows neither an algebraic (c.f. upper panel) nor an exponential (c.f.
lower panel) decay law

FIGURE 4 Dependence of magnetic integral wavenumber kt and the
dissipation wavenumber kd

𝜇 = 𝜈 + 𝜂 is the sum of kinematic viscosity and magnetic
diffusivity.

In Figure 4, we plot the time dependence of the magnetic
dissipation wavenumber,

kd(t) = (𝜀M∕𝜂3)1∕4, (11)

where 𝜀M = 2𝜂 ∫ EMk2dk is the instantaneous mean energy
dissipation rate. We also plot the evolution of the integral
wavenumber,

k−1
I (t) = ∫ k−1EMdk

/
∫ EMdk. (12)

FIGURE 5 Upper panel: decay of magnetic energy (black lines) and kinetic
energy (red dashed lines) at different wavenumbers (k/k1 = 2, 5, 10, 20, 50,
100, 200). Lower panel: instantaneous decay rates at the same wavenumbers

FIGURE 6 Instantaneous decay rates as a function of wavenumber,
compared with the viscoresistive decay rate (dash–dotted straight line)

Both quantities are evaluated from the actual spectra.
In Figure 5, we show the decay of magnetic and kinetic

energies for a few selected wavenumbers. The instantaneous
decay rates 𝜆(t) are shown in the lower panel. We determine
𝜆(t, k) as an average of the instantaneous decay rates for a suit-
able time interval when the decay is indeed exponential. The
resulting decay rates 𝜆 are shown in Figure 6 and compared
with the viscoresistive decay rate.
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Note that, within a certain wavenumber interval, the decay
does indeed follow a mode-by-mode exponential decay, so
there is no coupling between different wavenumbers, except
for k/k1 > 20, where the decay is slower than what is expected
based on a purely viscoresistive decay. This must be a conse-
quence of a depletion of the u × B nonlinearity when u ⋅ B is
maximized.

4 CONCLUSIONS

Our work has shown that, in forced MHD turbulence
with strong cross helicity, kinetic energy displays a slight
uprise at the smallest wavenumbers. This is reminiscent of the
inverse transfer found in turbulence with a non-Galilean
invariant forcing, giving rise to an AKA effect. Here, how-
ever, the forcing is a Galilean invariant because our forcing
function is 𝛿 correlated in time, so it has no memory of the
previous forcing time step, and therefore, no proper motion of
the forcing field can be defined. We are therefore tempted to
associate this small uprise of spectral kinetic energy with the
presence of cross helicity.

In the decaying case, we find that the kinetic energy decays
at all wavenumbers, that is, there is no evidence for inverse
transfer or inverse cascade behavior. This raises doubts about
our tentative conclusion regarding the forced case, where the
small uprise might also be just the result of the finiteness
of the domain and would disappear at larger-scale separa-
tion or for larger domains. We have not studied this here but
refer instead to a similar observation by Yokoi & Branden-
burg (2016), who simulated rotating forced hydrodynamic
turbulence in the presence of a profile of kinetic helicity and
found inverse transfer, but only when the domain was not too
large.

Unlike EK(k, t), which shows a decay at all k, EM(k, t) does
actually show a slight increase at the smallest wavenumbers.
This is likely a consequence of the presence of finite kinetic
energy at large scales and is reminiscent of the inverse trans-
fer found in nonhelical MHD turbulence in the magnetically
dominated case (Brandenburg et al. 2015), where the mag-
netic energy has a k4 subinertial range, which is steeper than
the k2 subinertial range found for kinetic energy. Again, then,
the kinetic energy exceeds the magnetic energy at the smallest
wavenumbers.

In all the cases presented here, the relation with “ordinary”
(i.e., low cross helicity) turbulence is unclear because the
presence of strong cross helicity implies a suppression of non-
linearity (Dobrowolny et al. 1980a). As a result, the decay
law is, within a certain wavenumber interval, purely exponen-
tial and not like a power law, as in ordinary turbulence. As
is well known, when the nonlinear terms are negligible, each
Fourier mode will undergo exponential decay at the appro-
priate wavenumber-dependent decay rate associated with the
linear dissipation terms.

When we started our work, we regarded an initial inte-
gral wavenumber of 15k1 as large enough. This may need
to be reconsidered in future work because, in related
studies of decaying hydromagnetic turbulence, an initial
scale separation of 60 has been found to be more ade-
quate (Brandenburg et al. 2015). A resolution of 5123 mesh
points may also not be enough for studying the possibil-
ity of inverse transfer. Most importantly, perhaps, it would
be useful to work with more controlled initial conditions
that have well-determined subinertial and inertial range spec-
tra. Such studies have been conducted in the presence of
magnetic helicity (Brandenburg et al. 2017; Brandenburg
& Kahniashvili 2017) but not yet in the presence of cross
helicity. Our way of initializing cross helicity by setting A
∝ U may also be rather special. Another possibility is to
drive cross helicity through the application of gravity and
a magnetic field aligned with it, as performed in the ear-
lier work of Rüdiger et al. (2011) and Brandenburg et al.
(2014). This would lead to a stratified system in which the
occurrence of inverse transfer can directly be associated with
the formation of spots that have been found to form as a
generic result of the negative effective magnetic pressure
instability for vertical magnetic fields; see Figure 1 of Bran-
denburg et al. (2013) and Brandenburg et al. (2016) for a
review.
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