
PHYSICAL REVIEW FLUIDS 4, 024608 (2019)

Dynamo effect in decaying helical turbulence
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We show that in decaying hydromagnetic turbulence with initial kinetic helicity, a
weak magnetic field eventually becomes fully helical. The sign of magnetic helicity is
opposite to that of the kinetic helicity—regardless of whether the initial magnetic field
was helical. The magnetic field undergoes inverse cascading with the magnetic energy
decaying approximately like t−1/2. This is even slower than in the fully helical case,
where it decays like t−2/3. In this parameter range, the product of magnetic energy and
correlation length raised to a certain power slightly larger than unity is approximately
constant. This scaling of magnetic energy persists over long timescales. At very late times
and for domain sizes large enough to accommodate the growing spatial scales, we expect
a crossover to the t−2/3 decay law that is commonly observed for fully helical magnetic
fields. Regardless of the presence or absence of initial kinetic helicity, the magnetic field
experiences exponential growth during the first few turnover times, which is suggestive of
small-scale dynamo action. Our results have applications to a wide range of experimental
dynamos and astrophysical time-dependent plasmas, including primordial turbulence in
the early universe.

DOI: 10.1103/PhysRevFluids.4.024608

I. INTRODUCTION

In electrically conducting fluids such as plasmas and liquid metals, steady helical turbulence is
known to lead to an efficient conversion of kinetic energy into magnetic energy—a process referred
to as a dynamo. Dynamos with swirling (helical) motions can be excited at relatively small magnetic
Reynolds numbers, i.e., at moderate turbulent velocities and length scales, as well as moderate
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electric conductivities [1,2]. This is why many dynamo experiments have employed helical flows
both in the constrained and basically nonturbulent flows of the experiments performed in Riga [3,4]
and Karlsruhe [5,6], as well as the unconstrained (turbulent) von Kármán flows in the experiments
in Cadarache [7,8]. Many other experiments are currently being worked upon [9–12]. Their success
is limited by the power that can be delivered by the propellers or pumps. A more economic type
of dynamo experiment is driven by the flow that results inside a spinning torus of liquid sodium
after abruptly breaking it. This leads to turbulence from the screwlike diverters inside the torus
[13–15]. Theoretical studies of laminar screw dynamos have been performed [16], but the evolution
of hydromagnetic turbulence is usually parameterized in ways that ignore the effects of kinetic and
magnetic helicity.

The problem of magnetic field evolution in decaying helical turbulence in conducting media is
far more general. Neutron stars, for example, have convective turbulence during the first minute
after their formation [17,18]. The early universe could be another example of turbulence driven
by expanding bubbles after a first-order phase transition [19,20]. Turbulence can also be driven
by magnetic fields generated at earlier times during inflation [21,22]. Transient turbulence is also
being generated as a consequence of merging galaxy clusters [23,24]. Even accretion discs may
provide an example of decaying turbulence when the magnetorotational instability is not excited
during certain phases [25]. A related example is that of tidal disruption events, where a star has a
close encounter with a supermassive black hole and gets disrupted. During this process, tremendous
shearing motion is being dissipated. A fraction of it can be dissipated magnetically via strongly time-
dependent dynamo action and Joules dissipation [26]. Dynamo effects are also suspected to occur
over durations of microseconds in inertial fusion confinement plasmas [27–29]. In all these cases,
one deals with decaying turbulence. This is what makes the interpretation in terms of a dynamo
effect complicated. Here we focus on general aspects of the dynamo mechanism rather than trying
to model specific laboratory or astrophysics conditions.

In this paper, we demonstrate that in decaying helical turbulence, an initially nonhelical seed
magnetic field undergoes a quasiexponential increase. In the presence of initial kinetic helicity,
this growth is followed by a long (≈50000 turnover times) transient decay where the magnetic
energy decays like t−1/2. This is slower than in the case of an initially fully helical magnetic field,
which decays like t−2/3. It develops inverse cascade-type behavior already well before the magnetic
field becomes fully helical. To what extent the transient decay owing to initial kinetic helicity can
be modeled in terms of advanced mean-field dynamo theory remains open, although potentially
suitable tools such as two- and three-scale dynamo theories have been developed [30]. Previous
decay simulations were always performed with strong initial magnetic fields. Only recently has the
need for studying the evolution of hydromagnetic turbulence in kinetically dominated systems been
emphasized [31]. However, no detailed study has been presented as yet, except for our own work
[32], which focused on the case without kinetic helicity.

II. HELICAL DYNAMOS WITH TIME-DEPENDENT COEFFICIENTS

A simple example of a dynamo is one that works owing to the presence of kinetic helicity, 〈ω · u〉,
where ω = ∇ × u is the vorticity and u is the turbulent velocity. In stationary isotropic turbulence,
a statistically averaged mean magnetic field B obeys [1,2]

∂B/∂t = ∇ × [αdynB − (ηt + η)μ0J], (1)

where αdyn ≈ −τ 〈ω · u〉/3 is the α effect, ηt ≈ τ 〈u2〉/3 is the turbulent magnetic diffusivity, η is
the microphysical magnetic diffusivity, and J = ∇ × B/μ0 is the mean current density with μ0

being the vacuum permeability. If the coefficients are spatially constant and the domain is periodic,
the solutions are eigenfunctions of the curl operator with eigenvalue k. If the coefficients were
also constant in time, |B| would be proportional to exp(ik · x + γ t ). There would then be a growing
solution that obeys γ = |αdynk| − ηTk2 with ηT = ηt + η if C ≡ |αdyn|/ηTk1 > 1, where k1 = 2π/L
is the smallest wave number that fits into the cubic domain of size L3.
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We define the fractional helicity εf such that 〈ω · u〉 = εf〈u2〉/ξK, where ξK is the scale of the
energy-carrying eddies, which we will later identify with the integral scale that is formally defined
in terms of energy spectra. Thus, C = εf/(ιk1ξK ), where ι = 1 + 3 Re−1

M with

ReM = urmsξK/η (2)

being the magnetic Reynolds number, τ = ξK/urms is the turnover time, and urms = 〈u2〉1/2 is the
rms velocity [33]. The effective wave number of the large-scale field, km, is not normally at the
minimal wave number k = k1, but at a larger value, so k1 � km � (2ξM)−1; see, e.g., Fig. 17 of
Ref. [34].

In decaying hydrodynamic turbulence, we have u2
rms ∝ t−p with exponent p = 10/7 if the

Loitsiansky integral [35] is conserved, or p = 6/5 if the Saffman integral [36] is conserved. In
these cases, we have |B| = B0 exp[

∫ t
0 γ (t ′) dt ′], where

γ (t ) = (εf − ιkmξK )urmskm/3 (3)

with εf = εf (t ), ξK = ξK(t ), km(t ) � k1, and ι = ι(t ) now all being time-dependent functions.
Thus, we expect a time-dependent (instantaneous) growth rate that is, to leading order, given by
urms(t )km(t )/3. With these preliminary expectations in mind, let us now turn to three-dimensional
turbulence simulations.

III. DYNAMOS IN DECAYING TURBULENCE

We are primarily interested in subsonic turbulence with initial Mach numbers of the order of
0.1. At those low Mach numbers, the equation of state no longer affects the flow (see Fig. 2 of
the Supplemental Material to Ref. [37]) and compressibility effects are unimportant. We choose to
solve for an isothermal gas where the pressure p is proportional to the local density ρ with p = ρc2

s .
This equation of state applies to the early universe where c2

s = c2/3, with c being the speed of
light. Solving for a weakly compressible gas is computationally more efficient than solving for an
incompressible fluid where the pressure is a nonlocal function of the velocity.

We neglect kinetic and two-fluid effects in our present work, which is appropriate for many
astrophysical plasmas, including the early universe [38]. We thus solve the three-dimensional
hydromagnetic equations

∂u
∂t

= −u · ∇u − c2
s ∇ ln ρ + 1

ρ
(J × B + ∇ · 2ρνS), (4)

∂ ln ρ

∂t
= −u · ∇ ln ρ − ∇ · u, (5)

∂A
∂t

= u × B − ημ0J, (6)

where Si j = 1
2 (ui, j + u j,i ) − 1

3δi j∇ · u is the traceless rate of strain tensor, ν is the kinematic
viscosity, B = ∇ × A is the magnetic field, J = ∇ × B/μ0 is the current density, and μ0 is the
vacuum permeability. We consider a triply periodic domain of size L3, so the smallest wave number
in the domain is k1 = 2π/L.

We take the initial velocity to be solenoidal and define it in Fourier space as

ui(k) =
[
Pi j (k) + iσKεi jl

kl

k

]
u0k−3/2

0 g j (k) (k/k0)α/2−1

[1 + (k/k0)2(α+5/3)]1/4
, (7)

where Pi j = δi j − kik j/k2 is the projection operator, g(k) is the Fourier transform of a spatially
δ-correlated vector field in three dimensions with Gaussian distributed fluctuations, and k0 is wave
number of the peak of the initial spectrum. It corresponds to the initial wave number of the energy-
carrying eddies. We choose k0/k1 = 60. The exponent α (not to be confused with the mean-field
dynamo coefficient αdyn) denotes the slope of the spectrum at low wave numbers. We choose α = 4
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TABLE I. Summary of the runs discussed in this paper.

Run σK σM vA0/u0 ReM Lu te/τ0 qM(te ) pM(te )

A 1 0 0.1 38–323 17 830 49 000 0.55 0.58
B 1 1 0.1 35–120 14–182 23 000 0.46 0.59
C 1 −1 0.1 37–326 29–1090 15 000 0.53 0.57
D 1 0 0.01 34–37 3–21 2500 0.38 1.10
E 1 0 0.001 30–22 0.5–4.5 400 0.35 0.70
E’ 0 0 0.001 30–22 0.5–2.5 1300 0.29 0.44
F 1 0 0.1 27–21 9–17 63 0.47 1.31
G 1 0 0.1 14 3–5 26 0.29 0.50
H 1 0 0.1 8 1–6 3400 0.29 0.50

for a causally generated solenoidal field [39,40]. The fractional initial helicity is controlled by the
parameter σK and given by εf = 2σK/(1 + σ 2

K ). For the initial magnetic field, we take the same
spectrum, but with σM instead of σK, and amplitude B0 instead of u0. The velocity is initially fully
helical (σK = 1) and solenoidal. We consider an initial B(k) with σM = 0, 1, and −1. The initial
density is constant and given by ρ0.

Viscosity ν and magnetic diffusivity η are usually very small in physical systems of interest. This
is generally difficult to simulate, especially at early times if we fix ν and η to be that small. However,
a self-similar evolution is made possible by allowing ν and η to be time dependent (after some time
t > t0; see below) with

ν(t ) = ν0 max(t, t0)r, (8)

where r = (1 − α)/(3 + α) [41], which gives r = −3/7 for α = 4. The time t0 is chosen to be short
(t0urms/ξM ≈ 1) but nonvanishing to prevent ν and η from becoming singular for r < 0. In most of
the cases reported below, we assume η(t ) = ν(t )/PrM, where PrM = 1 is chosen for the magnetic
Prandtl number. In some cases, we also compare with cases where PrM �= 1 and with cases where
ν ≡ ν0 and η ≡ η0 are constant in time.

We define kinetic and magnetic energy spectra, EK(k, t ) and EM(k, t ), respectively. They are
normalized such that

∫
Ei(k, t ) dk = Ei for i = K or M, where EK = ρ0u2

rms/2 and EM = B2
rms/2μ0

are the kinetic and magnetic mean energy densities and Brms is the rms magnetic field. Time is given
in units of the initial turnover time, τ0 = τ (0), and

ξi(t ) =
∫ ∞

0
k−1Ei(k, t ) dk/Ei(t ) (9)

is the integral scale. We have chosen t0/τ0 = 0.1 for the time when viscosity and magnetic
diffusivity become time dependent. Our runs are given in Table I, where the initial Alfvén speed
vA0 = B0/

√
μ0ρ0 has been introduced and the end time of the run te is given. In the following,

we characterize the values of ν0 and η0 by the time-dependent magnetic Reynolds and Lundqvist
numbers,

ReM = urmsξM/η and Lu = BrmsξM/η, (10)

respectively. Their initial and final values are indicated in Table I, respectively. Note also that we
have now chosen to define Re and ReM in terms of ξM instead of ξK. We do this because the magnetic
energy spectrum has a more clearly defined peak, while that of the kinetic energy spectrum is less
clear and, at least after some time, its evolution is enslaved by the magnetic field. Furthermore, we
define instantaneous scaling exponents of Ei(t ) and ξi(t ) as

pi(t ) = d ln Ei/d ln t, qi(t ) = d ln ξi/d ln t, (11)

024608-4



DYNAMO EFFECT IN DECAYING HELICAL TURBULENCE

plot pi(t ) versus qi(t ) for i = M and K, and discuss the evolution of the point

Pi = (pi, qi ) (12)

in the pq diagram. Solutions that obey invariance under rescaling [37,41,42],

k → k′�−1 and t → t ′�1/qi , (13)

all lie on the line pi = 2(1 − qi ) in this diagram.
In the case of a self-similar evolution [41,42], the magnetic energy spectra can be described by a

single function φ(kξM) of the product kξM such that [37]

EM(kξM(t ), t ) ≈ ξ
−βM
M φ(kξM), (14)

where φ(kξM) is a function of magnetic Reynolds and Prandtl numbers, but not of time. Note that
ξM(t ) varies such that the peak of the spectrum is always at kξM ≈ 1. If the solutions are invariant
under rescaling, they must obey qi = 2/(βi + 3) [41].

By integrating EM(t ) = ∫
EM(k, t ) dk, one can see that

EM(t ) ∝ ξ
−(βM+1)
M ∝ t−qM(βM+1), (15)

and therefore we have 1 + βM = pM/qM [37]. On dimensional and physical grounds [43], one
expects the rate of change to obey

dEM

dt
∝ ξ−1

M E3/2
M . (16)

Further details regarding the relation between ξM and EM depend of the conservation laws that are
being obeyed. For example, when magnetic helicity is conserved, we have 〈A · B〉 ∝ EMξM = const,
so ξM ∝ E−1

M and therefore dEM/dt ∝ E5/2
M , which yields [43]

pM = qM = 2/3. (17)

This, in turn, implies βM = 0, so the height of the peak of EM(k, t ) stays unchanged; see Eq. (14).
For our numerical simulations, we use the PENCIL CODE [44], a public code that is particularly

well suited for simulating hydromagnetic turbulence. In all cases, we use 11523 mesh points, which
are enough to ensure that the inverse-cascade effects are well reproduced; see Ref. [45] for earlier
work highlighting the importance of high resolution in connection with the inverse cascade in
nonhelical hydromagnetic turbulence.

IV. RESULTS

A. Kinetic and magnetic energy evolution

In Fig. 1, we plot EK(t ) and EM(t ) for runs A–E. EM is found to increase at first, reach a maximum
at t/τ0 ≈ 10, and then approach a late-time magnetic decay law approximately proportional to t−p

with p � 0.5. We see that kinetic energy is transferred to magnetic energy, whose value eventually
exceeds EK. The time when this happens depends on the initial magnetic energy. For run A with
vA0/u0 = 0.1, this time is t/τ0 ≈ 20 (see Fig. 1), and for run D it is t/τ0 = 200.

Although the turbulence is decaying, it is still possible to define a meaningful growth rate of
the magnetic field and to estimate a critical value of the magnetic Reynolds number above which
dynamo action is possible. We do this by plotting the instantaneous growth rate,

γ (t ) = d ln Brms/dt, (18)

of the rms magnetic field Brms. The result is shown in Fig. 2, where we plot γ (t )τ0 versus t/τ0. We
see that the values with the weakest initial field (i.e., in the kinematic limit) are γ (t )τ0 � 0.5 at early
times. At later times, however, γ (t ) decreases. This is roughly consistent with Eq. (3). Furthermore,
the decay is faster if η is larger, i.e., ReM is smaller.
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FIG. 1. Evolution of EK (blue) and EM (red) for σM = 0 (solid), σM = 1 (dashed), and σM = −1 (dotted) for
vA0/u0 = 0.1 (runs A–C), as well as 0.01 (dot-dashed, run D) and 0.001 (triple dot-dashed, run E) for σM = 0.
The green triple dot-dashed line denotes run E′, which has zero initial kinetic helicity.

In the case with zero kinetic helicity, the initial growth rate is nearly the same as with kinetic
helicity; see run E′ in Fig. 2. This suggests that there is also small-scale dynamo action. Owing to
the absence of kinetic helicity, γ (t ) follows a slightly steeper power law of the approximate form
t−0.9. At later times, however, the magnetic field of run E′ decays in the same way as that of run E.

To understand what has happened, we look at the spectra EK(k, t ) and EM(k, t ) in Fig. 3. We
see that, during the late evolution (t/τ0 > 1000), the magnetic energy spectra are shape invariant
and just translate toward smaller k. This is suggestive of an inverse cascade, where EM(kξM(t ), t )
collapses onto the same curve φ(kξM) with 1 + βM = pM/qM [37]; see Eq. (14). Here the correlation
length ξM increases like t q

M such that 〈B2〉ξ 1+βM
M stays constant; see Eq. (15). The value of this

constant depends on the total amount of magnetic helicity that is produced in the system. To
compensate for the decay in magnetic energy, we multiply EM by ξ

βM
M with an exponent βM such

that the compensated spectra collapse onto a single function; see Fig. 4.
A closer inspection of the magnetic decay gives qM ≈ 0.55 and pM ≈ 0.58 at the end time for run

A, so that βM ≈ 0.05; see the pq diagram in Fig. 5. In Fig. 6, we show a similar plot for run C. Since
the magnetic decay is not truly self-similar, it does not obey the scaling relation βM = 2/qM − 3 [41]
and does not fall on the line pM = 2 (1 − qM), which is indicated in Fig. 5 by a solid line.

FIG. 2. Instantaneous growth rates γ (t )τ0 of Brms for σM = 0 (solid), σM = 1 (dashed), and σM = −1
(dotted) for vA0/u0 = 0.1 (runs A–C), as well as 0.01 (dot-dashed, run D) and 0.001 (triple dot-dashed, run E).
The green triple dot-dashed line denotes run E′ with zero initial kinetic helicity.
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FIG. 3. EK(k, t ) and EM(k, t ) for t/τ = 16, 60, 200, 800, 2000, 8000, and 17 000, for run A. Time is
decreasing downward and the last time is shown as fat lines.

At late times, although pM and qM are still different from the expected law with pM = qM = 2/3,
there are several other similarities to earlier calculations of magnetically dominated hydromagnetic
turbulence. In particular, we see a change of the low-wave-number slope of EK from k4 to k2 at
later times and at small k. This is a consequence of compressibility [45,46] and is not seen in the
incompressible case; see the Supplemental Material of Ref. [47]. At larger wave numbers, near the
point where EM peaks, the kinetic energy is proportional to k1/3; see Figs. 5 and 6 and Ref. [45].
The k2 law for the kinetic energy EK is likely a consequence of turbulent interactions over the scale
of the domain since the initial time.

To inspect the slow changes of βM(t ), pM(t ), and qM(t ) in more detail, we show in Fig. 7
their evolution for run A using again a logarithmic time axis. We see that there is an intermediate
plateau when their values are indeed approximately constant. At late times, however, we see that
βM(t ) is well described by an expression of the form βM(t ) = βM0 − βM1 ln(t/τ0). This implies that
exp(βM − βM0) = (t/τ0)−βM1 . We also see that the extrapolated time t∗ when βM(t∗) = 0 is given
by t∗/τ0 = exp(βM0/βM1). Looking at Fig. 7 suggests that the exponents pM and qM both increase,
although it is not obvious that they attain the value 2/3 by the extrapolated time t∗ ≈ 5300.

FIG. 4. EK(k, t ) and EM(k, t ) at t/τ = 2600, 9400, 24,000, and 45,000, collapsed spectra using βM = 0 for
Run A.
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FIG. 5. pq diagram for run A for kinetic (blue open symbols) and magnetic (red filled symbols) energy
spectra. Near the end of the run (larger symbols), the solution evolves along the pM = 0.58 line (dashed) and
qM ≈ 0.55 with βM = pM/qM − 1 ≈ 0.05 is found at the end of the run. Smaller (larger) symbols denote earlier
(later) times.

B. Effect of finite initial magnetic helicity

We recall that, except for runs B and C, no magnetic helicity was present initially, i.e., σM = 0;
see Table I. Magnetic helicity is a conserved quantity and it can only change through resistive
effects and at small scales. To understand how magnetic helicity gets produced, we show in
Fig. 8 magnetic and kinetic helicity spectra, HK(k, t ) and HM(k, t ), respectively. They obey the
realizability conditions, k−1|HK(k, t )| � 2EK(k, t ) and k|HM(k, t )| � 2EM(k, t ), respectively, and
are normalized such that

∫
HK dk = 〈ω · u〉 and

∫
HM dk = 〈A · B〉.

We see that, at early times, a bihelical magnetic helicity spectrum is produced, where positive and
negative contributions are present simultaneously, though separated in k space, just like in driven
turbulence [30,34]. Thus, there remains a near cancelation of the net magnetic helicity until the
magnetic helicity spectrum saturates at k = O(k0). When that happens, magnetic helicity at large
scales continues to increase only slowly such that at small scales magnetic helicity continues to
dissipate resistively. Eventually, at late times, the positive magnetic helicity at small scales has
disappeared and it has at all wave numbers a negative sign; see Fig. 9. Since run C starts with
σM = −1, we do not need to wait until the field with positive magnetic helicity gets dissipated.
This leads to a more efficient transfer of kinetic energy to magnetic energy, which is why we see a
stronger growth in Fig. 1. The opposite happens in the case with σM = 1, where the entire spectrum

FIG. 6. Same as Fig. 5, but for run C, where the solution evolves along the pM = 0.57 line (dashed) and
qM ≈ 0.53 with βM = pM/qM − 1 ≈ 0.08 is found at the end of the run.
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FIG. 7. Evolution of βM(t ) (black), pM(t ) (red), and qM(t ) (blue) for run A (solid lines), run B (dotted
lines), and run C (dashed line). Note that βM(t ) would reach zero at an extrapolated time of t∗ ≈ 5300.

initially has the “wrong” (positive) sign, making it even harder to establish a negative magnetic
helicity at all wave numbers. The total magnetic energy decays then subject to resistive decay in the
presence of magnetic helicity.

C. Interpretation

In Fig. 10, we plot the evolution of 〈B2〉 ξM for different Reynolds numbers (runs A, F, and G). We
see that the magnetic helicity produced depends on the magnetic Reynolds number. For comparison,
we also plot 〈B2〉 ξ 1.05

M for run A. This is indicated by the dotted line, which has a flat tangent at the
last time, and corresponds to βM = 0.05.

To make contact with the mean-field interpretation developed in Sec. II, we show in Fig. 11
that 〈ω · u〉 dies out while −〈J · B〉 increases such that 〈ω · u〉 − 〈J · B〉/ρ0 ≈ const during the first
10 000 turnover times. It is this combination of kinetic and current helicity densities that replaces
the otherwise kinematic α effect in the nonlinear regime [30,48]. At t/τ0 ≈ 200, the sign of 〈ω · u〉
changes and has now the same sign as 〈J · B〉. This can be explained by the strong dominance of
the magnetic field over the velocity field, which begins already at t/τ0 ≈ 20; see Fig. 1.

In Fig. 11, we also plot 〈A · B〉 and see that it never reaches a constant—not even until the end
of the run. This explains why pM and qM are still different from 2/3. By comparison with the other

FIG. 8. k−1HK(k, t ) (red) and kHM(k, t ) along with 2EK(k, t ) and 2EM(k, t ) (black lines) at t/τ = 0.05,
0.16, 0.3, 0.6, and 1.7 for run A (red for positive values and blue for negative values). The blue and red arrows
indicate the change of kHM(k, t ) with time.
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FIG. 9. kHM(k, t ) (red for positive values and blue for negative values) at later times: t/τ = 5, 10, and 25
for run A. The arrows indicate the temporal change of kHM(k, t ).

helicities, the magnetic helicity appears to rise sharply at t/τ0 � 3 × 104 in this double-logarithmic
plot. This signals the end of the pM ≈ 1/2 scaling of magnetic energy and the beginning of a t−2/3

scaling after even later times.
We emphasize that in Fig. 11 we have plotted the time axis logarithmically and have normalized

by the time-varying rms velocity. In this way, we were able to display the various sign changes of
kinetic and current helicities, but it has also distorted the view. For this reason, we show in Fig. 12
in separate panels the kinetic, current, and magnetic helicities with a constant normalization using
the initial velocity and the initial peak wave number in Figs. 12(a)–12(c) along with time-dependent
normalizations using the wave number of the domain k1 in Figs. 12(d)–12(f), with a linear time axis
for the magnetic helicity in Fig. 12(f). We see that magnetic helicity is always negative, reaches a
peak at t/τ0 = 10, and then decays, before asymptoting to a finite value. When normalized by u2

rms,
the modulus of the magnetic energy increases approximately linearly; see Fig. 12(f).

The current helicity normalized by u2
rms shows a negative peak at t/τ0 ≈ 1000. This is when

〈ω · u〉 reached a negative peak, confirming again that the reason for its sign change is indeed related
to the current helicity, which is then also negative and much stronger than the kinetic helicity.

D. Robustness of the t1/2 scaling

It is here for the first time that the t1/2 scaling has been observed. Several potentially important
assumptions have been made and it needs to be seen to what extent they might affect our findings.

FIG. 10. Evolution of 〈B2〉ξβ

M with β = 0 for run A (black solid), F (red dotted), G (blue dashed), and H
(green dash-dotted). In fully helical turbulence, we expect 〈B2〉ξM → const, but here 〈B2〉ξ 1+βM

M ≈ const with
βM = 0.05 at the end of the run.
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FIG. 11. Evolution of 〈ω · u〉 (blue), 〈ω · u − J · B/ρ0〉 (red), and 〈A · B〉 (green) for Re = 160 (run A).

Here we examine both the assumption of using PrM = 1 and the assumption of using a time-
dependent viscosity and a time-dependent magnetic diffusivity. In Figs. 13(a) and 13(b), we plot
the results for PrM = 0.1 and 10, respectively. In both cases, a similar evolution of (pM, qM) along
the line pM ≈ 1/2 is seen while qM increases and approaches the pM = 2(1 − qM) line. Reaching
this point would require a larger dynamical range and thus much larger domains and computation
times than what has been possible so far. This is because, in the present runs, k1ξM becomes rather
small (�3) toward the end of the run, so inverse transfer is no longer independent of the system size.

In Fig. 13(b), we also see that the trajectory overshoots the pM ≈ 1/2 line when PrM = 10. This
overshooting indicates that η is still too small for our numerical resolution of 11523 mesh points.
We have seen a similar behavior also when using a time independent but very small value of ν = ν0;
see Fig. 14 for such an example.

FIG. 12. Similar to Fig. 11, but with different normalizations, using in panels (a)–(c) the initial velocity
and the initial peak wave number, in panels (d)–(f) the time-dependent velocity using k1, with a linear time
axis for magnetic helicity in panel (f) in separate panels focusing on 〈ω · u〉 (blue), 〈ω · u − J · B/ρ0〉 (red),
−〈−J · B/ρ0〉 (orange), and 〈A · B〉 (green) for Re = 160 (run A).
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FIG. 13. pq diagram for PrM = 0.1 (a) and 10 (b). Smaller (larger) symbols denote earlier (later) times.
The pM = 0.58 line (dashed) is shown for comparison.

Thus, the principal finding of an evolution along the pM ≈ 1/2 line with increasing qM toward
the β = 0 line, which is shortly before it reaches the pM = 2(1 − qM) equilibrium line, is recovered
over a range of different circumstances, but the quality of convergence depends on how well we can
approach the high magnetic Reynolds number limit.

V. CONCLUSIONS

Our work has demonstrated that the decay of turbulence with kinetic helicity leads to a
nonconventional intermediate magnetic decay law with pM ≈ 1/2 and qM slowly increasing from
about 0.4 to 0.6 before both pM and qM are expected to approach 2/3. Qualitatively, our results are
easily explained. At early times, a bihelical magnetic helicity spectrum develops and it grows until
it reaches equipartition at the wave number where the magnetic spectrum peaks. At small scales,
the sign of the magnetic helicity agrees with that of the kinetic helicity. At early times, however, no
net magnetic helicity can be produced. Therefore, magnetic field with negative helicity is generated
simultaneously at larger scales. This can also be understood as a result of mean-field dynamo theory,
where the sign of magnetic helicity at large scales agrees with the sign of αdyn which, in turn, is a
negative multiple of the kinetic helicity [1,2].

At later times, the magnetic helicity at small scales gets dissipated resistivity, so that part of
the magnetic helicity spectrum is gradually lost until the entire magnetic helicity spectrum has the
same sign (negative) at all k. The kinetic helicity has then also reversed sign, but it is very small

FIG. 14. pq diagram with constant ν = η = 10−6 for PrM = 1. Again, smaller (larger) symbols denote
earlier (later) times and the pM = 0.58 line (dashed) is shown for comparison.
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and sustained only by the current helicity. After that time, the magnetic energy spectrum shows an
inverse cascade during which 〈B2〉ξ 1+βM

M ≈ const with βM → 0; see Eq. (15).
These new insights affect our understanding of all cases of decaying turbulence with initial

kinetic helicity in electrically conducting media, such as plasma and liquid metal experiments,
specifically the braked torus experiment, neutron stars, galaxy clusters, inertial fusion confinement
plasmas, and the early universe. Thus, we predict that experiments should approach an evolutionary
track in the pq diagram close to the pM ≈ 1/2 line for many tens of thousands of turnover times
if ReM is large enough. Regarding applications to the early universe, the evolution in the 〈B2〉−ξM

diagram (see Fig. 11 of Ref. [32]) will be slightly steeper than for an initially fully helical magnetic
field. This is because βM is already close to zero.

We recall that kinetic and two-fluid effects have been neglected in the present work. While this
should be appropriate for liquid metal experiments and the early universe, it may not be accurate
for plasma experiments and galaxy clusters. Even in the dense neutron stars, Hall drift may play a
role [49]. At present, not much is known about the importance of kinetic and two-fluid effects for
plasma decay in the presence of helicity, so there is still a lot of room for basic studies in the field.

The new evolutionary phase of decaying magnetic fields with initial kinetic helicity follows after
an early phase of an exponential increase of the magnetic energy by dynamo action. It is here that
such a process has been simulated. To be able to achieve this, it was necessary to reach rather large
values of ReM. The subsequent decay phase with pM ≈ 1/2 has so far only been seen in the decaying
phase of such a dynamo process. During that time, the magnetic energy is already decaying, but the
system clearly captures signatures of the initial kinetic helicity in the system, which then, at later
times, disappears in favor of producing first current helicity and later magnetic helicity.

The phenomenon of magnetic field amplification at intermediate times is a phenomenon specific
to high magnetic Reynolds numbers, which are only now becoming accessible to simulations.
At present, no detailed comparison with dynamo decay experiments is possible yet, because no
time dependence of the magnetic field has been obtained. The best such experiment is that of two
laser beams producing colliding plasma jets directed toward each other, leading to magnetic field
generation that can be monitored through Faraday rotation measurements [29]. The situation is
complicated further by the fact that in the experiments performed so far, the buildup phase of the
turbulence constitutes a significant fraction of the total time available. One might therefore want to
consider a model for the buildup of the turbulence as well, which has not yet been attempted.
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