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ABSTRACT
We consider the effect of a subadiabatic layer at the base of the
convection zone on convection itself and the associated large-scale
dynamos in spherical wedge geometry. We use a heat conduction
prescription based on the Kramers opacity law which allows the
depth of the convection zone to dynamically adapt to changes in
the physical characteristics such as rotation rate andmagnetic fields.
We find that the convective heat transport is strongly concentrated
towards the equatorial and polar regions in the cases without a sub-
stantial radiative layer below the convection zone. The presence of
a stable layer below the convection zone significantly reduces the
anisotropy of radial enthalpy transport. Furthermore, the dynamo
solutions are sensitive to subtle changes in the convection zone
structure. We find that the kinetic helicity changes sign in the deeper
parts of the convection zone at high latitudes in all runs. This region
expands progressively towards the equator in runs with a thicker
stably stratified layer.
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1. Introduction

Both differential rotation and dynamo action in late-type stars such as the Sun are driven
by the interaction of turbulent convection and global rotation of the stars (e.g. Miesch and
Toomre 2009; Brun and Browning 2017). While a popular class of mean-field dynamos,
known as the flux transport dynamos (e.g. Dikpati and Charbonneau 1999), rely on pro-
cesses in the boundary layers at the base and near the surface of the convection zone (CZ),
large-eddy simulations of stellar convection have demonstrated that solar-like magnetic
activity can be obtainedwithout the inclusion of such layers (e.g.Ghizaru et al. 2010;Käpylä
et al. 2012; Warnecke et al. 2014; Passos and Charbonneau 2014; Augustson et al. 2015;
Käpylä et al. 2016). However, this does not necessarily imply that the solar dynamo works
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like the simulations suggest, because they face problems of their own. For example, numer-
ical simulations appear to produce much higher velocity amplitudes at large horizontal
scales in comparison to what is found with helioseismic inversions (Gizon and Birch 2012;
Hanasoge et al. 2012).

There is another piece of evidence that also suggests that the velocities are too high in
simulations. This evidence comes from simulations that adopt the solar luminosity and
rotation rate: instead of a solar-like differential rotation profile with fast equator and slow
poles, an anti-solar one with slow equator and fast poles is obtained. This is indicative of a
lower rotational influence on the flow in simulations in comparison to the Sun (e.g. Gastine
et al. 2014; Käpylä et al. 2014; Hotta et al. 2015). This discrepancy between observations
and simulations is called the “convective conundrum” (O’Mara et al. 2016). Furthermore,
the simulated rotation profiles are nearly in Taylor–Proudman balance, corresponding to
cylindrical isocontours of constant angular velocity (e.g. Brun and Toomre 2002; Miesch
et al. 2006; Käpylä et al. 2011a) in comparison to more spoke-like isocontours inferred for
the Sun (Schou et al. 1998).

A possible remedy to the Taylor–Proudman dilemma is to assume that the lower part
of the CZ is slightly subadiabatic (Rempel 2005), in which case a thermal wind pro-
duced by the negative entropy fluctuations leads to a more conical angular velocity profile
(Miesch et al. 2006). A related idea has been invoked to crack the convective conundrum:
if convection is driven only in the near-surface layers by radiative cooling (Spruit 1997;
Brandenburg 2016), the larger-scale convective modes such as giant cells are not excited,
leading to a reduction of power at large horizontal scales (e.g. Cossette and Rast 2016). In
this scenario the bulk of the revised CZ is being mixed due to overshooting by downflow
plumes originating near the surface.

Recent numerical simulations indeed suggest that convection is driven by cooling near
the surface (Cossette and Rast 2016; Käpylä et al. 2017b) and that the lower part of the
convection zone is weakly subadiabatic (e.g. Tremblay et al. 2015; Käpylä et al. 2017b;
Hotta 2017; Bekki et al. 2017; Karak et al. 2018; Nelson et al. 2018). Evidence of a chang-
ing structure of convection from a tree-like (decreasing number of downflow plumes with
increasing depth) to a forest-like structure (constant number of plumes) has also been
reported (Käpylä et al. 2017b). In the simulations of Hotta (2017), the extent of the subadi-
abatic region has been reported to encompass at most roughly 40 per cent of the combined
depth of the convection and overshoot zones. In a subsequent study, Karak et al. (2018)
found a similar effect in non-rotating hydrodynamic convection simulations at thermal
Prandtl numbers above unity. However, the effect was significantly weaker in simulations
including rotation. The main difference of the present study compared to that of Karak et
al. (2018) is that we also include setups where overshoot and radiative layers are present,
and investigate cases where dynamo action occurs.

Large-scale dynamos in stellar convective envelopes can also be affected by a suba-
diabatic layer at the base of the convection zone: such a layer can store magnetic flux
(e.g. Browning et al. 2006) and it can possibly contribute to inverting the sign of kinetic
helicity of the flow in the deep parts of the CZ (Duarte et al. 2016). Such inversion is a
possible way out of the “modern dynamo dilemma” that plagues current simulators: the
equatorward migrating dynamo waves are most likely due to a region of negative radial
shear within the CZ (Warnecke et al. 2014), which is not present in the Sun, except for the
near-surface shear layer (NSSL); see Brandenburg (2005). The problem of the observed
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equatorward migration of the sunspot belts is a variation of Parker’s dynamo dilemma
(Parker 1987) where the observed differential rotation profile and theoretically expected
sign of kinetic helicity lead to poleward migration of activity belts (see also Deluca and
Gilman 1986).

In the current studywe present first results from convection-driven dynamo simulations
in spherical wedges where stably stratified layers are present with a setup that is similar to
that of the hydrodynamic Cartesian runs of Käpylä et al. (2017b), where a physics-based
rather than a prescribed formulation for the heat conduction was used.

2. Model

Our simulation setup is similar to that used earlier (Käpylä et al. 2013; Käpylä et al. 2016;
Käpylä et al. 2017a). However, the current models differ in a few key aspects from the
previous studies. We solve the equations of fully compressible magnetohydrodynamics

∂A
∂t

= U × B − ημ0J, (1)

D ln ρ

Dt
= −∇ · U , (2)

DU
Dt

= g − 2Ω0 × U − 1
ρ

(∇p − J × B − ∇ · 2νρS), (3)

T
Ds
Dt

= 1
ρ

[
ημ0J2 − ∇ · (Frad + FSGS) − Γcool

]
+ 2νS2, (4)

where A is the magnetic vector potential, U is the velocity, B = ∇ × A is the magnetic
field, η is the magnetic diffusivity, μ0 is the permeability of vacuum, J = ∇ × B/μ0 is
the current density, D/Dt = ∂/∂t + U · ∇ is the advective time derivative, ρ is the den-
sity, g = −GM�r̂/r2 is the acceleration due to gravity, where G = 6.67 · 10−11 Nm2 kg−2

is the universal gravitational constant and M� = 2.0 · 1030 kg is the solar mass, Ω0 =
(cos θ ,− sin θ , 0)Ω0 is the angular velocity vector, where Ω0 is the rotation rate of the
frame of reference, ν is the kinematic viscosity, p is the pressure and s is the specific entropy
with Ds = cVD ln p − cPD ln ρ, where cV and cP are the specific heats in constant volume
and pressure, respectively. The gas is assumed to obey the ideal gas law, p = RρT, where
R = cP − cV is the gas constant. The rate of strain tensor is given by

Sij = 1
2 (Ui;j + Uj;i) − 1

3δij∇ · U , (5)

where the semicolons refer to covariant derivatives (Mitra et al. 2009). The radiative flux
is given by

Frad = −K∇T, (6)

where K is the heat conductivity, which is allowed to vary in a dynamic and local fashion.
We use two heat conduction schemes, whereK is either a fixed function of heightK = K(r)
or it depends on density and temperatureK = K(ρ,T). In the former case we use the same
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profile as defined in Käpylä et al. (2013). In the latter case K is computed from

K = 16σSBT3

3κρ
, (7)

where σSB is the Stefan-Boltzmann constant and κ is the opacity. The latter is assumed to
obey a power law

κ = κ0(ρ/ρ0)
a(T/T0)

b, (8)

where ρ0 and T0 are reference values of density and temperature. Combining (7) and (8)
gives (Barekat and Brandenburg 2014)

K(ρ,T) = K0(ρ/ρ0)
−(a+1)(T/T0)

3−b. (9)

In the current study we use the combination a=1 and b = −7/2, which corresponds to
the Kramers opacity law for free-free and bound-free transitions (Weiss et al. 2004). This
scheme has been used both in Cartesian (Brandenburg et al. 2000; Käpylä et al. 2017b) and
in spherical wedge (Käpylä et al. 2019) simulations of convection.

The subgrid scale (SGS) flux is given by

FSGS = −χSGSρT∇s′, (10)

where χSGS is the (constant) SGS diffusion coefficient for the entropy fluctuation
s′(r, θ ,φ) = s − 〈s〉θφ , where 〈s〉θφ is the horizontally averaged or spherically symmetric
part of the specific entropy.

The last term on the right-hand side of (4) models the cooling near the surface of the
star:

Γcool = −Γ0f (r)(Tcool − 〈T〉θφ), (11)

where Γ0 is a cooling luminosity, 〈T〉θφ is the horizontally averaged temperature and
Tcool = Tcool(r) is a radius-dependent cooling temperature coincidingwith the initial isen-
tropic stratification. In our previous studies (Käpylä et al. 2010, 2011b) we cooled the
near-surface layers towards an isothermal state. The main effect of the changed cooling
profile is that no strongly subadiabatic isothermal layer forms near the surface.

The simulationswere performedusing the Pencil Code1. The code employs a high-order
finite difference method for solving the compressible equations of MHD.

2.1. System parameters and diagnostics quantities

The wedges used in the current simulations span rin < r < R� in radius, where
rin = 0.7R� and R� = 7 · 108 m is the solar radius, θ0 < θ < 180◦ − θ0 in colatitude,
where θ0 = 15◦, and 0 < φ < 90◦ in longitude. Our simulations are defined by the
energy flux imposed at the bottom boundary, Fb = −(K∂T/∂r)|r=rin , the values of
K0, a, b, ρ0,T0,Ω0, ν, η,χSGS, and the fixed profile ofK in cases where the Kramers opacity
law is not used. Furthermore, the radial profile of f (r) is piecewise constant with f (r) = 0 in

1 https://github.com/pencil-code/
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rin < r < 0.98R�, and smoothly connecting to f (r) = 1 above r = 0.98R�. We use a sig-
nificantly higher luminosity and thus a higherMach number than what is estimated for the
Sun to avoid the time step being too severely limited by sound waves. This also necessitates
a correspondingly higher rotation rate to capture the same rotational influence on the flow
in the simulations in comparison to the Sun; see appendix A of Käpylä et al. (2018a) for a
thorough description of this procedure. This study also indicates that the results depend
only weakly on the Mach number. The ratio Lratio = L0/L�, where L0 is the luminosity
in the simulations and L� = 3.83 · 1026 W is the corresponding solar value, quantifies the
luminosity. The non-dimensional luminosity is given by

L = L0
ρ0(GM�)3/2R1/2�

. (12)

The initial stratification is determined by the non-dimensional pressure scale height at the
surface

ξ0 = RT1

GM�/R�
, (13)

where T1 is the temperature at the surface (r = R�).
The relations between viscosity, magnetic diffusivity and SGS diffusion are given by the

Prandtl numbers

PrSGS = ν
/
χSGS, Pm = ν

/
η. (14)

We use PrSGS = Pm = 1 in all of our runs. The Prandtl number is related to the radiative
conductivity,

Pr = ν
/
χ , (15)

where χ = K/cPρ is the radiative diffusivity, which varies as a function of radius, latitude
and time. The efficiency of convection is quantified by the Rayleigh number

Ra = GM�(�r)4

νχSGSR2�

(
− 1
cP

dshs
dr

)
rm

, (16)

where �r = 0.3R� is the depth of the layer, shs is the entropy in a one-dimensional non-
convecting hydrostatic model, evaluated at the middle of the domain at rm = 0.85R�. We
note that in the cases with a Kramers-based heat conduction prescription, only a very
thin surface layer is convectively unstable (see, e.g. figure 7 of Brandenburg 2016), such
that Ra < 0 at r = rm. We additionally quote the Nusselt number, which describes the
efficiency of convection in comparison to radiative diffusion (e.g. Hurlburt et al. 1984;
Brandenburg 2016):

Nu = ∇rad
/∇ad, (17)

just below the cooling layer at r = 0.98R�, where

∇rad = R
Kg

Ftot and ∇ad = 1 − 1
γ
, (18)

are the radiative and adiabatic temperature gradients, g = |g|, Ftot = L0/(4πr2) and γ =
cP/cV. For runs with a fixed K, Nu remains constant throughout the duration of the sim-
ulation whereas in the cases with Kramers conductivity the saturated value, Nusat differs
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from the initial value Nu. The effect of rotation is controlled by the Taylor number

Ta = (2Ω0�r2/ν2)2. (19)

The fluid and magnetic Reynolds numbers are

Re = urms

νk1
and ReM = urms

ηk1
, (20)

respectively, where urms =
√

3
2 (U

2
r + U2

θ ) is the volume averaged rms velocity andU2
φ has

been replaced by (U2
r + U2

θ )/2 to avoid contributions from differential rotation (cf. Käpylä
et al. 2011b). The inverse of the basic wavenumber k1 = 2π/�r ≈ 21/R� is used to
characterise the radial extent of convection cells.

The rotational influence on the flow is quantified by the Coriolis number

Co = 2Ω0

urmsk1
. (21)

Mean quantities refer either to azimuthal (denoted by an overbar) or horizontal averages
(denoted by angle brackets with subscript θφ). Additional time averaging is also performed
unless stated otherwise.

2.2. Initial and boundary conditions

The initial stratification is polytropic with index n=1.5 corresponding to an isentropic
stratification.We use ξ0 = 0.01, which results in an initial density contrast of roughly 77. In
cases with a fixed heat conductivity profile, the value of K at r = rin is set such that the flux
through the lower boundary is L0/4πr2in. The luminosity L0 is based on the total horizontal
area of the star, although the simulations cover only a fraction of the full 4π area. The flux at
the outer radius, however, is initially much lower and the convective instability arises from
the fact that the system is not in thermodynamic equilibrium driven by the efficient surface
cooling (see e.g. Käpylä et al. 2013). In the cases with Kramers heat conductivity, the value
of K at the bottom of the domain is varied by changing the value of K0 in (9) to probe the
influence it has on the depth of the convection zone. In the fiducial case, a nominal value
Knom
0 is chosen such that Frad = Ftot at the bottom of the domain. We probe a set of runs

where the value of K̃0 = K0/Knom
0 is increased. These runs correspond to more efficient

radiative diffusion for a given thermal stratification. The expectation is that an increasing
value of K̃0 leads to the formation of a stably stratified radiative layer at the bottom of the
domain.

The radial and latitudinal boundaries are assumed impenetrable and stress-free for the
flow. On the bottom boundary, a fixed heat flux is prescribed and the temperature is fixed
on the outer boundary. On the latitudinal boundaries, the gradients of thermodynamic
quantities are set to zero; see Käpylä et al. (2013). For the magnetic field we apply a vertical
field condition at the upper, and a perfect conductor condition at the lower boundary. On
the latitudinal boundaries the field is assumed to be tangential to the boundary. These
conditions are given by:

∂Ar

∂r
= 0,

∂2Aθ

∂r2
= −2

r
∂Aθ

∂r
,

∂2Aφ

∂r2
= −2

r
∂Aφ

∂r
(r = rin), (22)
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Ar = 0,
∂Aθ

∂r
= −Aθ

r
,

∂Aφ

∂r
= −Aφ

r
(r = R�), (23)

Ar = ∂Aθ

∂θ
= Aφ = 0. (θ = θ0,π − θ0). (24)

Equation (22) differs from previously used conditions (see, e.g. equation (10) of Käpylä et
al. 2013), where instead the tangential electric fieldwas assumed to vanish on the boundary.
We show in Käpylä et al. (2018a) that the differences between the current boundary condi-
tions and those used in Käpylä et al. (2013) are minor. The azimuthal direction is periodic
for all quantities. The velocity and magnetic fields are initialised with random Gaussian
noise fluctuations with amplitudes on the order of 0.1m s−1 and 0.1 Gauss, respectively.

3. Results

Weperform three sets of simulations denoted asHD, RHDandMHD. In SetHD,wemodel
non-rotating convection, where K̃0 is varied to control the depth of the convection zone.
The effect of increasing K̃0 is to make radiative diffusionmore efficient. This is particularly
important in the deep parts of the domain where the temperature is high due to the strong
temperature dependency of the heat conduction (K ∝ T6.5, see (9)). Thus the expectation
is that with higher values of K̃0, a radiative layer develops at the bottom of the domain.
In the RHD runs, we take the HD runs and add rotation with Ω0 = 3Ω�, where Ω� =
2.7 · 10−6 s−1 is the mean solar rotation rate. In the MHD set, magnetic fields are added
to the RHD setup to study the effects of stably stratified layers on the dynamo. Each set
consists of four runs, denoted by a suffix running from 1 to 4, where the value of K0 is
systematically increased. A run with a fixed profile of K, denoted by a suffix “p”, is used as
a reference in each set with the same variation of physical ingredients. The runs are listed
in table 1.

Table 1. Summary of the runs.

Run Ra [107] Nu Nusat Re Co rBZ rDZ rOZ dBZ dDZ dOZ �t [yr] K K̃0

HDp 3.0 156 156 36 (36) – (0.76 0.70 0.70 0.24 0.06 0.00) 35 profile –
HD1 – 3167 2599 34 (33) – (0.76 0.71 0.70 0.24 0.06 0.01) 10 Kramers 1.0
HD2 – 1843 1524 31 (29) – (0.79 0.73 0.70 0.21 0.07 0.03) 10 Kramers 1.7
HD3 – 972 786 28 (25) – 0.82 0.77 0.71 0.18 0.06 0.06 12 Kramers 3.2
HD4 – 590 440 26 (22) – 0.85 0.80 0.73 0.15 0.05 0.07 11 Kramers 5.4
RHDp 3.0 156 156 27 (27) 4.6 (4.6) (0.75 0.70 0.70 0.25 0.05 0.00) 49 profile –
RHD1 – 3167 3034 30 (30) 4.1 (4.1) (0.75 0.70 0.70 0.25 0.05 0.00) 29 Kramers 1.0
RHD2 – 1843 1772 28 (26) 4.3 (3.5) (0.78 0.74 0.71 0.22 0.04 0.03) 27 Kramers 1.7
RHD3 – 972 882 25 (22) 4.8 (3.0) 0.79 0.78 0.72 0.21 0.01 0.06 29 Kramers 3.2
RHD4 – 590 479 23 (19) 5.3 (2.5) 0.82 0.81 0.76 0.18 0.01 0.05 22 Kramers 5.4
MHDp 3.0 156 156 27 (27) 4.5 (4.5) (0.76 0.70 0.70 0.24 0.06 0.00) 44 profile –
MHD1 – 3167 3004 30 (30) 4.1 (4.1) (0.76 0.70 0.70 0.24 0.06 0.00) 63 Kramers 1.0
MHD2 – 1843 1743 27 (25) 4.5 (3.6) (0.78 0.74 0.71 0.22 0.05 0.03) 74 Kramers 1.7
MHD3 – 972 868 23 (20) 5.3 (3.2) 0.80 0.78 0.72 0.20 0.02 0.06 64 Kramers 3.2
MHD4 – 590 473 21 (18) 5.8 (2.7) 0.82 0.81 0.77 0.18 0.01 0.04 72 Kramers 5.4

Note: All runs have Lratio = 2.1 · 105,Ω0 = 3Ω� , PrSGS = PrM = 1, ν = 1.46 · 108 m2 s−1, Ta = 2.33 · 107, ξ0 = 0.01 and
grid resolution 144 × 288 × 144. The values of rBZ, rDZ, rOZ, dBZ, dDZ and dOZ for Runs RHDp, RHD1, RHD2, MHDp, MHD1
and MHD2, where strong latitudinal variations are seen, are listed in parentheses to indicate uncertainty. The value of Nu
refers to the initial state and Nusat to the saturated convective state, both computed from (17). The values in brackets
for Re and Co are calculated taking the volume averaged urms from the revised convection zone (rDZ < r < R�) using
k1 = 2π/(R� − rDZ) as the wavenumber.
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Figure 1. Streamlines of the total velocity and contours of vertical velocity at the periphery in snapshots
of RunsHD2 (left), RHD2 (middle) andMHD2 (right). The colour-coding of both is indicated at the bottom
of each panel. The horizontal cuts from left to right are shown from depths r/R� = 0.78, 0.85, 0.92 and
0.99. Animated visualisations of Runs HD2 and RHD2 are available in the online material (colour online).

The value of Ω0 in the rotating simulations is chosen such that a solar-like differential
rotation is obtained. The current setups with a Kramers-based heat conduction still tend to
produce anti-solar differential rotation at solar luminosity and rotation rate. Visualisations
of the flow fields realised in representative hydrodynamic runs without (HD2) and with
rotation (RHD2), and a correspondingMHD run (MHD2) are shown in figure 1. The non-
rotating cases qualitatively resemble mixing length ideas in that the horizontal scale of the
convective eddies increases as a function of depth. The rotating cases are dominated by
banana cells (e.g. Busse 1970; Gilman and Miller 1986) in the equatorial regions and by
small-scale convection at high latitudes, and this carries over also to the magnetic cases.
The flow structure in the current MHD runs is typically very similar to the corresponding
RHD runs. The convective scales show significantly less variation in depth in comparison
to non-rotating convection.

3.1. Convective energy transport and structure of the convection zone

In an earlier study, Käpylä et al. (2017b) found that a stably stratified layer, where the
enthalpy flux is nevertheless directed outward, develops at the bottom of the convection
zone if a smoothly varying profile for the heat conduction is used. Furthermore, when the
Kramers opacity law is applied, the depth of the convection zone is a result of the simu-
lation rather than a priori fixed. Here we extend these studies to more realistic spherical
geometry and take into account global rotation and dynamo-generated magnetic fields.

We begin by inspecting horizontally averaged diagnostic quantities from our simula-
tions. The profiles of 〈K〉θφ from the HD set in the initial and thermally saturated states
are shown in figure 2(a). The mean K-profiles in Runs HD1 and HD2 remain almost unaf-
fected in the thermally relaxed regime. In Runs HD3 and HD4, the lower parts of the



GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 157

Figure 2. (a) Profiles of the initial (solid lines) and saturated (dashed) mean heat conductivity profiles
K̃ = 〈K〉θφ/Knom0 . (b) Same as (a) but for sets RHD (solid lines) andMHD (dashed lines) from the saturated
states (colour online).

domain (r � 0.73R� and r � 0.76R�, respectively), where 〈K〉θφ is the largest, become
convectively stable and a lower temperature gradient is sufficient to carry the luminos-
ity through these layers. In the RHD and MHD runs the temperature gradient is steeper
throughout and the values of 〈K〉θφ are reduced overall; see figure 2(b). Furthermore, the
MHD runs differ only marginally from their RHD counterparts. This suggests a relatively
weak influence of magnetic fields in the current simulations. However, we note that the
magnetic Reynolds number in the current simulations is relatively moderate and clearly
below the excitation threshold for small-scale dynamo action.

The horizontally and temporally averaged superadiabatic temperature gradient ∇ −
∇ad is shown for all of our runs in figure 3(a,b). We find that in Runs HDp and HD1,
as well as their rotating and MHD counterparts, ∇ − ∇ad is close to zero in the bulk of
the domain, with a mildly subadiabatic layer near the base. Furthermore, with increasing
K0, a gradually deeper subadiabatic layer forms in the lowermost parts of the domain. The
values of ∇ − ∇ad in the “3 ” and “4” runs of all sets are on the order of −0.19 . . . − 0.16.
This is close to that of the hydrostatic case which approaches a polytropic state with index
n=3.25 (Barekat and Brandenburg 2014). Panel (c) of figure 3 shows the superadiabatic
temperature gradient from a standard solar model produced with the Yale Rotating Stellar
Evolution Code (YREC) (Demarque et al. 2008; Spada et al. 2017). The minimum values
of ∇ − ∇ad in the radiative layer in this model and our simulations are comparable and
about −0.2.

The enthalpy flux is defined as

Fenthi = cP(ρui)′T′, (25)

where the primes denote fluctuation from the azimuthal mean denoted by an overbar. We
use the same nomenclature as in Käpylä et al. (2017b) to distinguish the different layers in
the domain (see also Brandenburg et al. 2000; Tremblay et al. 2015). This entails classifying
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Figure 3. (a) Profiles of the superadiabatic temperature gradient ∇ − ∇ad from non-rotating HD runs.
(b) Same as (a) but for sets RHD (solid lines) and MHD (dashed). Panel (c) shows ∇ − ∇ad from a stan-
dard solar model in the range r/R� = 0.2 . . . 0.99. The blue (red) curve corresponds to the radiative
(convection) zone with the interface marked by the dotted vertical line at r/R� = 0.716 (colour online).

Table 2. Classification of zones.

Quantity/zone Buoyancy (BZ) Deardorff (DZ) Overshoot (OZ) Radiation (RZ)

F
enth
r > 0 > 0 < 0 ≈ 0

∇rs < 0 > 0 > 0 > 0

the layers by the signs of the radial enthalpy flux Fenthr and the radial gradient of entropy,
∇rs = ∂s/∂r, see table 2. The bottom of the buoyancy zone (BZ) is where∇rs changes from
negative to positive, whereas the bottom of the Deardorff zone (DZ) is where Fenthr changes
from positive to negative; see Brandenburg (2016) for an explanation of a non-gradient
contribution to Fenthr by Deardorff (1966). Finally, the bottom of the overshoot zone (OZ)
is where the |Fenthr | falls below a threshold value, here chosen to be 2.5 per cent of the total
flux corresponding to luminosity L0. In the commonly accepted view, the convection zone
consists of the Schwarzschild-unstable layer without Deardorff zone (e.g. Zahn 1991). This
coincides with the predictions from standard mixing length theory (e.g. Vitense 1953). In
our revised view, the convection zone (CZ) is considered to encompass both the BZ and
the DZ.

We show the time-averaged luminosity of the radial enthalpy flux, Lenthr = 4πr2Fenthr

and the direction of vectorial enthalpy flux,Fenth = (Fenthr , Fenthθ , 0) in themeridional plane
for a selection of runs in figure 4. In the non-rotating, hydrodynamic runHD1, the enthalpy
flux is directed radially outward and approximately uniformly distributed in latitude with
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Figure 4. Colour contours: time-averaged luminosity of the radial enthalpy flux normalised by the total
luminosity from non-rotating, hydrodynamic runs HDp, HD1 and HD4 (top row), rotating runs RHDp,
RHD1 and RHD4 (middle row) and dynamo runs MHDp, MHD1, and MHD4 (lower row). The arrows indi-

cate themagnitudeanddirectionof thevectorial enthalpyflux,Fenth = (F
enth
r , F

enth
θ , 0) in themeridional

plane. The black and white solid, dashed and dash-dotted lines indicate the bottoms of the buoyancy,
Deardorff and overshoot zones, respectively. The thin blue lines indicate latitudes 15◦, 30◦, 45◦ and 60◦
(colour online).



160 P. J. KÄPYLÄ ET AL.

the exception of regions in the immediate vicinity of the latitudinal boundaries where the
enthalpy flux is enhanced. The differences between Runs HDp and HD1 are very minor
in that both develop a DZ, covering roughly 20 per cent of the depth of the domain, at the
base of theCZ.No appreciable overshoot region develops in either run. This is unsurprising
because the heat conductivity in these models is chosen such that it just delivers the input
flux through the lower boundary and decreases rapidly in the upper layers, necessitating
convection to transport some fraction of the energy there. Increasing the value of K̃0 (from
RunsHD2 toHD4) enhances the radiative diffusion – in particular in the deep parts where
the temperature is high. This leads gradually to the formation of a radiative zone (RZ) at
the base of the domain; see figure 4(c). In the non-rotating case it is meaningful to average
over latitude and to obtain estimates of the depths of the different layers. These are listed
as dBZ, dDZ and dOZ in table 1. We note that only in Runs HD3 and HD4 the domain is
deep enough to allow the formation of an RZ and that the depths of the DZ and/or OZ
are thus underestimated for Runs HDp, HD1, and HD2. A similar argument applies to the
runs presented by Bekki et al. (2017) and Karak et al. (2018). In Runs HD3 and HD4, the
subadiabatic butmixed layers (DZ andOZ) cover 38 and 44 per cent of the total depth of the
mixed zone. This is in good agreement with the results from local simulations (e.g. Käpylä
et al. 2017b; Hotta 2017).

This picture is radically altered in the rotating cases; see the middle and lower pan-
els of figure 4. The most prominent new feature is the strong latitude dependence of the
radial enthalpy flux: the energy transport is strongly concentrated towards high latitudes
and near the equator. Comparing figures 4(d–f) and 4(g–i) shows that the qualitative dif-
ferences between the RHD and MHD runs are small. This is also the case for most other
diagnostics and thus we will mostly discuss the MHD cases in what follows. A major dif-
ference between RunsMHDp andMHD1 is that in the former, the enthalpy flux is roughly
equally efficient at high and low latitudes (Θ � 55◦ and Θ � 30◦, where Θ = 90◦ − θ

is the latitude), whereas in the latter the high latitude flux is suppressed. Another differ-
ence is that in Run MHDp the Deardorff layer at mid-latitudes (20◦ � Θ � 35◦) covers
almost the entire depth of the domain whereas in Run MHD1 the latitude variation is
less extreme although still substantial; see the solid black and white lines in figure 4(g)
and (h). Near the equator (Θ � 10◦), the Deardorff layer is either very thin (MHDp) or
missing completely (MHD1). A possible explanation to the very deep mid-latitude Dear-
dorff layer in Run MHDp is that the current simulations are only moderately supercritical
in terms of the Rayleigh number and that convection is dominated by polar and equa-
torial modes in such parameter regimes (e.g. Gilman 1977). This is exacerbated by the
rigid combination of a fixed heat conductivity profile and a constant temperature bound-
ary condition applied at the radial top boundary. The reason why the Deardorff zone
is significantly shallower in Run MHD1 is because, unlike in Run MHDp with a fixed
K-profile, the heat conductivity adapts in response to changes in the thermal structure.
Convectively stable mid-latitudes have been reported from similar simulation setups with
fixed K-profile and surface temperature by Käpylä et al. (2011b). However, in cases where,
for example, a black body radiation condition is applied at the surface, the mid-latitudes
remain convectively unstable and allow for significant latitudinal variation of the surface
temperature (Warnecke et al. 2016; Käpylä et al. 2018a). This is likely due to the enhanced
luminosity used in the current simulations. We also note that in the rotating cases the
heat flux is mostly radial near the equator, but more inclined with the rotation vector at
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Figure 5. Horizontally averaged rms velocity urms from the runs in the MHD set (colour online).

high latitudes. This is a manifestation of latitudinal turbulent heat flux, which is often
invoked to break the Taylor–Proudman balance in the Sun (e.g. Brandenburg et al. 1992;
Kitchatinov and Rüdiger 1995). A poleward enthalpy flux has been reported in numerous
earlier studies (e.g. Pulkkinen et al. 1993; Rüdiger et al. 2005; Käpylä et al. 2011b; Brun
et al. 2017).

The strong latitudinal variation of the depths of the various layers render latitudinal
averaging of rBZ, rDZ and rOZ useless in these cases. In runs where an RZ develops ( “3 ” and
“4” runs in each set), the latitudinal variation of the depths of the different zones and of the
enthalpy flux are significantly weaker, see figure 4(f) and (i). However, for completeness,
we list the latitudinally averaged coordinates of the bottoms of BZ, DZ and OZ and the
depths of the corresponding layers for all runs in table 1. The values for runs RHDp, RHD1,
RHD2, MHDp, MHD1 and MHD2, where strong latitudinal variations are seen, are listed
in parentheses and should be considered as uncertain. We found that the DZ diminishes
substantially in Runs MHD3 and MHD4 in comparison to the non-rotating case HD3
and HD4, whereas the depth of the OZ is influenced less. It is also noteworthy that in the
rotating Kramers-based Runs RHD1 and MHD1, the overall velocities, measured by the
Reynolds numbers, are higher than in the fixed profile runs RHDp and MHDp; see the
fifth column of table 1.

Figure 5 shows the temporally and horizontally averaged rms velocity from the runs in
theMHDsetwith the same definition of urms as used in (20). The velocities near the surface
are not much affected by the appearance of a radiative layer in the deep parts. A significant
decrease of urms in the latter occurs only for the “3 ” and “4” runs in each set of simula-
tions. In such cases the definitions of the Reynolds and Coriolis numbers in equations (20)
and (21), respectively, become inaccurate. We thus provide these diagnostics computed
using the rms velocity and the depth of the revised convection zone rDZ < r < R� in
brackets in the fifth and sixth columns of table 1.

Our earlier Cartesian study indicated that the downflows are mostly responsible for
the enthalpy flux in non-rotating overshooting convection (cf. figure 2(c) of Käpylä et
al. 2017b). However, convective flows produce also a substantial (but downward) kinetic
energy flux

Fkin = 1
2ρu

2ur, (26)
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where u = U − U . Thus the total convected flux

Fconv = Fenth + Fkin, (27)

can be substantially different from the enthalpy flux. This is particularly true for the down-
flows, where the signs of the enthalpy and kinetic energy fluxes are opposite (cf. figure 1
of Käpylä et al. 2017b). An early study (Cattaneo et al. 1991) suggested that the two contri-
butions nearly cancel for the downflows. However, later studies of Chan and Gigas (1992)
and Brummell et al. (2002) confirmed that partial cancellation occurs, but that the down-
flows still contribute approximately equally much as the upflows to the total energy
transport. The main difference between the study of Cattaneo et al. (1991) and those of
Chan and Gigas (1992) and Brummell et al. (2002) is that the latter include a stably strati-
fied overshoot layer below the CZ, whereas in the former the whole domain is convectively
unstable.

We study the detailed flux dynamics by separating the convective flux into kinetic and
enthalpy fluxes from up- and downflows and represent them in terms of the corresponding
luminosities:

〈Lconv〉θφ = 〈Lenth〉θφ + 〈Lkin〉θφ , (28)

〈Lenth〉θφ = 〈L↑
enth〉θφ + 〈L↓

enth〉θφ , (29)

〈Lkin〉θφ = 〈L↑
kin〉θφ + 〈L↓

kin〉θφ . (30)

Here↑ and↓ refer to contributions from up- and downflows, respectively and Li = 4πr2Fi
are the corresponding luminosities. Representative results are shown in figure 6 from
RunsHDp,HD4,MHD1andMHD4.Wefind that both 〈L↓

enth〉θφ and 〈L↓
kin〉θφ are large and

of opposite sign, leading to a net positive 〈L↓
conv〉θφ that is much smaller than either of its

constituents. However, 〈L↓
conv〉θφ contributes equally, ormore, than the upflows (〈L↑

conv〉θφ)
to the total convected flux (〈Lconv〉θφ) in all cases. This agrees with the Cartesian sim-
ulations of Chan and Gigas (1992), Brummell et al. (2002) and Käpylä et al. (2017b).
No qualitative difference is seen between setups without and with stably stratified over-
shoot and radiative layers. These results are contrasted with those of Korre et al. (2017)
from Boussinesq convection, where the upflows contribute only to downward transport of
thermal energy.

3.2. Force balance

Recently, Käpylä et al. (2017b) and Hotta (2017) studied the force balance on up- and
downflows in non-rotating Cartesian convection. A remarkable result from these studies
is that the downflows appear to feel the Schwarzschild criterion, such that they are accel-
erated in unstable and decelerated in stable regions, while the upflows do not appear to do
so. Here we study whether this result holds also in astrophysically more realistic setups that
include rotation and magnetic fields in spherical coordinates.
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Figure 6. Convective (thick solid), enthalpy (dashed) andkinetic energy (dash-dotted) fluxes for upflows
(red) and downflows (blue) from Runs HDp, HD4, MHD1 and MHD4 (colour online).

We study this by measuring the total force on the fluid

Fr = ρ
Dur
Dt

, (31)

separately for the up- and downflows which are denoted by ↑ and ↓, respectively. A posi-
tive (negative) force accelerates upflows (downflows). Representative results are shown in
figure 7 for the same set of runs as in figure 6. Comparing the thick black and white and
cyan curves in figure 7(a) and (e), it is seen that for RunHDp, the sign change ofF ↓

r occurs
roughly at the same average position as that of the radial entropy gradient (solid line black
and white line). This appears to be the case also for F ↑

r at high latitudes and near the
equator, whereas at mid-latitudes, F ↑

r is positive until roughly r ≈ 0.85R�. These results
indicate that the downflows are accelerated in the Schwarzschild-unstable layer whereas
the upflows accelerate mainly in the Schwarzschild-stable layer. This is clearly deviating
from the behaviour of the Cartesian simulations with proper OZ and RZ, see Käpylä et
al. (2017b) and Hotta (2017). However, as seen in figure 7(b) and (f) for Run HD4, the
results of the Cartesian simulations are again restored: the downflows appear to adhere to
the Schwarzschild criterion, while the upflows are accelerated in the stably stratified OZ,
in the DZ, and in the lower part of the BZ.

The situation is significantly more complex in runs where rotation and magnetic fields
are included. This is particularly clear in cases where the stably stratified layers are absent
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Figure 7. Total azimuthally averaged radial forceF r = ρDur/Dt on theupflows (upper row) anddown-
flows (lower) for RunsHDp,HD4,MHD1andMHD4. The thick cyan line indicates the zero level of the force.
Theblack andwhite solid, dashed anddash-dotted lines indicate the bottomsof the buoyancy, Deardorff
and overshoot zones, respectively (colour online).

or very thin. This is seen, for example, in Run MHD1 in figure 7(c) and (g): at high lati-
tudes, the upflows are accelerated everywhere except in a thin layer (r � 0.95R�) near the
surface, whereas the downflows are accelerated roughly above r � 0.8R�. The upflows are,
however, driven upward also in the stably stratified OZ and DZ. No clear relation to the
Schwarzschild criterion can be identified. At mid-latitudes around the tangent cylinder,
the total force is downward for both, up- and downflows. Outside the tangent cylinder,
the force is very roughly following a radially decreasing trend as a function of cylindri-
cal radius. For runs with more substantial OZ, such as MHD4 in figure 7(d) and (h),
the latitudinal variation is clearly weaker. The force on the upflows does not follow the
Schwarzschild criterion in the deep parts in that the upflows are accelerated in the BZ as
well as in the stably stratified DZ and OZ. The layer near the surface, where deceleration
of the upflows occurs, is deeper near the equator also in these cases. The downflows, on
the other hand, are decelerated in the lower part of the BZ well above the level where the
Schwarzschild criterion indicates stability.

Although a detailed interpretation of the results is non-trivial, we can conclude that the
presence of a substantial OZ has a significant influence on the large-scale dynamics of the
system. Whether this is also the case in the Sun depends on the extent of overshooting
at the base of the solar CZ. The recent results of Hotta (2017), who used Cartesian simu-
lations to conclude that convective overshooting below the CZ of the Sun is only 0.4 per
cent of the local pressure scale height or 250 km, were used to argue that the interface
between RZ and CZ could be well modelled by imposing suitable boundary conditions.
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However, these results are at odds with earlier models (e.g. van Ballegooijen 1982; Schmitt
et al. 1984; Pidatella and Stix 1986) and helioseismic constraints (e.g. Basu 2016), which
suggest an overshooting depth of the order of 0.05–0.1Hp or 2500–5000 km. Furthermore,
global rotation also changes the behaviour of the system qualitatively. The current study
explores only a single rotation rate, leading to a rotationally constrained flow, at a modest
supercriticality of convection. Studying the effects of rotation and higher Rayleigh numbers
in more detail will be presented elsewhere.

3.3. Differential rotation

Some mean-field models of solar differential rotation (Rempel 2005) have invoked a sub-
adiabatic lower part of the CZ to break the Taylor–Proudman constraint which, in turn,
manifests itself through cylindrical isocontours of constant angular velocity. Given the sub-
adiabatic layers in the current simulations, it is of interest to study the rotation profiles
in comparison to earlier studies. We show in figure 8 the time-averaged rotation profiles
from theMHD runs along with a hydrodynamic run, RHD2. The rotation rate is here cho-
sen to be Ω0 = 3Ω� in order to reach a parameter regime where solar-like (fast equator,
slow poles) differential rotation appears. Corresponding simulations with the solar rota-
tion rate would lead to anti-solar differential rotation (e.g. Käpylä et al. 2014). Obtaining
solar-like differential rotation with Ω0 = Ω� is challenging and can be achieved only if
the radiative diffusion is unrealistically large (e.g. Fan and Fang 2014; Käpylä et al. 2014;
Hotta et al. 2016) or the luminosity is artificially reduced (e.g. Hotta et al. 2015); see
also the discussion in Appendix A of Käpylä et al. (2017a). Both approaches reduce the
convective velocities and lead to a higher (lower) Coriolis (Rossby) number. To reach a
solar-like regime, Co > 1 (Ro < 1) is needed (Käpylä et al. 2011a; Gastine et al. 2014;
Brun et al. 2017; Viviani et al. 2018). The Coriolis numbers achieved in the present study
(2.5 � Co � 4.6, see table 1) compare well with, for example, those of Nelson et al. (2013)
who also used Ω0 = 3Ω� (see Appendix A of Käpylä et al. 2017a).

We find that the isocontours ofΩ = Ω0 + Uφ/r sin θ are significantly tilted even in the
run with a fixed heat conduction profile (MHDp). Furthermore, a mid-latitude minimum
is visible, but it is shallower, and occupies a wider latitude range than in previous simu-
lations with similar rotation rates (see, e.g. figure 4 of Augustson et al. 2015 and figure 1
of Warnecke 2018). The mid-latitude minimum is most likely responsible for the equa-
torward migrating activity seen in the aforementioned studies (Warnecke et al. 2014). A
small NSSL, confined at low latitudes is also visible in the current runs; see figure 9. The
most likely reason for its appearance is that the density stratification in the current runs is
higher (�ρ ≈ 60) than in earlier studies with otherwise similar parameters (e.g. Käpylä
et al. 2012, 2017a; Warnecke et al. 2014) where �ρ ≈ 20. This has also been found in
recent simulations of Matilsky et al. (2018). In theory, this allows the development of a
NSSL, where the rotational influence on the flow is weak, quantified by Co < 1 (Rüdi-
ger et al. 2014). In such a parameter regime, the non-diffusive Reynolds stress, or �

effect, responsible for the generation of differential rotation (e.g. Rüdiger 1989) reduces
to a single term (e.g. Käpylä 2019) that drives a latitude-independent radial shear, as
in Barekat et al. (2014) and Kitchatinov (2016). However, the current numerical results
seem to confirm the results of Robinson and Chan (2001) in that extreme density strat-
ification (Hotta et al. 2015) is not required for the appearance of a NSSL. However,
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Figure 8. Time-averaged rotation profiles from the runs in the MHD set. The lower right panel shows
Run RHD2 for comparison. The white solid, dashed and dash-dotted lines indicate the bottoms of the
BZ, DZ and OZ, respectively (colour online).

Figure 9. Themean angular velocity at the equator as a function of radius from the runs in the MHD set
(colour online).
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the detailed reproduction of, e.g. the solar NSSL does require high stratification and
resolution to capture the small-scale surface convection and the shorter time scales near the
surface.

In RunsMHD1 andMHD2, the rotation profile is qualitatively similar to that inMHDp.
The clearest difference is the enhanced radial gradient of Ω near the surface at low lati-
tudes. Also, the region of negative radial shear in mid-latitudes is enhanced – especially
in the Deardorff layer in Run MHD2 (see the dashed and solid white lines in figure 8). In
the remaining runs (MHD3 and MHD4), the layer of negative radial shear is even more
pronounced, but appears predominantly within the BZ. It is also apparent that the differ-
ential rotation creeps into the radiative interior due to the relatively high diffusivities used
in the current simulations. The local minimum of Ω at mid-latitudes, coinciding with the
location of the tangent cylinder of the BZ to DZ transition near the equator, becomes more
pronounced in Runs MHD3 and MHD4.

We show the rotation profile of a hydrodynamic run RHD2 in figure 8(f). The differ-
ences to the corresponding MHD run (MHD2) are most clearly visible at high latitudes,
where the angular velocity is clearly reduced in the MHD run. Furthermore, the mid-
latitude minimum of Ω is somewhat shallower in the MHD case. A similar trend is found
in all runs in the RHD andMHD sets; see figure 10 for a comparison of Ω at r = 0.95R�.
The relatively weak influence of magnetic fields on differential rotation appears to differ
from the results of Käpylä et al. (2017a), who found a strong quenching of mean flows in
high resolution simulations. However, at comparable magnetic Reynolds numbers, as in
the current simulations (roughly 30), the results of Käpylä et al. (2017a) also indicate only
weak quenching; see their figure 2 and table 2.

The rotation profiles of Runs MHDp and MHD1 in particular clearly deviate from the
Taylor–Proudman balance. To study this, we consider the mean vorticity equation:

∂

∂t
(∇ × U)φ = r sin θ

∂Ω
2

∂z
+ (∇T × ∇s)φ + · · · , (32)

Figure 10. Mean angular velocity Ω from r = 0.95R� from all runs in Sets RHD (solid lines) and MHD
(dashed) (colour online).
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where ∂/∂z = cos θ∂/∂r − r−1 sin θ∂/∂θ is the derivative along the rotation axis, and the
dots indicate terms due to Reynolds stress and molecular viscosity. We find that the first
and second terms of the right-hand side, corresponding to the Coriolis force and the baro-
clinic effect, respectively, balance each other at all latitudes in Runs MHDp and MHD1;
figures 11(a)–(b) and (d)–(e). The extended DZ of MHDp does not appear to lead to a sig-
nificant enhancement of the baroclinic effect. In RunMHD4, the balance between Coriolis
and baroclinic terms is realised only at low latitudes −30◦ � Θ � 30◦. Furthermore, the
magnitudes of both terms are clearly reduced in comparison to Runs MHDp and MHD1.
This is likely to explain the more cylindrical isocontours of Ω in this run.

In a recent study, Käpylä et al. (2018a) showed that the large-scale properties of flows
in hydrodynamic convection simulations, with the same model as here, are sensitive to
changes in the thermal boundary conditions and the treatment of the unresolved pho-
tospheric layers. In particular, the setup used in the present study, with cooling near the
surface and an isothermal top boundary condition, leads to larger deviations from the

Figure 11. Dominant terms in the equation of mean azimuthal vorticity: Coriolis force r sin θ∂Ω
2
/∂z

(upper row) and the baroclinic term (∇T × ∇s)φ (lower row) in units ofΩ2
0 for Runs MHDp (left panel),

MHD1 (middle) andMHD4 (right). The cyan line indicates the zero level whereas the white solid, dashed
and dash-dotted lines indicate the bottoms of the BZ, DZ and OZ, respectively (colour online).
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Taylor–Proudman balance than a corresponding setup where the energy in the near-
surface layer is transported by SGS diffusion and where the upper boundary obeys a black
body boundary condition. The latter was also used, for example, by Käpylä et al. (2017a).
This suggests that the subadiabatic layer is not the main reason why the rotation profiles
are more conical here than in previous studies.

3.4. Horizontal velocity spectra

In recent studies, Featherstone and Hindman (2016) and Featherstone and Hind-
man (2016) investigated the effects of increasing supercriticality of convection and the
rotational influence on the spectral energy distribution of convective flows in an effort to
find clues to solve the convective conundrum. Furthermore, Käpylä et al. (2017b) found
evidence that the structure of convective flows changes qualitatively when a smoothly vary-
ing heat conduction profile is used. Hence, next we study the effects of rotation, magnetic
fields and stably stratified layers on the spectral energy distribution in spherical domains.
To calculate the power spectra for the horizontal velocity, we follow the same procedure
as in Featherstone and Hindman (2016). For each run, we consider a near-surface layer at
r = 0.98R� and calculate the normalised power spectrum:

P� =
�∑

m=−�

|u�,m|2
/ ∑

�

�∑
m=−�

|u�,m|2. (33)

We separate the axisymmetric contribution, Paxi, given by the m=0 mode to obtain the
convective velocity spectra, Pconv, as the sum of the highermmodes.

Figure 12 shows the results for four representative runs. Comparing panels (a) and (b), it
is clear that a prescribed profile for the heat conductivity (RunHDp, panel a) leads to higher
energy in the large scales than with Kramers profiles (RunHD4, panel b), when substantial
OZ and RZ occur. The fact that the power at large scales is dominated by the axisymmetric
component is due to a strong coherent meridional flow that develops in the system. Sim-
ilar large-scale convective modes have been reported in non-rotating and slowly rotating
simulations in the past (e.g. Brun and Palacios 2009; Käpylä et al. 2018b). In Run HD4, the
meridional circulation becomes weaker, which explains the difference in the spectra. In
addition, by increasing the radiative diffusivity in rotatingMHDRunsMHD1 andMHD4,
see figure 12(c) and (d), the total energy at large scales decreases by an order of magnitude
and the peak in the convective spectramoves towards smaller scales, and the power at large
scales in the axisymmetric velocity field becomes reduced. This is a consequence of weaker
differential rotation; see figure 8. The reason for the changing distribution of the convective
power is not so easily distinguishable. The rotational influence on the flow is changing by
roughly 40 per cent between RunsMHD1 andMHD4 (see the sixth column of table 1) and
it is unlikely that this could have caused such a large effect. Another possibility is that some
of the large-scale convective modes excited in Run MHD1 are absent in the shallower CZ
of Run MHD4.

In figure 13 we compare the horizontal convective velocity spectra Pconv for different
runs. In panel (a) we compare Kramers cases with the same value of K0, but adding rota-
tion and magnetic fields. Adding rotation has a marked effect in that the convective power
is boosted at practically all scales.While a change fromvertically to horizontally dominated
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Figure 12. Power spectra of the total (black), axisymmetric (red) and non-axisymmetric (blue) parts of
the velocity from runs (a) HDp, (b) HD1, (c) MHD1 and (d) MHD4 (colour online).

turbulence as a function of rotation has been reported earlier from spherical convection
simulations (e.g. Käpylä et al. 2014), the increase of the absolute magnitude of the hori-
zontal flows is a new result. We find that the these flows are enhanced especially in the
upper parts of the CZ in the rotating runs. This could be because of shear-produced turbu-
lence due to the strong differential rotation in these cases. Adding magnetic fields does not
produce further visible difference. In the non-rotating Kramers runs, the energy at large
scales decreases with increasing heat conductivity (panel (b)), while in the rotating cases
in figure 13(c) and (d), the runs with lower heat conductivity have higher energy than the
run with a prescribed profile. This is in accordance with figure 5. In the rotating cases,
there seems to be a threshold: at low values of heat conductivity the energy at large scales
is enhanced with respect to the same run with a prescribed profile, while increasing the
value of K0 has the effect of decreasing the energy at small values of �. This is also visible
in figures 4(g), (h) and (i), where the luminosity is at first enhanced around the equator
(Run MHD1), and then the transport of energy becomes almost isotropic throughout the
CZ for Run MHD4. A possible explanation is that, while the depth of the convectively
unstable layer diminishes, the horizontal extent of the largest excited convective modes is
also reduced, thus lowering the power at the largest values of �. Allowing a self-consistent
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Figure 13. Comparison of the convective spectra Pconv fromdifferent runs: RunsHD1, RHD1,MHD1with
the same K0 (a) and for runs “p”, “1”, and “4” in Sets HD (b), RHD (c), MHD (d), respectively (colour online).

evolution of the heat conduction profile helps to reduce the energy at large scales, but
does not affect the small scales. Moreover, the difference between a prescribed profile and
Kramers runs is moremarked in the non-rotating cases. Adding rotation reduces the effect
of a Kramers-like opacity law.

In conclusion, we find that the effects of the Kramers-based heat conductivity on the
velocity amplitudes are rather weak and they are not enough to resolve the problem of too
high convective power in simulations in comparison to the Sun.

3.5. Dynamo solutions

We find that all of the current MHD simulations show large-scale dynamo action. Time-
latitude diagrams of the mean azimuthal field are shown in figure 14. The solution in
RunMHDp shows a cyclic large-scale field which, however, is relatively weak and stronger
magnetic fields are mostly concentrated towards high latitudes. In Run MHD1, the solu-
tion does not show clear polarity reversals, although a quasi-periodic component clearly
appears; see figure 14(b). This behaviour is qualitatively similar to that reported in Karak
et al. (2015) and in Run E2 of Käpylä et al. (2017a), which, apart from the lower density
stratification, has otherwise similar parameters as the current Run MHD1.
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Figure 14. Panels (a)–(e): azimuthally averaged azimuthalmagnetic field Bφ near the surface at r/R� =
0.98 as a function of time from a 40 year time span from the runs in the MHD set. Panel (f ) shows the
azimuthally averaged Bφ from r/R� = 0.75 from Run MHD2 from the same time span as in panel (c)
(colour online).

In Run MHD2, a clearly oscillatory mode is excited, which is reminiscent of earlier
results (Käpylä et al. 2012, 2013; Augustson et al. 2015; Käpylä et al. 2016; Strugarek et
al. 2017; Warnecke 2018). The main cycle period of a very similar run parameter-wise
(Käpylä et al. 2016) was reported to be roughly 5 years, whereas here the cycle is shorter
nearly by a factor of two. Representations of the magnetic fields in different phases of the
cycle are shown in figure 15. Quantitative differences to Run MHD1 are relatively minor;
the Reynolds and Coriolis numbers differ by roughly 15 per cent, see the fifth and sixth
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Figure 15. Magnetic fields lines and azimuthal magnetic field (colours) from six snapshots covering
roughly one magnetic cycle from Run MHD2. The panels are separated by 0.5–0.6 years, as indicated
by the legends. The colour bar indicates the field strength in kilogauss. An animated visualisation of the
evolution of the magnetic field for this run is available in the online material (colour online).

columns of table 1. However, theDeardorff layer is thicker at low latitudes and the region of
negative radial shear is wider atmid-latitudes in RunMHD2 in comparison to RunMHD1.
The dynamo solution thus appears to be sensitive to relatively small changes in the flow
properties.

We also observe a quiescent period roughly between 15 and 25 years in physical time
that can be interpreted as a Maunder minimum-type event (see also Augustson et al. 2015;
Käpylä et al. 2016). During this event, also the dominant dynamo mode at the surface
appears to change to a shorter one at late stages. The minimum event and the changing
dynamo mode are due to a change of magnetic field structure in the deeper layers. This is
illustrated in figure 14(f), where Bφ near the bottom of the CZ is shown. The period of the
oscillatory mode at latitudes |Θ| � 30◦ decreases after a readjustment around t=15–25
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years. This is also where the polarity of the near–equator field changes, which could sug-
gest a dynamo mode in the deep parts with a much longer period. The time series is too
short to determine the dynamo period of its statistics reliably, however. These results are
in agreement with the conclusions of Käpylä et al. (2016).

The total magnetic energy Etotmag = 〈B2/2μ0〉θφ in Runs MHDp and MHD1 is on the

order of 104 Jm−3; see figure 16(a)–(b). The energy of themean field Emean
mag = 〈B2

/2μ0〉θφ ,
on the other hand, is roughly 20–30 percent of Etotmag in MHDp and somewhat more in
MHD1. The total kinetic energy Etotkin = 〈ρU2/2〉θφ is of the order of 106 Jm−3 in MHDp
and somewhat less in MHD1. The contribution of the mean flows (differential rotation
and meridional circulation), Emean

kin = 〈ρU2
/2〉θφ , is higher in MHDp in comparison to

MHD1. This could reflect the effect of highermeanmagnetic fields in the latter. The overall
magnetic energy in these two runs is roughly an order of magnitude less than in runs with
similar Coriolis number and Reynolds numbers in Käpylä et al. (2017a) (their run E2).
The current runs differ from those of Käpylä et al. (2017a) in that the density stratification
is roughly three times higher. Furthermore, the radial thermal boundary conditions and
the treatment of the near-surface cooling differ from those used in Käpylä et al. (2017a)
as explained in section 3.3. The dynamics of the simulations are sensitive to the thermal
boundary conditions as well as the parameterisation of the near-surface layers (Käpylä et
al. 2018a)which can also influence the dominant dynamomode via the flow. Lastly, the SGS
flux of entropy is here applied to the fluctuations as opposed to the total entropy. However,

Figure 16. Horizontally and temporally averaged energy densities of the total flow (black), mean flow
(yellow), total magnetic field (red) and mean magnetic field (blue) for Runs MHDp (a), MHD1 (b), and
MHD4 (c). In panel (c) the bottoms of the BZ, DZ and OZ are indicated with solid, dashed and dash-
dotted lines, respectively. Panel (d) shows the horizontally averaged luminosity corresponding to the
radial Poynting flux for the same runs (colour online).
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the current data is insufficient to track down the cause of the differences in the magnetic
energy levels.

In Runs MHD3 and MHD4, the dynamo switches to a non-oscillatory mode. These
solutions are superficially similar to quasi-stationary magnetic “wreaths” at mid-latitudes
found in several studies (e.g. Brown et al. 2010; Nelson et al. 2011). These runs did not,
however, include a radiative layer below the convection zone, although they operate in a
similar Coriolis number regime. One possible explanation is that the rotation profiles of
these runs do not have a local minimum at mid-latitudes that is seen in later oscillatory
solutions. In RunsMHD3 andMHD4, the surface appearance of the toroidalmagnetic field
reflects the occurrence of a large-scale field stored beneath the CZ in the stably stratified
layers; see panel (c) of figure 16. The overall magnitude of the magnetic field is signif-
icantly higher than in the cases without an RZ. We note that, for example, Guerrero et
al. (2016); Warnecke (2018), and Strugarek et al. (2018) found changing dynamomodes as
a function of the rotational influence on the flow. The Coriolis number based on the depth
of the revised CZ varies by roughly 40 per cent in the runs of the MHD set; see the sixth
column of table 1, which is a possible explanation for the change of the dominant dynamo
mode.

We further study the magnetic energy transport due to the Poynting flux,

FPoy = (E × B)
/
μ0, (34)

where E = −U × B + ημ0J is the electric field. We consider the luminosity of the hori-
zontally averaged radial component of FPoy, 〈LPoyr 〉θφ = 4πr2〈FPoyr 〉θφ in figure 16(d). The
magnitude of 〈LPoyr 〉θφ is atmost on the order of one per cent of the total flux in RunMHD4
and between 0.2 and 0.3 per cent in Runs MHDp andMHD1. This suggest that the Poynt-
ing flux has an almost negligible effect on the total energy transport. Furthermore, the flux
always points downwards, which agrees with previous results in Cartesian (Nordlund et
al. 1992) and spherical (Brun et al. 2004) geometries.

Given that the dominant dynamomode changes as a function of depth of the stably strat-
ified layers below the CZ, it is of interest to study the diagnostics that are commonly held
responsible for the generation of large-scale magnetic fields and cycles. One such diagnos-
tics is the kinetic helicity of the flow, which can, for high conductivity, be associated with
the α effect ofmean-field electrodynamics (Steenbeck et al. 1966; Krause and Rädler 1980).
Furthermore, it has been shown by numerical simulations that the sign of the kinetic helic-
ity can change under certain conditions in the deep parts of the convection zone and lead
to a change of the propagation direction of the dynamo wave (Duarte et al. 2016). Similar
reversals have routinely been seen in simulations of stratified convection (Brandenburg et
al. 1990; Käpylä et al. 2009), but the change in the migration direction occurs only for suf-
ficiently deep helicity reversals, which is what was demonstrated by Duarte et al. (2016).
Such reversals of the resulting α effect have been utilised in mean-field dynamo theory
starting with the work of Yoshimura (1972). The relevance of the kinetic helicity reversal
for the Sun is that mean-field theory (Krause and Rädler 1980) and typical simulations
(e.g. Ossendrijver et al. 2001; Käpylä et al. 2006) predict a positive α effect in the northern
hemisphere. Furthermore, a predominantly positive radial gradient of angular velocity is
present in the solar CZ. In αΩ dynamos, this combination leads to poleward migration of
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dynamo waves due to the Parker–Yoshimura rule (Parker 1955; Yoshimura 1975). Thus,
reversing the sign of α would resolve this issue.

Figure 17 shows time-averaged relative kinetic helicity hrel = u · ω/urmsωrms from the
MHD runs. Here,ω = ∇ × u is the vorticity of the fluctuating velocity.We do find a region
of inverted helicity at the base of the CZ in all runs. However, this region is not very pro-
nounced and is concentrated at high latitudes in RunsMHDp andMHD1–2. Although the
region of positive helicity extends to lower latitudes in Runs MHD3 and MHD4, it is still
confined within the tangent cylinder with respect to the bottom of the BZ. Only in Run
MHD4, a clear inversion is seen at low latitudes near the equator.

The origin of the large-scale magnetic fields in the current simulations cannot be
determined without a detailed analysis involving the computation of turbulent transport
coefficients with, for example, the test-field method (e.g. Schrinner et al. 2005, 2007; War-
necke et al. 2018). However, earlier studies (Warnecke et al. 2014, 2018) have indicated
that, at least, the appearance of latitudinal dynamo waves can be fairly accurately predicted
by the Parker–Yoshimura rule. This rule essentially states that the sign of the product of

Figure 17. Time-averaged relative kinetic helicity from theMHD runs. As in figure 4, the black andwhite
solid, dashed and dash-dotted lines indicate the bottoms of the buoyancy, Deardorff and overshoot
zones, respectively. The green line indicates the zero level (colour online).
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the α effect and radial gradient of Ω determines the propagation direction of the latitudi-
nal dynamo wave. For an equatorward wave, α∂Ω/∂r < 0 in the northern hemisphere of
the Sun. We proceed to study this by means of local dynamo numbers (as was also done
in Käpylä et al. 2013)

Cα = α�r
ηt0

, CΩ = ∂Ω/∂r(�r)3

ηt0
, (35)

whereα = − 1
3τ(u · ω − j · b/ρ) is a proxy of theα effect, including the contributions from

kinetic and current helicities (Pouquet et al. 1976). Furthermore, ηt0 = 1
3τu

2
rms(r, θ) is an

estimate of the turbulentmagnetic diffusivity, where τ = αMLTHp/urms(r, θ) is the convec-
tive turnover time, αMLT = 1.7 is the mixing length parameter, and Hp = −(∂ ln p/∂r)−1

is the pressure scale height.
We show representative results of Cα and CΩ in figure 18. In Run MHDp, the prod-

uct CαCΩ is negative in the upper parts of the CZ at high latitudes and in a shallow layer
near the equator. However, in the former (latter), CΩ (Cα) is small, which could explain
the absence of cycles. In Run MHD2, a sizeable mid-latitude region shows a negative
CαCΩ . This occurs at the same location where the equatorward migrating fields are seen
in figure 14(c). A similar but somewhat smaller area appears also in Runs MHD3 and

Figure 18. Dynamo numbers Cα (upper row) and CΩ (lower row) for Runs MHDp (left panels), MHD2
(middle) and MHD4 (right). The cyan contours indicate the zero levels whereas the bottoms of the BZ,
DZ and OZ are indicated with solid, dashed and dash-dotted lines, respectively (colour online).
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MHD4; see the rightmost panels of figure 18, although these runs do not support migrat-
ing solutions. A possible explanation is that the strong magnetic field developing in the
radiative, strongly subadiabatic, layer forming in these runs is inhibiting dynamo migra-
tion. The behaviour seen in the current simulations with radiative layers is not likely to
occur to the same extent in real stars where the small magnetic diffusivity will not allow
substantial magnetic fields to penetrate into the radiative layers below the CZ.

4. Conclusions

In the current studywe have presented the first simulations of convection in rotating spher-
ical coordinates with a heat conduction prescription based on the Kramers opacity law. In
such models the radiative flux adapts to the thermodynamic state in a dynamical fashion
such that the depth of the CZ is not fixed a priori. We have demonstrated that in such
setups, the depth of the CZ is controlled by the overall efficiency of convective energy
transport. Enhancing the radiative energy transport reduces the fraction of energy trans-
ported by convection in the deep parts, and is associated with the appearance of stably
stratifiedDeardorff, overshoot and radiative layers below the Schwarzschild-unstable layer.
The enhanced luminosity in the current simulations implies amoderate Kelvin–Helmholtz
time and allows themodels to be evolved to a thermally saturated state in a reasonable time.
Thus we do not have to resort to artificially enhancing the heat conductivity in the con-
vectively stable layers immediately below the CZ (e.g. Brun et al. 2017; Hotta 2017). Such
procedure leads to a more abrupt transition to the RZ and increased stiffness of the upper
part of the CZ. This is likely to have repercussions for the interaction of the dynamics of the
RZ and CZ. We have shown that the presence of such a stable layer has several interesting
implications for the dynamics of convection.

Although the up- and downflows contribute roughly equally to the energy transport
in all of the cases studied here, the presence of stably stratified overshoot and radiative
layers are reflected in the force balance. This suggests fundamentally different dynamics
in systems with and without such layers. In the rotating cases with Ω0 = 3Ω� and with-
out significant stably stratified layers, the convective energy transport is highly anisotropic
with mid-latitude regions producing an almost negligible contribution to the overall lumi-
nosity. If, on the other hand, stably stratified layers are present, the latitudinal dependence
of convective energy transport is much weaker. Although the spectral power in convec-
tive motions is slightly reduced in cases with Kramers opacity, this effect is too small to
account for the discrepancy between solar observations and simulations, most notably the
problem of anti-solar differential rotation at solar parameters (e.g. Käpylä et al. 2014; Hotta
et al. 2015).

The changes in the rotation profiles and large-scale magnetism are more subtle and
the interpretation is less straightforward. However, the current simulations show clearly
a NSSL at low latitudes – irrespective of the prescription of radiative diffusion. This is
possibly due to the somewhat higher density stratification in the current simulations in
comparison to several previous studies. The appearance of stably stratified layers at the
bottom of the domain tends to produce a layer of negative radial shear at the base of the
CZ. However, this leads to clearly equatorward migrating large-scale magnetic fields only
in a single case. Although an inversion of the kinetic helicity is observed in the OZ and
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the lower parts of the CZ in our cases with the shallowest convection zone, they exhibit
quasi-stationary large-scale magnetic fields.
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