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ABSTRACT

Context. The formation of sunspots requires the concentration of magnetic flux near the surface. The negative effective magnetic
pressure instability (NEMPI) might be a possible mechanism for accomplishing this, but it has mainly been studied in simple systems
using an isothermal equation of state without a natural free surface.
Aims. We study NEMPI in a stratified Cartesian mean-field model where turbulence effects are parameterized. We use an ideal
equation of state and include radiation transport, which establishes selfconsistently a free surface.
Methods. We use a Kramers-type opacity with adjustable exponents chosen such that the deeper layers are approximately isentropic.
No convection is therefore possible in this model, allowing us to study NEMPI with radiation in isolation. We restrict ourselves to
two-dimensional models. We use artificially enhanced mean-field coefficients to allow NEMPI to develop, thereby making it possible
to study the reason why it is much harder to excite in the presence of radiation.
Results. NEMPI yields moderately strong magnetic flux concentrations a certain distance beneath the surface where the optical depth
is unity. The instability is oscillatory and in the form of upward traveling waves. This seems to be a new effect that has not been found
in earlier models without radiative transport. The horizontal wavelength is about ten times smaller than what has previously been
found in more idealized isothermal models.
Conclusions. In our models, NEMPI saturates at field strengths too low to explain sunspots. Furthermore, the structures appear too
narrow and too far beneath the surface to cause significant brightness variations at the radiative surface. We speculate that the failure
to reproduce effects resembling sunspots may be related to the neglect of convection.
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1. Introduction

Sunspots are a highly intermittent manifestation of strong mag-
netic flux concentrations at the solar surface. The underly-
ing magnetic fields are produced by hydromagnetic turbulence
in the convection zone beneath the surface (Brun et al. 2004;
Brown et al. 2011; Käpylä et al. 2012a; Augustson et al. 2015).
Numerous simulations of turbulence and turbulent convection
have displayed such magnetic field production by a dynamo pro-
cess (Brandenburg & Subramanian 2005). This alone, however,
does not explain the occasional concentration into spots. On the
other hand, more realistic simulations that include the effects of
strong density stratification near the surface, as well as radiation
and ionization, have been able to demonstrate the appearance
of magnetic spots (Stein & Nordlund 2012). Furthermore, it is
known that strong density stratification can lead to a large-scale
instability of an initially unstructured random magnetic field
(Kleeorin et al. 1989, 1990). This instability leads to magnetic
flux concentrations and even magnetic spots (Brandenburg et al.
2013; Warnecke et al. 2013) through the negative effective mag-
netic pressure instability (NEMPI). NEMPI has been associ-
ated with sunspot formation by Kleeorin et al. (1995, 1996),
following a series of earlier work on its theoretical foun-
dations (Kleeorin et al. 1993; Kleeorin & Rogachevskii 1994;
Rogachevskii & Kleeorin 2007).

Numerical simulations have also displayed types of magnetic
flux concentrations that are not straightforwardly associated with
NEMPI. This tends to be the case when the magnetic field is
produced by a large-scale dynamo some distance beneath the
surface (Mitra et al. 2014; Jabbari et al. 2015, 2016). Neverthe-
less, also in those cases, strong stratification was shown to be
essential, as has been demonstrated by comparing with weakly
stratified cases.

In the case of NEMPI, the underlying instability can well
be modeled using mean-field magnetohydrodynamics, where the
negative effective magnetic pressure is parameterized in terms of
the mean magnetic field; see Brandenburg et al. (2016) for a re-
view. In some of those cases there is good quantitative agree-
ment between direct numerical simulations (DNS) and mean
field simulations (MFS), as has been demonstrated in several pa-
pers (Kemel et al. 2013; Losada et al. 2013).

The main difference between MFS and DNS is the inclusion
of the parameterization of the small-scale unresolved motions
u = U − U and magnetic fields b = B − B in the MFS. Here,
the overbar denotes a suitably defined average, which, in prac-
tice, could be a spatial average. The evolution equations for U
involve correlations of the form uiu j and bib j that need to be
expressed in terms of U and B. They are similar to the parame-
terization in terms of the rate-of-strain tensor of the mean flow
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involving turbulent viscosity, but there are also contributions that
are quadratic in B. Similar parameterizations also exist for the
Maxwell stresses in the momentum equation and the electromo-
tive force in the induction equation.

Before we can think of applying NEMPI to real sunspot for-
mation, we must begin to address the effects of radiation, ion-
ization, and other potentially important surface effects. Here, we
focus on radiative transfer. Radiation has two important effects;
on the one hand, it leads to the establishment of a natural surface
from which most of the observed radiation is emitted and above
which the density drops off sharply, and on the other hand, ra-
diation also leads to the equilibration of temperature differences
between neighboring fluid elements. Earlier investigations sug-
gested that this may indeed be the case and that NEMPI may
be difficult to excite in the presence of radiation (Barekat 2013;
Bhat & Brandenburg 2016). This is also the reason why we focus
here on mean-field simulations, because they allow us to artifi-
cially exaggerate the effects of NEMPI by choosing unrealisti-
cally large mean-field parameters, which enables us to study the
properties of NEMPI in that case and helps us to determine the
conditions under which NEMPI may still operate.

Most of the earlier investigations of NEMPI were carried
out in an isothermally stratified layer using an isothermal equa-
tion of state. This means that no energy equation was solved.
This was also true in simulations with an outer coronal envelope
(Warnecke et al. 2013), where the interface was characterized by
a layer above which the driving of turbulence was turned off. The
aim of the present paper is therefore to study NEMPI in a simple
model with radiative heating and cooling included.

2. The model

2.1. Mean-field equations and radiative transfer

We consider the mean-field equations in Cartesian coordinates,
but restrict ourselves to including only the effects of turbulent
magnetic diffusion, turbulent viscosity, and the negative effective
magnetic pressure effect, which means that the ordinary mag-
netic pressure from the mean field, B

2
/2µ0, is modified and be-

comes (1 − qp)B
2
/2µ0, where qp = qp(B) depends on the lo-

cal magnetic field strength. We write the mean magnetic field as
B = B0 + ∇ × A, where B0 = (0, 0, B0) is an imposed verti-
cal field, and A is the mean magnetic vector potential. We thus
solve the equations for A, the mean velocity U, the mean specific
entropy s, and the mean density ρ in the form

∂A
∂t

= U × B + ηT∇
2 A, (1)

ρ
DU
Dt

= −∇

P − qpB
2

2µ0

 + J × B + ρg + ∇ · (2νTρS), (2)

ρT
Ds
Dt

= −∇ · (Frad + Fconv) + 2νTρS2, (3)

D ln ρ
Dt

= −∇ · U, (4)

where ηT = η + ηt is the total magnetic diffusivity consisting
of a microphysical and a turbulent value, νT = ν + νt is the
total viscosity consisting again of a microphysical and a tur-
bulent value, Si j = 1

2 (U i, j + U j,i) − 1
3δi j∇ · U is the traceless

rate-of-strain tensor, J = ∇ × B/µ0 is the Lorentz force from
the mean fields (without the effects of turbulence that are be-
ing parameterized through qp), g = (0, 0,−g) is the gravitational

acceleration, P is the mean gas pressure, T is the mean tempera-
ture, D/Dt = ∂/∂t + U · ∇ is the advective derivative, Frad is the
radiative flux, and Fconv is the convective flux; but this latter will
be neglected in our present exploratory work.

The radiative flux divergence is obtained by solving the ra-
diative transfer equations for the intensity I(x, t, n̂) in the gray
approximation in the form (Nordlund 1982)

n̂ · ∇I = −κρ (I − S ), (5)

along a set of rays in different directions n̂, where κ is the opac-
ity and S = (σSB/π) T

4
is the source function with σSB being

the Stefan–Boltzmann constant. The radiative flux divergence is
found by integrating Eq. (5) over all directions, that is,

∇ · Frad = −κρ

∮
4π

(I − S ) dΩ. (6)

We adopt the equation of state for a perfect gas, that is, P =

(R/µ)T ρ, where R is the universal gas constant and µ the mean
specific weight. The mean specific entropy is, up to an irrele-
vant additive constant, given by s/cp = (ln P)/γ − ln ρ, where
γ = cp/cv is the ratio of specific heats at constant pressure and
constant density, respectively, and R/µ = cp − cv. In the fol-
lowing, we take γ = 5/3 which is appropriate for a monatomic
gas and in the absence of ionization. The pressure scale height,
Hp = −d ln P/dz, is then given by Hp = RT/µg. In the isothermal
part near the top, pressure and density scale heights are equal,
that is, Hρ = Hp, where Hρ = −d ln ρ/dz. However, in the deeper
isentropic parts, we have Hρ = γHp.

2.2. Parameterizations
Turbulence effects such as NEMPI depend on the relative im-
portance of the magnetic field to the equipartition field strength
with respect to the turbulent energy, that is, on β ≡ |B|/Beq. Here,
the equipartition field strength Beq is given by B2

eq(z) = µ0ρu2
rms.

The effective magnetic pressure is characterized by the func-
tional form of qp = qp(β), for which we assume (Kemel et al.
2012)

qp(β) =
qp0

1 + β2/β2
p

=
β2
?

β2
p + β2

, where β? = βpq1/2
p0 . (7)

In addition, we have to specify ηT and νT, which we assume
to be constant and equal to each other, that is, we assume the
turbulent magnetic Prandtl number PrM = νT/ηT to be unity
(Yousef et al. 2003). We define a fiducial model where we take
qp0 = 300 and βp = 0.05. Earlier work of Kemel et al. (2013)
showed that the growth rate is mainly dependent on the param-
eter β?, whose value is then 0.87. For comparison, Kemel et al.
(2012) and Käpylä et al. (2012b) used the parameter combina-
tion qp0 = 40 and βp = 0.05, which then yields about a third
for β? = 0.32. Our value of β? is thus much higher than what
has been assumed before, which should help us to study the ef-
fects of radiation in the development of NEMPI. Following ear-
lier work of Barekat (2013) and Barekat & Brandenburg (2014),
we assume a Kramers-like opacity law for κ of the form

κ = κ0(ρ/ρ0)a(T/T0)b, (8)

with constant coefficients κ0, ρ0, and T0, and given exponents
a and b. The resulting radiative conductivity is then given by
(Barekat & Brandenburg 2014)

K = K0
(T/T0)3−b

(ρ/ρ0)1+a = K0

 (T/T0)n

ρ/ρ0

1+a

, (9)
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where

K0 = 16σSBT 3
0/3κ0ρ0, (10)

which is a constant and

n = (3 − b)/(1 + a), (11)

which is, for n > −1, related to the polytropic index of the re-
sulting stratification. The radiative diffusivity is χ = K/ρcp. The
optical depth is τ(z) =

∫ ∞
z κρ dz′. The region where τ � 1 is

optically thin, while the region where τ � 1 is optically thick,
which corresponds to the convection zone in the Sun; τ = 1 rep-
resents thus the solar surface.

2.3. Boundary conditions and numerical aspects

We adopt impenetrable stress-free boundary conditions in the z
direction, so the velocity obeys

∂U x/∂z = ∂Uy/∂z = Uz = 0 on z = 0, Lz, (12)

where Lz is the vertical extent of the computational domain and
the bottom boundary is at z = 0. For the magnetic field we adopt
the vertical field condition,

∂Ax/∂z = ∂Ay/∂z = Az = 0 on z = 0, Lz. (13)

We assume zero incoming intensity at the top, and compute the
incoming intensity at the bottom from a quadratic Taylor ex-
pansion of the source function, which implies that the diffusion
approximation is obeyed; see Appendix A of Heinemann et al.
(2006) for details. As in Barekat & Brandenburg (2014), we fix
the temperature at the bottom,

T = T0 on z = 0, (14)

while the temperature at the top is allowed to evolve freely. There
is no boundary condition on the density, but since no mass is
flowing in or out, the volume-averaged density is automatically
constant; see Appendix C of Barekat & Brandenburg (2014).

To reduce the computational expense, we solve Eqs. (1)–(6)
in two spatial dimensions. In an earlier investigation of NEMPI,
Losada et al. (2012) found that this simplification can lead to
about two times smaller growth rates, but the qualitative depen-
dencies on various input parameters were still reproduced cor-
rectly. In the present model, we use either 288 or 576 meshpoints
in the z direction. The number of mesh points in the x direction
depends on the domain size and is constrained such that the mesh
spacings δx and δz are equal in the two directions. We employ
the Pencil Code1, where all relevant terms are readily imple-
mented. The code uses a high-order finite-difference scheme.
The radiation module was implemented by Heinemann et al.
(2006).

2.4. Comparison with the optically thick approximation

It will be instructive to compare with the more familiar case in
which Frad is computed in the optically thick approximation as
Frad = −K∇T in a domain 0 ≤ z ≤ d, where d is less than the Lz
used in the general case with full radiative transfer. At z = d, we
apply a radiative boundary condition

∂T/∂z = −σSBT
4

(on z = d). (15)

1 https://github.com/pencil-code

The value of d is computed as (see Sect. 3.12 of
Barekat & Brandenburg 2014)

d = cp(T0 − T1)∇ad/(g∇), (16)

where ∇ad = 1− 1/γ and ∇ = 1/(1 + n) with n given by Eq. (11),
and

T1 = K1/4 T0 with K =
gK0

cpσSBT 4
bot

∇

∇ad
, (17)

where K0 is given by Eq. (10). The quantities in Eqs. (16), (17)
are fully determined by the parameters of the radiative model.
We emphasize that the temperature at the top is close to T1, but
is allowed to evolve freely subject to Eq. (15). Computationally,
the optically thick approximation is cheaper by about a factor
of two, but it is more restrictive, because the values of d and
T1 are intimately tied to the choice of κ0 and cannot be varied
independently.

2.5. Scale separation ratio

In our mean-field model, turbulence is parameterized in terms
of a magnetic turbulent diffusivity, which is estimated to be
ηt = urms/3kf (Sur et al. 2008), where kf is the wavenumber of
the energy-carrying motions. We compare this with the refer-
ence wavenumber k1 = 2π/Lz based on our domain of height
Lz. We refer to kf/k1 as the scale separation ratio. Thus, we have
(Jabbari et al. 2014)

kf/k1 = urms/3ηtk1. (18)

This ratio must be large enough for NEMPI to be excited
(Brandenburg et al. 2012). Early DNS of Brandenburg et al.
(2011), where NEMPI was excited, used kf/k1 = 15, but
with kf/k1 = 30, NEMPI became much more pronounced
(Käpylä et al. 2012b).

Following the work of Barekat & Brandenburg (2014), we
measure length in Mm, velocity in km s−1, and density in
g cm−3. We choose Lz = 5 Mm. We adopt a squared domain,
Lx = Lz, and assume for the turbulent small-scale velocity
urms = 1 km s−1. Thus, we have ηt = 5 × 10−3 Mm km s−1, so we
have kf/k1 = 53, which should be large enough for NEMPI to be
excited (Brandenburg et al. 2012). In some models with larger
resolution (5762 meshpoints), we used ηt = 2×10−3 Mm km s−1,
corresponding to kf/k1 = 133; see Table 1 for the conversion of
several quantities from code units to cgs units. Following ear-
lier work (Brandenburg et al. 2011), we also define the general
turbulent–diffusive time τtd = (ηtk2

1)−1.

3. Results

We design the model such that it has an isentropic deeper
part. The stratification in our model is similar to Run B7 of
Barekat & Brandenburg (2014) with a = 1 and b = 0, which,
as discussed above, yields n = 1.5. In particular, we use κ0 =
107 Mm−1 cm3 g−1, which results in a surface temperature of
around 5000 K. As in Barekat & Brandenburg (2014), we com-
pute a hydrostatic equilibrium solution (u = 0) by solving
Eqs. (1)–(6) only in the z direction in one dimension. The result
is shown in Fig. 1, where we plot the z dependence of ρ, s, T ,
and χ. In the deeper parts, where τ � 1, T increases linearly with
depth and, because s is nearly constant in that part, ρ(z) ∝ T

3/2
,

which is in agreement with the expected polytropic stratification.
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Fig. 1. Stratification of ρ, s/cp, T , and χ. The location of τ = 1
is marked with a red filled symbol, while the diamond indicates
τ = 0.1 and the two crosses denote τ = 10, 100, and 1000. Here,
κ0 = 107 Mm−1 cm3 g−1.

Table 1. Units used in this paper and conversion into cgs units.

Quantities Code units cgs units
length [z] Mm 108 cm
velocity [u] km s−1 105 cm s−1

time [t], [λ]−1 ks 103 s
density [ρ] g cm−3 1 g cm−3

temperature [T ] K 1 K
time [t] ks 103 s
gravity [g] km2 s−2 Mm−1 102 cm s−2

opacity [κ] Mm−1 cm3 g−1 10−8 cm2 g−1

diffusivity [χ, ηt, νt] Mm km s−1 1013 cm2 s−1

Above the surface, T (z) is approximately constant, so ρ(z) falls
off exponentially with height, as expected for an isothermal strat-
ification. We begin by discussing in some detail a run with 200 G,
which will later also be referred to as Run B′′; see Table 2. The
presence of an imposed field changes the stratification, but this
change is small: T decreases by ≈4 K for B0 = 200 G.

3.1. Early evolution into saturation

In the early phase of the evolution, structures form where
max(|B|) is at z = zB ≈ 2.5 Mm and a horizontal wavenumber

Table 2. Summary of Runs A–H.

Lx B0 κ0 ηt N λ ω zB

A 1.25 100 107 5 × 10−3 2882 0.011 0.79 3.0
A′ 2.5 100 107 5 × 10−3 2882 0.009 0.89 2.5
B 1.25 200 107 5 × 10−3 2882 0.030 1.44 2.7
B′ 2.5 200 107 5 × 10−3 2882 0.017 1.42 2.5
B′′ 5.0 200 107 5 × 10−3 2882 0.049 1.21 2.5
C′ 2.5 500 107 5 × 10−3 2882 0.021 0.90 1.7
D 1.25 200 2 × 107 5 × 10−3 2882 0.022 1.51 2.8
E 1.25 200 5 × 107 5 × 10−3 2882 0.043 1.55 3.2
F 1.25 200 2 × 107 2 × 10−3 5762 0.094 0.70 2.7
G 1.25 200 5 × 107 2 × 10−3 5762 0.101 0.83 2.8
H 1.25 200 108 2 × 10−3 5762 0.152 0.70 3.1

Notes. All quantities are measured in code units; see Table 1. In the first
group of runs, B0 is varied. In the second and third groups, κ0 is varied,
but in the third one, ηt is also decreased.

k = 4 k1; see Fig. 2. These structures gradually move downward,
disappear, and new ones form at z ≈ 3 Mm. Those structures
then also move downward, and so on. The structures occur well
below the τ = 1 line and are close to the τ = 100 line. Here, the
photon mean-free path,

` = (κρ)−1, (19)

is about 0.05 Mm, while at τ = 1, it is about 0.14 Mm. The down-
ward motions are associated with local field enhancements, as
can clearly be seen from field lines becoming more concentrated
in some locations. At later times, the field becomes more irregu-
lar, but retains a typical horizontal wavenumber of 4 k1. In some
cases, however, we found that, in the late nonlinear stage, k can
decrease from four to three.

The growth of structures can be characterized both by the
typical velocities U in the domain and the departures from the
imposed field ∆B = B − B0. In Fig. 3, we show for two inde-
pendent realizations of Run B′′ (with Lx = Lz) the evolution of
the rms values, Urms and ∆Brms, with different seeds for the ran-
dom initial velocity perturbations. We clearly see an oscillatory
growth of both quantities, as can also be seen by showing a plot
compensated by exp(−λt), where λ ≈ 0.048 ks−1 is the growth
rate, as determined during the exponential growth phase of the
instability. In the following, we measure the period Posc as the
volume-integrated rms velocity of the mean field and record the
frequency ω = 2π/Posc. The frequency of the actual (signed)
magnetic field is half that value.

The growth rate is independent of the initial seed for the
random number generator, but the detailed nonlinear evolution
does depend on it (compare the lines in each of the panels of
Fig. 3). This suggests that the evolution of NEMPI is chaotic
in the nonlinear regime. Animations show that the field lines
are constantly swinging back and forth. This type of time de-
pendence of NEMPI is new and has not previously been seen –
neither in isothermal nor in polytropic calculations. It may there-
fore be an effect related to the presence of radiation. The slight
apparent difference in oscillation amplitudes of the compensated
plots in the insets is caused by the fact that both have been com-
pensated by the same factor, but the amplitudes were slightly
different by the time the eigenfunction begins to be established.

The spatio-temporal evolution of NEMPI is seen more
clearly in Fig. 4, where we show Uz(x∗, z, t) for x∗ = −1.7 Mm.
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Fig. 2. Gray scale representation of vertical velocity together with magnetic field lines in white for a run with B0 = 200 G (Run B′′). The yellow
and red horizontal lines are the τ = 1 and τ = 100 surfaces, respectively.

Fig. 3. Evolution of U rms and ∆Brms for two runs with different initial
seed magnetic field and B0 = 200 G in both cases. The insets show the
compensated functions, e−λtU rms and e−λt∆Brms, respectively, where λ is
the growth rate. Only the short time interval of exponential growth is
shown.

This position x∗ is where Uz has an anti-node during the linear
growth phase. At t = 1740 ks, the slope in the tz diagram cor-
responds to a pattern speed of about 0.2 km s−1, which is small
compared with the sound speed cs ≈ 20 km s−1 at z ≈ 2.5 Mm,

Fig. 4. Uz (color coded) vs. t and z for Run B. The zero contours are
shown in white.

and is also small compared with the turbulent rms velocity of
1 km s−1, but agrees with the typical NEMPI-produced down-
flow speeds found earlier for isothermal NEMPI experiments
(Brandenburg et al. 2014).

3.2. Dependence on control parameters

We now consider the dependence of NEMPI on B0, κ0, and ηt.
We revisit some of these dependencies later in more detail. Sev-
eral input and output parameters of our runs are summarized in
Table 2. Although most of the runs discussed in this paper are
performed for a domain with Lx = Lz = 5 Mm, several aspects
can also be reproduced in narrower domains with Lx/Lz = 0.5
and 0.25. The growth rate λ is rather sensitive to this, while
the oscillation frequency ω = 2π/Posc and the position zB of
the magnetic field maximum are less sensitive. For Runs A–C
with κ0 = 107 Mm−1 cm3 g−1, the growth rates are roughly in the

A99, page 5 of 9

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201730421&pdf_id=2
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201730421&pdf_id=3
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201730421&pdf_id=4


A&A 609, A99 (2018)

Fig. 5. Vertical dependence of kHp for k/k1 = 1 and 4 (a), and of Beq
(b). The vertical lines denote the surface where τ = 1. In panel a, we
also show the dependence of k` in red.

range between λ = 0.01 ks−1 and 0.03 ks−1 and do not seem to
be systematically dependent on the value of B0. This is mainly
related to the fact that NEMPI can develop deeper down as B0 is
increased; see Kemel et al. (2012). This is characterized by the
value of zB given in Table 2; compare especially with the value
for Run C. Our results thus confirm that the structures develop at
larger depths when the field becomes stronger. This is in agree-
ment with earlier work (Kemel et al. 2012; Losada et al. 2014).

3.3. Comparison with earlier work

In units of τtd (defined in Sect. 2.5), the growth rate is λ̃ ≡ λτtd =
λ/ηtk2

1, which is equal to about 6 for Run B′′. However, if we nor-
malize instead by actual horizontal wavenumber k of the struc-
tures, which is four times larger than k1 (see Fig. 2), we have
λ/ηtk2 ≈ 0.4. This value is rather low and comparable to the
value in the first DNS of Brandenburg et al. (2011), where the
scale separation ratio was much lower (kf/k1 = 15 compared to
53 in the present case).

Earlier work using isothermal layers has shown that the hor-
izontal wavenumber of the instability is comparable to the in-
verse density scale height; Kemel et al. (2013) found kHρ = 1.1–
1.5. Subsequent work showed that during the nonlinear evo-
lution of the instability, kHρ can decrease from about 0.8 to
0.2. This has been associated with an inverse cascade-type be-
havior (Brandenburg et al. 2014). The polytropic simulations of
Losada et al. (2014) gave larger values: kHρ = 1 in the upper
layers and kHρ = 2 in deeper ones; see their Fig. 12. In the
present case, at the height where the instability based on the ab-
solute field strength is strongest (z = 3 Mm), and for k/k1 = 4,
we find kHp = 5; see the dashed line in Fig. 5a. This is a striking
difference between the present models and the earlier ones using
an isothermal equation of state.

Figure 5b shows that, in the region where NEMPI develops,
the equipartition field strength Beq(z) is around 3000–4000 G.
This is about 20 times larger than the strength of the imposed
field, which is typical of NEMPI and in agreement with earlier
results (Losada et al. 2014; Brandenburg et al. 2014).

Fig. 6. Vertical dependence of the normalized magnetic field for differ-
ent times in the nonlinear phase for B0 = 200 G (Run B′′). The location
of τ = 1 is marked with a red filled symbol, while the diamond indicates
τ = 0.1 and the two crosses denote τ = 10 and 100.

3.4. Magnetic field dependence

As alluded to above, there are several other aspects of NEMPI
that can be compared with what has been found earlier. We now
compare our results with Fig. 6 of Brandenburg et al. (2014),
where the vertical dependence of the maximum field in the struc-
tures, Bmax(z), was plotted, normalized either by B0 or by Beq(z).
The corresponding result for our present simulations is shown
in Fig. 6. The local maxima in Bmax(z) are caused by the spatial
wave-like structures seen in Figs. 2 and 4.

Unlike the earlier work for isothermal layers, where the slope
of Beq/B0 was constant, it varies in the present case. More impor-
tantly, the magnetic field drops significantly near the surface and
does not cross the Beq/B0 line. This means that, unlike the earlier
work with imposed vertical fields (Brandenburg et al. 2014), the
field in the vertical flux tubes never exceeds Beq.

The magnetic field strengths of the flux concentrations are
obviously much weaker than what is expected for the Sun. More
surprising is perhaps the fact that they are also much weaker than
in the earlier isothermal models. For 200 G, the ratio Bmax/B0
reaches 1.1, while for 500 G, it reaches 0.94. In the isothermal
case, this value could easily reach 50. We can also observe that,
when we increase the external field, Bmax becomes smaller.

3.5. Effective magnetic pressure

In Fig. 7 we plot the normalized effective magnetic pressure,

Peff(β) = 1
2 [1 − qp(β)]β2, (20)

against z. We compare this with Fig. 9 of Losada et al. (2014),
which was a polytropic run with γ = 5/3. In the present work,
the values of Peff are about ten times larger than in the earlier
polytropic models. This is probably related to the rather large
values of qp0 and β?. However, the shapes of the curves are
similar in those two models. Our values of the relative strength
of the imposed field are similar: for B0 = 200 G we have
B/Beq = 0.05, which is comparable to the value of Losada et al.
(2014). Our value of 100 G corresponds to their ratio 0.01, while
500 G corresponds to 0.07. The results change slightly when re-
placing β0 ≡ B0/Beq by the value for the actual magnetic field
β = |B|/Beq. Furthermore, the changes in the effective magnetic
pressure caused by the induced magnetic field are rather strong;
see the dashed lines in Fig. 7. We also see regular variations in
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Fig. 7. Effective magnetic pressure and its derivative with respect to the
magnetic field strength for B0 = 100 G (black), 200 G (red), and 500 G
(blue), corresponding to B0/Beq0 = 0.01, 0.03, and 0.07. The solid lines
are based on using just the imposed magnetic field, β0, while the dotted
lines are based on the actual field.

the vertical direction, which are associated with corresponding
(time-dependent) extrema in the actual magnetic field.

3.6. Dependence on κ0

Increasing κ0 means decreasing the radiative diffusion in the
deeper parts, which tends to let NEMPI appear sooner and grow
faster. It also reduces the temperature near the top of the surface
and therefore also the density scale height Hρ0.

To see whether radiation has a noticeable effect on NEMPI,
we compare in Fig. 8 vertical profiles of the relative mag-
netic and temperature fluctuations 〈δ ln B2〉1/2 and 〈δ ln T 〉 for
runs with different values of κ0 = 2 × 107, 5 × 107, and
108 Mm−1 cm3 g−1. The effect is surprisingly small. The mag-
netic fluctuations are of the order of unity (and somewhat larger
for κ0 = 2 × 107 Mm−1 cm3 g−1), while the relative temperature
fluctuations are at most 5 × 10−4.

The vigor of the temporal variation of the field increases con-
siderably as we increase κ0, even though the relative strength
of the variations and the effect on the temperature remain
comparable.

3.7. Dependence on qpz and β?

When the value of qp0 is below 250, keeping βp = 0.05 fixed,
so β? = 079, NEMPI is found to be no longer excited and thus
no magnetic structures are created. This remains true even when
we increase κ0 to 5×107 Mm−1 cm3 g−1, which is generally more
favorable to the onset of NEMPI. This may indicate that there is
a threshold for β? for the excitation of NEMPI in the presence
of radiation, which would be somewhere between 0.7 and 0.8.

Fig. 8. Comparison of the vertical profiles of 〈δ ln B2〉1/2 and 〈δ ln T 〉
(scaled by a factor 1000) for runs with different values of κ0 = 2 ×
107 Mm−1 cm3 g−1 (a), 5 × 107 (b), and 108 cm3 s−1 Mm−1 (c). The τ =
10, 1, and 0.1 surfaces are indicated in gray (from left to right).

4. Comparison with simpler models

To trace the origin of the difference to earlier results, we compare
with models without radiative transfer. The next closest model
to those fully radiative models is that described in Sect. 2.4, in
which the dynamics is optically thick, but a radiative boundary
condition (15) is adopted at the top. The height where this con-
dition is applied is z = d, which corresponds to the position
where τ = 1 in the fully radiative model; see Fig. 1. This is at
z = d = 4.3 Mm, where the mean-free path is ` = 0.14 Mm, so
structures that are smaller than that experience reduced radiative
heat exchange with the surroundings in the fully radiative model,
but not in the optically thick treatment.

Another type of simplified model is one where s = const. in
space and time. This is a strictly isentropic case, where Eq. (3) is
ignored. Other than that, it has the same height and density strat-
ification as both the optically thick model and the fully radiative
one.

4.1. Optically thick case

To shed some light on the occurrence of small horizontal length
scales of NEMPI in our radiative transfer models, we now
compare with the optically thick approximation discussed in
Sect. 2.4. The result is shown in Fig. 9 for a model that is compa-
rable to Run B with κ0 = 107. In that case, Eqs. (16), (17) yield
d = 4.3 Mm, T1 = 4998 K, and K = 2.7 × 10−4. It turns out that
structures now develop at z ≈ 4 Mm, which is close to the top of
the domain; see Fig. 9. With radiative transfer, by comparison,
structures typically develop deeper down at z ≈ 3 Mm. However,
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Fig. 9. Gray scale representation of vertical velocity together with magnetic field lines in white for the optically thick model at four times around
saturation of NEMPI with otherwise the same parameters as Run B′′ with B0 = 200 G.

Fig. 10. Similar to Fig. 9, but for the isentropic model. We note that also the color bar is unchanged.

the structures still have very small length scales comparable to
those in the models with radiative transfer. By comparing with
Fig. 2 it is evident that in the models with optically thin radiative
transfer, the formation of structures at z ≈ 4 Mm appears to be
suppressed. The mean free path is only about ` = 0.14 Mm for
our structures with k/k1 = 4; see the red dashed line in Fig. 5a.
This is rather small and can therefore not be an explanation for
the suppression of structures in the models with optically thin
radiative transfer. There is, however, another difference between
the models with optically thin radiative transfer and the optically
thick approximation that has nothing to do with NEMPI. All
models with optically thick radiative transfer have a stably strat-
ified layer at the top, where the entropy increases with height.
Therefore, a downdraft pulls with it high-entropy material, con-
trary to the case with a radiative boundary condition at z = d,
where downdrafts always have low entropy. This difference was
already noted by Barekat & Brandenburg (2014); it explains why
NEMPI does not develop near the τ = 1 surface at z = 4.3 Mm
in the optically thin radiative transfer model. However, it does
not explain the small size of NEMPI structures. We should also
point out here that, in the optically thick model, NEMPI is no
longer oscillatory.

4.2. Isentropic case

In Fig. 10, we show the same model as in Fig. 9, but now with
fixed mean specific entropy, so s = const., that is, Eq. (3) is
not solved. This means that the negative buoyancy is simply the
result of the negative effective magnetic pressure, without any
influence from changes in specific entropy or temperature. By
contrast, when temperature and entropy are allowed to change,
this can either enhance or diminish the effect of NEMPI. The
answer discussed below is not completely straightforward.

In a stratified layer, a downdraft, even if it is initiated by
NEMPI (instead of thermal buoyancy, for example), will always
be compressed, so its density increases. This leads to adiabatic
heating, and the corresponding radiation causes a loss of entropy,
so those structures become even more negatively buoyant. This
happens most efficiently at the scale of the photon mean free path
or at the radiative diffusion scale. Both scales are rather small
and this might explain the observed tendency for small struc-
tures to develop in our model. At the same time, however, those
small length scales also make NEMPI less efficient. In this sense,
radiation both promotes NEMPI by enhancing buoyancy effects
(both negative and positive ones), and counteracts NEMPI, be-
cause it operates on progressively smaller length scales.

5. Conclusions

We have presented here the first calculations of NEMPI with ra-
diation. Within the limitations of our simplified model, NEMPI
would not have been excited had we chosen the previously de-
termined control parameters for the negative effective magnetic
pressure effect, that is, β? and βp. By using a nearly three times
larger value of β?, we were able to study the reason behind this.
It turns out that in our model with radiation, the horizontal wave-
length of the instability is dramatically decreased. As a conse-
quence, turbulent and radiative diffusion have much stronger ef-
fects, suppressing, therefore, the instability. Nevertheless, even
with a strongly enhanced value of β?, the resulting magnetic
structures are still far too weak to form sunspots.

We found for the first time that NEMPI can display oscil-
latory behavior during the linear phase of the instability. These
oscillations are associated with traveling waves moving upward
with a speed of 0.2 km s−1. The oscillations have a period of
about 4–9 ks in the volume-integrated velocity, but since the
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period of the actual (signed) magnetic field is twice as long, the
recurrence time of pronounced downward flows is 8–18 ks.

We do not yet know enough about the nature of the oscil-
lations and whether they could also exist in reality. To address
this question further, we have to focus on the limitations asso-
ciated with the small horizontal length scales of NEMPI in the
presence of radiation. Given that the oscillations occur only in
the presence of a stably stratified layer above, it is possible that
they are related to buoyancy oscillations in a thin upper radiative
layer, where the stratification is sufficiently stable, while still be-
ing coupled to NEMPI in the deeper layers through suction along
magnetic field lines.

The treatment of turbulent magnetic diffusion as a multi-
plicative factor in front of a Laplacian diffusion operator be-
comes invalid on small length scales, so the actual diffusion
will be smaller; see Brandenburg et al. (2008). It is also possi-
ble that the opacity is still not large enough, and therefore the
radiative diffusivity is too large. This is another unrealistic lim-
itation of our present model. On the other hand, in the deeper
layers, the radiative diffusivity is already now smaller than the
turbulent magnetic diffusivity. One would therefore not have ex-
pected this to be the limiting factor. Most important is perhaps
the limitation associated with the neglect of turbulent convection
in the deeper parts. Convection would imply the presence of a
strongly negative entropy gradient just below the surface. There-
fore, the stabilizing effect from the top layers encountered in the
present model would be absent. However, NEMPI would still
lead to small length scales, except that now turbulent convection
leads to an effective thermal diffusivity that is much larger than
the radiative one. Moreover, the transition between a radiative
surface above and strong turbulence with small-scale convection
beneath the surface would be very abrupt. Given that NEMPI is
most effective for large-scale separation (small-scale turbulence)
and the stratification is strongest near the surface, it might still
be a viable alternative for the formation of sunspots. Extend-
ing our model by including convection in parameterized form
would therefore be the first task to be addressed in a follow-up
investigation.

Ultimately, the aim is to model the formation of sunspots,
where convective heat transport is either suppressed by the mag-
netic field (Biermann 1941) or the cooling is enhanced (Parker
1974a). The former effect may lead to its own instability, which
was modeled by Kitchatinov & Mazur (2000) using a mean-field
approach. This instability could be strengthened further by the
effects of ionization and would therefore be another urgent tar-
get for subsequent investigations.
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