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Direct numerical simulations of collisional aggregation in turbulent aerosols are

computationally demanding. Many authors therefore use an approximate model of

the collision-coalescence process that is computationally more efficient: it relies on

representing physical particles in terms of ‘superparticles’. One monitors collisions

between superparticles and accounts for collisions between physical particles using a

Monte-Carlo algorithm. It has been shown that this algorithm can faithfully represent

mean particle growth in turbulent aerosols. Here we investigate how fluctuations are

represented in this algorithm. We study particles of different sizes settling under gravity,

assuming that the effect of turbulence is simply to mix the particles horizontally. We

compute the statistics of growth histories and analyze their fluctuations in terms of

the ‘lucky-droplet’ model. We discuss under which circumstances artefacts change the

fluctuations of the growth histories, how these can be avoided, and which questions

remain to be answered when turbulent fluctuations are explicitly incorporated.

Received . . .

1. Introduction

Collisions of particles in turbulent fluids play an important role in warm rain formation and planet formation. Rapid warm rain formation

is still a puzzle. It is well understood that condensation dominates the growth of cloud droplets in the size range of about 2 to 15µm

(radius) without turbulence. Much larger droplets (50µm) can grow due to collisions with small droplets as the large droplets fall

through the turbulence. The question is which mechanisms cause the rapid growth of intermediate droplets, and how a sufficiently

broad size distribution develops that allows for rapid runaway growth of larger (rain) droplets (Shaw 2003; Bodenschatz et al. 2010;

Devenish et al. 2012; Grabowski and Wang 2013).

In the astrophysical context, an important question is how to understand the growth of dust grains to meter-sized objects and further

to planetesimals, in the turbulent gas disk around a growing star (Blum and Wurm 2008; Wilkinson et al. 2008; Armitage 2011;

Johansen and Lambrechts 2017).

The collision-coalescence process in turbulence is strongly nonlinear. Therefore, direct numerical simulations (DNS) have become

an essential tool. The most natural and physical way to investigate the collisional growth is to track individual droplets and to detect

their collisions. However, DNS of the collision-coalescence process are very challenging, because they must solve for the turbulence

over a correspondingly large range of time and length scales. Furthermore, a numerous number (∼ 108) of individual droplets need to

be tracked in both spatial and phase spaces to determine the collisions.

An alternative way of modeling the turbulent collision-coalescence process is to combine physical particles into ‘superparticles’

(Zsom and Dullemond 2008). To gain efficiency, one monitors only superparticle collisions and uses a Monte-Carlo algorithm (Bird

1978, 1981; Jorgensen et al. 1983) to account for collisions between physical particles. The superparticle approach is now widely used
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in both the astrophysical literature (Zsom and Dullemond 2008; Ormel et al. 2009; Zsom et al. 2010; Johansen et al. 2012; Ros and

Johansen 2013; Drakowska et al. 2014; Johansen et al. 2015), as well as in the meteorological literature (Andrejczuk et al. 2008; Shima

et al. 2009; Andrejczuk et al. 2010; Patterson and Wagner 2012; Riechelmann et al. 2012; Arabas and ichiro Shima 2013; Naumann

and Seifert 2015, 2016; Unterstrasser et al. 2016; Dziekan and Pawlowska 2017; Li et al. 2017, 2018b; Brdar and Seifert 2018).

Compared with DNS, the superparticle approach is distinctly more efficient, and it has been shown to be adequate in modeling

average properties of turbulent aerosols, such as the mean collision rate: Li et al. (2018b) found that the mean collision rate simulated

with the superparticle approach agrees well with the Saffman-Turner collision rate (Saffman and Turner 1956). Also, several studies

(Shima et al. 2009; Unterstrasser et al. 2016; Li et al. 2017) investigated the reliability of the superparticle approach by comparing the

droplet-size distribution simulated with the superparticle approach and with the Smoluchowski equation, a mean-field approach. They

found good agreement.

Here we pose the question: how well do superparticle approaches account for fluctuations both in the collision sequence and

the resulting aggregation process? This question is particularly important in dilute systems, such as warm rain formation and planet

formation. In these systems, rare extreme events are responsible for the broadening of the size distribution. In warm rain formation, for

example, the mean number density of cloud droplets is only about n0 = 108 m−3. The Kolmogorov length in cloud-like turbulence is

of the order of η = 1mm when the mean energy dissipation rate is ǭ ≈ 10−3 m2s−3 (Siebert et al. 2006). In such dilute systems, the

sequence of collisions (collision time intervals) is essentially a random process with wide distributions. For example, the distribution of

growth times develops extended tails as a consequence of Poisson fluctuations in the time intervals to the next collision (Telford 1955;

Kostinski and Shaw 2005; Wilkinson 2016), and the distribution of turbulence-induced relative droplet velocities has power-law tails

(Gustavsson and Mehlig 2011a; Gustavsson et al. 2014), as a consequence of caustics in the inertial-droplet dynamics (see Gustavsson

and Mehlig 2016, for a review)).

To analyze how fluctuations in the collisional growth of droplets are represented in superparticle approaches, we record growth

histories of individual droplets in our superparticle simulations. We store when in the past any given droplet collided and coalesced

(we assume a coalescence efficiency of unity), and by how much it grew upon each collision. The ensemble of growth histories can

be analyzed in different ways. It determines, for example, a distribution P (T ) of growth times T to a certain droplet radius r. It also

yields the droplet-size distribution f(r) after a certain time.

Little is known about the ensemble of growth histories–not even for limiting cases. Therefore, we restrict our analysis to a simple

case: we consider droplets of different sizes settling under gravity. We assume that the effect of turbulence is simply to mix the droplets

in the horizontal plane, by an average collision rate. The dynamics nevertheless exhibits substantial fluctuations, caused by the Poisson

sequence of collision times between droplets of different sizes that settle at different speeds (Kostinski and Shaw 2005; Wilkinson

2016).

We do not simulate turbulent fluctuations directly, except for the simulations described at the end of this article, where we discuss

some results that combine explicit modeling of turbulent fluctuations and differential settling due to gravity. The main goal of the last

section is to illustrate open questions regarding the use of the superparticle approach for simulating the collision-coalescence process

in turbulent aerosols.

The remainder of this paper is organized as follows. In Sec. 2 we describe the superparticle approach that is used in the present

article. Sec. 3 summarizes our results for growth histories obtained using superparticle simulations of the system described above:

droplets settling under gravity that are horizontally well mixed. Sec. 4 investigates the statistics of the cumulative collision time. Sec. 5

discusses the comparison of the superparticle algorithm and the mean-field Smoluchowski equation when turbulence is explicitly

simulated. We conclude in Sec. 6.

2. Superparticle algorithm

Superparticle algorithms represent physical particles or droplets in terms of superparticles. All droplets in superparticle i are assumed

to have the same material density ρd, the same radius ri, the same velocity vi, and reside in a volume at the same position xi. The index

i labels the superparticles, and it ranges from 1 to Ns (Table 1). The superparticle dynamics is explicitly modeled, taking into account

gravitational and turbulent accelerations, often by simply using Stokes law. When two superparticles collide, a Monte-Carlo algorithm

is used to describe collisions between the droplets contained in the superparticles. Different collision schemes have been suggested in

the literature for this purpose, starting with Zsom and Dullemond (2008), Andrejczuk et al. (2008), and Shima et al. (2009). Table 2

lists those that have been used most frequently. This table distinguishes between symmetric and asymmetric schemes, depending on

whether or not the algorithm is invariant under the exchange of superparticles.

Unterstrasser et al. (2016) compared three different collision schemes used mainly in the meteorology community. They compared

the droplet-size distribution simulated from the superparticle algorithm and the mean-field Smoluchowski equation. They found that

only the scheme of Shima et al. (2009) can correctly represent the mean droplet growth. Zsom and Dullemond (2008) may have

been the first to develop a superparticle algorithm to tackle collisions of particles, even though momentum is not conserved in their

algorithm (A. Johansen, 2016, private communication). Li et al. (2017) described differences between the symmetric superparticle

algorithm developed by Shima et al. (2009) and the asymmetric one developed by Johansen et al. (2012). It turns out that the scheme

used by Shima et al. (2009) results in slightly better statistics. Here we therefore employ this scheme.

Table 1. Definition of variables in superparticle algorithm.

Ns Number of ‘superparticles’

Nd/s Number of droplets in a superparticle

Ntot = Nd/sNs Total number of droplets
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Table 2. Summary of different superparticle algorithms.

Reference mass conservation momentum conservation collision symmetry stochasticity

Zsom and Dullemond (2008) yes no asymmetric probabilistic

Shima et al. (2009) yes yes symmetric probabilistic

Andrejczuk et al. (2008) yes yes asymmetric deterministic

Riechelmann et al. (2012) yes yes asymmetric deterministic

Johansen et al. (2012) yes yes asymmetric probabilistic

Ni
d/s=10 Nj

d/s
=6

Mi=10 Mj=2

Ni
d/s=4 Nj

d/s
=6

Mi=10 Mj=12

Ni
d/s=6 Nj

d/s
=10

Mi=10 Mj=2

Ni
d/s=6 Nj

d/s
=4

Mi=12 Mj=2

Ni
d/s=8 Nj

d/s
=8

Mi=10 Mj=2

Ni
d/s=4 Nj

d/s
=4

Mi=12 Mj=12

Figure 1. Collision outcomes when two superdroplets collide and particle collisions occur. Superparticle i contains Ni
d/s droplets of mass Mi , superparticle j contains

Nj
d/s

droplets of mass Mj . After the collision, the superdroplet with the larger droplets inherits the identity of the superdroplet that had larger particles before the collision.

This is not shown.

Our simulations are conducted using the PENCIL CODE. The equation of motion for the position xi and velocity vi of superparticle

i reads:
dxi

dt
= vi ,

dvi

dt
=

1

τi
(u− vi) + g . (1)

Here g is the gravitational acceleration. Further,

τi = 2ρdr
2
i /[9ρν C(Rei)] (2)

is the particle response time attributed to the superparticle, and ρ is the mass density airflow. The correction factor C(Rei) =

1 + 0.15 Re
2/3
i models the effect of non-zero particle Reynolds number Rei = 2ri|u− vi|/ν (Schiller and Naumann 1933; Marchioli

et al. 2008). Finally, u is the turbulent velocity at the particle position. In sections III and IV, turbulence is not explicitly modeled, in

these sections u = 0.

Droplet collisions are represented by collisions of superparticles (Johansen et al. 2012), as explained above. When two superparticles

collide, a Monte-Carlo scheme is used to determine which pairs of droplets collide. It is assumed that two droplets in either of the

superparticles (with indices i and j) collide with probability

pij = λ−1
ij ∆t , (3)

where ∆t is the integration time step. In the model of Shima et al. (2009), the collision rate is

λij = Eijπ
(

ri + rj
)2 |vi − vj |Nd/s δx

−3 , (4)

where Nd/s is the larger initial number of droplets per superparticle i or j (Table 1), and δx3 is the volume assigned to the superparticle.

Moreover, Eij is the collision efficiency assumed to be unity in this article.

What happens when two superparticles collide? To write down the rules, we denote the number of droplets in superparticle i by

N i
d/s, while Nj

d/s
is the number of droplets in superparticle j. Mi and Mj are the corresponding droplet masses. The collision scheme

suggested by Shima et al. (2009) amounts to the following rule. To ensure mass conservation between superparticles i and j, when

Nj
d/s

> N i
d/s, droplet numbers and masses are updated as

N i
d/s → N i

d/s , Nj
d/s

→ Nj
d/s

−N i
d/s , (5)

Mi → Mi +Mj , Mj → Mj .

When Nj
d/s

< N i
d/s, the update rule is also given by equation (5), but with indices i and j exchanged. In other words, the number of

particles in the smaller superparticle remains unchanged (and their masses are increased), while that in the larger one is reduced by the

amount of particles that have collided with all the particles of the smaller superparticle (and their masses remain unchanged). This is

illustrated in Figure 1. Finally, when Nj
d/s

= Nj
d/s

, droplet numbers and masses are updated as

N i
d/s → N i

d/s/2 , Nj
d/s

→ Nj
d/s

/2 , (6)

Mi → Mi +Mj , Mj → Mi +Mj .

To ensure momentum conservation during the collision, the momenta of particles in the two superparticles are updated as

viMi → viMi + vjMj ,

vjMj → vjMj , (7)
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Figure 2. Superparticle identities and coalescent process of collision histories. All collisions involve one 10µm-droplet. Collisions (between pairs of particles) are
illustrated by a dashed box. Superparticles that contain large droplets are shown with larger radii. The histories of superparticles 2, 3 and, 4 cannot be tracked all the way

back.

after a collision of superparticles.

The collision scheme described here is symmetric in the sense that collisions take place simultaneously in both superparticles i and

j, so that pij = pji and, correspondingly, λij = λji. This is due to the fact that λij described in equation (4) is always determined by

the largest Nd/s as discussed right below equation (4). By contrast, in Johansen et al. (2012), collisions only occur in superparticle

j, which is referred to as asymmetric collision (Li et al. 2017). In addition, collisions are probabilistic, as described by equation (3).

On the other hand, the collision schemes of the superparticle approach developed in Andrejczuk et al. (2008) and Riechelmann et al.

(2012) are deterministic. We refer to Table 2 for a detailed comparison of different superparticle approaches.

In the example discussed in section 1, there is only one droplet in a 10η-sized volume, so that the probability that this droplet

can collide with another one is very low unless there is horizontal mixing of droplets. We can assume that the rate λ represents this

horizontal mixing due to the mean effect of turbulence. For small droplets, it is described by the Saffman-Turner rate (Saffman and

Turner 1956; Brunk et al. 1998; Andersson et al. 2007) due to turbulent shear. For larger droplets, the effect of particle inertia must be

considered (Wilkinson et al. 2006; Gustavsson and Mehlig 2011b; Gustavsson et al. 2015; Gustavsson and Mehlig 2016).

We emphasize that the superparticle algorithm is stochastic if pij is small enough, so that most superparticle collisions do not lead

to particle collisions.

3. Growth histories

We consider one 12.6 µm-droplet within a cloud of 10µm-droplets. Since the larger droplet is somewhat heavier, it falls more rapidly

than the 10µm-droplets and sweeps them up through collisions and coalescences. Collisions are driven by differential settling, therefore

10µm-droplets cannot collide with each other. Here, turbulence is not explicitly modeled, i.e., u = 0 in equation (1). We repeat the

simulation many times using different sequences of random numbers, to obtain an ensemble of growth histories of 12.6µm droplets.

The collision histories are tracked in the following way. We record and output the collision histories for all superparticles during the

simulation. Of particular interest is the fastest growing droplet. We trace its growth history backwards in time by finding its parents for

each collision that occurred during its growth history in the past. This is illustrated in Figure 2. Collisions (between pairs of particles)

are illustrated by a dashed box. Superparticles that contain large droplets are drawn with larger radii. Each superparticle is initially

assigned an identification number (ID). Superparticle IDs are given by white numbers. Since we are interested in the fastest growing

droplet, it is convenient to require that the larger superparticle after the collision inherits the ID of the larger superparticle before the

collision. In some cases (three out of five in Figure 2) this means that the IDs are exchanged during a collision.

Figure 3 shows an ensemble of growth histories (thin grey lines) obtained from independent simulations as described above. The

times between collisions are random, leading to a distribution of cumulative growth times to reach 50µm. Also shown is the mean

growth curve (thick black line), obtained by averaging the time at fixed radii r. The Figure demonstrates that the fluctuations are

substantial.

Figure 4 shows one particular growth history from Figure 3. It is expected that the growth steps (in r) become smaller and smaller as

time proceeds, because the numerical experiment was designed such that all collisions occur with 10µm-droplets. However, Figure 4

shows that larger jumps occur later in the growth history. These jumps are artefacts caused by the collision scheme described in Sec. 2,

as we discuss now.

Figure 1 shows examples of collision outcomes when a superparticle containing larger droplets collides with a superparticle

containing 10µm-sized droplets. In two cases (leftmost and rightmost in Figure 1) the droplets in both superparticles grow, a

consequence of the scheme summarized in equations (5) and (6). The growth of the smaller 10µm droplets is artificial, because

the numerical experiment was designed so that this cannot occur. These artefacts give rise to superparticles with larger droplets. Later
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Figure 3. Shows an ensemble of 50 growth histories obtained from independent simulations as described in the text. Initial condition: all superparticles have the same
number of droplets, Nd/s = 2.
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Figure 4. Shows a growth history taken from from Figure 3.
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Figure 5. Shows an ensemble of 50 growth histories similar to Figure 3, but for a different initial condition. For the 12.6µm-sized superparticle we take Nd/s = 2, and

for 10µm-sized superparticles, Nd/s = 40.

collisions cause larger jumps in the growth history, as shown in Figure 1. Figure 2 illustrates another aspect of these artefacts: they

occur precisely when the superparticle IDs are exchanged upon collision.
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One way of avoiding these artefacts, or at least of ensuring that they occur rarely, is to use initial conditions that mostly yield

collisions corresponding to the case shown in the center of Figure 1. This can be achieved by choosing the number Nd/s of droplets

in the 10µm superparticle to be much larger than that in the 12.6µm superparticle. Artefacts will first occur at later times when

these numbers become equal. As the simulation proceeds, the number of droplets per superparticle decreases for the 10µm-sized

superparticle. When Nd/s becomes equal for the large superparticle and a 10µm-sized superparticle, both superparticles grow as the

middle panel of Figure 1 shows. Therefore, the frequency of artefacts increases with time.

In Figure 3, by contrast, all superparticles contain the same number of droplets initially, as described in the caption of Figure 5,

which shows the corresponding simulations for different initial conditions, where Nd/s = 2 for the 12.6 µm-sized superparticle, and

Nd/s = 40 for the 10µm-sized superparticle. No artefacts have occurred–at least up to r = 50µm. Since Nd/s = 2 for 10µm-sized

superparticles in Figure 3, while Nd/s = 40 in Figure 5, the collision rate for the latter case is 20 times large than the former case

according to equations (3) and (4). Therefore, we scale the time in Figure 5 by a factor of 20. Let us compare the ensemble of growth

histories shown in Figures 3 and 5. We see that the histories in Figure 5 do not exhibit artificial jumps. Therefore the fastest growing

droplets in Figure 5 grow slower than those in Figure 3. But we also see that the ensemble in Figure 3 contains several histories

corresponding to droplets that grow very slowly. These are absent in Figure 5. This may be an artefact due to the large initial number

density used in Figure 5. Thus, there is a trade-off between the two different types of artifacts occurring in Figure 3 and Figure 5.

We checked that the asymmetric collision scheme proposed by Johansen et al. (2012) also reveals artificial jumps due to the mass

conservation scheme.

4. Statistics of cumulative collision times

We now determine the statistics of the cumulative collision time T , for one larger droplet with radius 12.6 µm falling through the

ensemble of 10µm-sized droplets, as described above. We trace the collision history of the 12.6 µm droplet and compute the cumulative

time until the N -th collision occurs:

TN =

N
∑

k=1

tk . (8)

The times tk between successive collisions are exponentially distributed, with rates λk:

pk(tk) = λk exp(−λktk). (9)

The larger droplet grows by collisions with 10µm droplets. At the k-th collision, the initial droplet volumes have increased by a factor

of k, and the radius increased by a factor of k1/3, so rk ∼ r0k
1/3. The rates λk depend on the differential settling velocity (vi − vj)

between the colliding droplets through equations (3) and (4). Considering a droplet sediment in a stagnant flow, the amplitude of

the terminal velocity is |vi| = τig according to equation (1). In this case, the correction factor C(Rei) is approximated to one in

equation (2). Therefore, |vi| ∼ r2i . Since we assumed that the collision efficiency Eij is unity, equation (4) can be approximated as

λij ∼ r4j assuming rj ≫ ri. In terms of the number of collision k, it follows that

λk = λ1k
4/3 . (10)

This is precisely the ‘lucky-droplet’ model suggested by Kostinski and Shaw (2005) and further developed by Wilkinson (2016),

designed to describe the situation we consider in the numerical experiments described above.

We now determine whether the superparticle algorithm correctly represents the distribution P (T ). We note that 〈T 〉 is determined

by λ1, which describes the horizontal mixing of droplets by the mean turbulent shear, in the absence of turbulent fluctuations. Since

τ = T /〈T 〉 is independent of λ1, we mainly focus on determining P (τ ) in the following.

To compute the distribution of cumulative collision times T , we performed 1059 simulations with different random seeds. For

each simulation, we tracked the growth history of the droplet that first reached 50µm and recorded the time T50 it took to grow to

50µm. Figure 6 shows P (τ ). We checked that no artefacts occurred during the simulations. The Figure shows that the results of the

superparticle simulations agree fairly well with equations (8) and (10). To obtain the corresponding result, we simulated 108 realizations

of these equations.

In summary, stochastic fluctuations in the superparticle algorithm are caused by the Monte-Carlo collision scheme. The Monte-

Carlo scheme is parameterized by the rate λij in equation (4). This rate can be interpreted as a collision rate representing the horizontal

mixing of settling droplets in a mean-field fashion. In this way the superparticle scheme can accurately represent the growth histories

of the lucky-droplet model (Kostinski and Shaw 2005). Poisson fluctuations of the times between collisions give rise to a distribution

of cumulative collision times in the lucky-droplet model. In the numerical experiments described above, the growth histories fluctuate

in the same way as described in the lucky-droplet models mentioned above.

We have also calculated P (τ ) for initial conditions where artefacts occur as shown by the black curve in Figure 6. The corresponding

jumps in the growth histories cause the droplets to grow faster. However, it turns out that the artefacts do not have noticeable effect upon

P (τ ) in the simulations we conducted. This could be because there were simply too few artefacts to make a noticeable difference. A

more likely explanation is that the artefacts occur quite late in the growth history. Kostinski and Shaw (2005) explained that fluctuations

in the collisional growth of settling droplets are largely determined by the first few collisions. Therefore late jumps do not matter so

much.

We mention that Dziekan and Pawlowska (2017) investigated related questions. They studied the stochastic coalescence of settling

droplets, comparing the superparticle algorithm with the mean-field Smoluchowski equation. They found good agreement between

the superparticle algorithm and the Smoluchowski equation by comparing the droplet-mass distribution function, thus, concluding that

the superparticle algorithm can represent the stochastic coalescence. However, they did not track collision histories of superparticles.

Furthermore, they used an exponential initial distribution of droplet-sizes, quite different from our initial conditions. Since we saw that

the initial conditions affect how frequently artefacts occur, it is important to study how accurately fluctuations are represented for a

range of different initial conditions.
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Figure 6. Distribution of τ . The red curve represents P (τ) obtained from 1059 superparticle simulations (same simulations as in Figure 5) The cyan curve represents the

simulation of equation (9), equation (8), and equation (10) with λ1 = 1 s−1 and N = 128 (see text), where 108 realizations are simulated.

5. Simulations with turbulence explicitly modeled

The effect of turbulence on collisional growth of cloud droplets is still debated. The typical Stokes number is St ≈ 0.02 for 10µm-sized

droplets such that clustering (Bec et al. 2007; Gustavsson and Mehlig 2016) and caustics (Falkovich et al. 2002; Wilkinson et al. 2006;

Gustavsson et al. 2012) are too weak to play a role for such small droplets (Gustavsson and Mehlig 2014; Voßkuhle et al. 2014).

To illustrate how turbulence may impact the random growth process, we conducted simulations in the same manner as described

above, but with turbulence fluctuations added. In the absence of turbulence fluctuations, the 12.6µm-droplet only collides with 10µm-

sized droplets. When turbulence fluctuations are present, the 12.6µm-droplet may also collide with droplets larger than 10µm, which

results in faster growth.

It is worth noting that the fastest growing droplet need not to be the one with initial radius r = 12.6 µm when turbulence is present.

This is because vigorous eddies may generate the first few droplets that end up growing most rapidly (Kostinski and Shaw 2005).

Perhaps the best way to examine how turbulence influences the lucky droplet model is to repeat the simulations with different random

seeds. However, with turbulence being sufficiently well resolved, this is not feasible computationally using the modern supercomputer.

A second problem is that we do not know how to reliably get rid of the aforementioned artefacts when turbulence is explicitly

modeled. This is important, because larger jumps that occur early on in the growth history can substantially affect the fluctuations

of the cumulative collision time T . Later jumps may not matter as much (Kostinski and Shaw 2005), neither those due to artefacts nor

those due to turbulence. A third problem is the interpretation of λij . In the numerical experiments described in the previous sections,

we could interpret these rates as the horizontal turbulent mixing rates. When turbulence is represented explicitly, it is not clear that this

interpretation remains appropriate.

Despite these open questions we performed superparticle simulations, explicitly modeling turbulent fluctuations. Details are given

in (Li et al. 2017); see also Appendix A for the essentials. We compared the droplet-size distribution from the superparticle simulation

with a mean-field approach, the Smoluchowski equation described in Appendix B. It is worth mentioning that simulations of the

Smoluchowski equation is computationally demanding, because a separate momentum equation has to be solved for each particle size;

see details in (Li et al. 2017). Therefore, the simulation of the Smoluchowski equation is nearly well-resolved such that δx ≈ 2η.

Since no collisions can occur in the mean-field model without initial size differences, we adopt a log-normal initial size distribution

(appendix B). The results are shown in Figure 7. We see that the tails of the size distribution obtained from the superparticle simulations

with turbulent fluctuations (details in Appendix A) are wider than that obtained from the mean-field Smoluchowski equation. At present

we do not know which mechanisms cause the extended tails in the superparticle simulations. They could be due to turbulent fluctuations,

but could also be caused by the artefacts described above. To answer this question it is necessary to resolve the three questions posed

at the beginning of this section.

6. Conclusions

We investigated growth histories of droplets settling under gravity using superparticle simulations. The goal was to determine how

accurately these simulations represent the fluctuations of the growth histories. The superparticle algorithm represents droplets in terms

of superparticles. Superparticle collisions are monitored, while droplet collisions are modelled by a Monte Carlo scheme, parameterized

by the mean-field collision rate given by equation (4). This rate can be interpreted as a horizontal mixing rate due to turbulent shear,

when turbulence is not explicitly represented. We determined the fluctuations of growth histories in this model, and showed that artefacts

due to the collision scheme may give rise to faster growth and larger fluctuations. Another type of artifact occurs in dense systems,

which suppress fluctuations. We explained that the artefacts are a result of the collision scheme used in the superparticle algorithm, and

showed that the frequency at which the artefacts occur depends on the initial conditions. For these numerical experiments, the form of

the distribution P (T ) of cumulative growth times is known (Kostinski and Shaw 2005; Wilkinson 2016). In the absence of artefacts,

the superparticle algorithm reproduces this form. Also, it is necessary to check whether the collision scheme by Zsom and Dullemond

(2008), Andrejczuk et al. (2008), and Riechelmann et al. (2012) give rise to artefacts similar to the ones we have discussed, or not.
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Figure 7. Comparison of the droplet-size distribution simulated from the Smoluchowski equation and the superparticle algorithm, in which turbulence fluctuations are
explicitly modelled; see Runs C and D for simulation details.

When turbulence is incorporated explicitly, many questions remain. First, it is unclear how to interpret the meaning of the Monte-

Carlo rate λij that parameterizes the rate at which droplet collisions occur. Second, it is necessary to investigate how the above-

mentioned artefacts can be avoided when turbulence is explicitly represented. These are technical questions concerning the superparticle

algorithm. The main physical question is under which circumstances do turbulent fluctuations affect the early collision histories and

thus contribute significantly to the fluctuations in the aggregation process. We expect that turbulent fluctuations matter more when the

turbulent aerosol is denser. But the technical questions regarding superparticle algorithms need to be resolved before we can attack this

question. We intend to perform direct numerical simulations with and without the superparticle approximation, to definitely determine

under which circumstances superparticle algorithms work well. This is a very important question, because direct numerical simulations

are computationally very challenging. It is highly desirable to have an efficient and accurate alternative.
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Table 3. Summary of the simulations.

Run model turbulence f0 L (m) Ngrid Ns n0 Np/s urms (ms−1) Reλ ǭ (m2s−3) η (mm)

A Superparticle implicit – 0.0096 – 128 2.97 × 108 2 – – – –

B Superparticle implicit – 0.0096 – 128 5.94 × 109 40 – – – –

C Superparticle explicit 0.02 0.125 2563 1953120 5.94 × 109 5 0.163 44 0.040 0.5

D Smoluchowski equation – 0.02 0.125 1283 – 2.5× 1010 – 0.166 58 0.037 0.44

A. DNS of the turbulent air flow

The purpose of this appendix is to provide more detail regarding the turbulent air flow simulation discussed in section 5. For

completeness, we summarize here the basics of the simulations that we used already in our earlier work (Li et al. 2017, 2018b,c,a).

The velocity u of the turbulent air flow is determined by the Navier-Stokes equations,

∂u

∂t
+ u ·∇u = f − ρ−1

∇p+ ρ−1
∇ · (2νρS), (11)

∂ρ

∂t
+∇ · (ρu) = 0, (12)

where f is a monochromatic random forcing function (Brandenburg 2001) with amplitude f0, ν is the kinematic viscosity of the air

flow, Sij = 1
2 (∂jui + ∂iuj)− 1

3δij∇ · u is the traceless rate-of-strain tensor, p is the gas pressure, and ρ is the gas density. We use the

Taylor microscale Reynolds number to characterize the intensity of turbulence, Reλ ≡ u2rms

√

5/(3νǭ), where urms is the rms turbulent

velocity, and ǭ = 2ν Tr Sij
T
Sij is the mean energy-dissipation rate per unit mass and Tr denotes the trace. The superparticle simulation

is well-resolved such that δx ≈ η, where δx = L/N
1/3
grid is the side length of the grid cell of our DNS, and Ngrid is the number of the

grid cells. The volume of each superparticle is (δx)3, i.e., η3, which is the smallest physical volume in DNS that one can choose. More

importantly, to solve the momentum equation of superparticles given by equation (1), one needs to map the fluid velocity to the velocity

of superparticles. The parameters of all simulations are listed in Table 3.

B. Smoluchowski equation

We present here the Smoluchowski equation discussed in section 5. The Smoluchowski equation has been widely used to simulate the

collisional growth of cloud droplets. It is a mean-field approach because fluctuations are neglected. Collision-coalescence is governed

by the Smoluchowski equation

Df

Dt
= 1

2

∫ m

0

K(m−m′,m′) f(m−m′) f(m′) dm′

−
∫ ∞

0

K(m,m′) f(m) f(m′) dm′, (13)

where D/Dt = ∂/∂t+ v ·∇ is the material derivative, and K is the collision kernel, which is proportional to the collision efficiency

E(m,m′) and a geometric contribution. As mentioned above, we assume E = 1 and so K is given by

K(m,m′) = π(r + r′)2|v − v
′|, (14)

where r and r′ are the radii of the corresponding mass variables, m and m′, while v and v′ are their respective velocities, whose

governing equation is given below. The Smoluchowski equation is a mean-field equation in the sense that the droplet-size distribution

solved in equation (13) is assumed to be spatially uniform. Also, it only involves mean collision kernels.

We define the mass and radius bins such that

mk = m1δ
k−1, rk = r1δ

(k−1)/3, (15)

where δ = 21/β . Here β is a parameter that we chose to be a power of two. For a fixed mass bin range, the number of mass bins kmax

increases with increasing β. In the simulation reported in Sec. 5, we set kmax = 61 with β = 4.

The velocities of the particle fluid vk is obtained by solving momentum equations, vk(x, t) = v(x, lnmk, t) for each logarithmic

mass value lnmk is
∂vk

∂t
+ vk ·∇vk = g − 1

τk
(vk − u) + Fk(vk), (16)

where 1 ≤ k ≤ kmax, τk (for k = i) is defined by equation (2), and

Fk(vk) = νp∇2
vk (17)

is a viscous force of the particle fluid, which is due to the interaction between the individual particles. Here νp = 10−3 m2 s−1 is the

artificial viscosity. This viscous force should be very small for dilute particle suspensions, but is nevertheless retained in equation (16)

for the sake of numerical stability of the code.
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Since collisions can only happen if droplets have different sizes when using the Smoluchowski equation, the initial condition

used in the superparticle approach is not applicable. Instead, we adopt a log-normal droplet-size distribution (Nenes and Seinfeld 2003;

Seinfeld and Pandis 2016) for both the Smoluchowski equation and the superparticle approach. The log-normal droplet-size distribution

is widely used in climate models and is supported by the in situ atmospheric measurements (Miles et al. 2000),

f(r, 0) =
n0√

2πσini r
exp

[

− ln2(r/rini)

2σ2
ini

]

. (18)

Here rini = 10µm and σini = 0.05 is the width. Since the Smoluchowski equation is extremely computationally demanding (2.8 s

simulation time with 24 hours wall-clock time on 2048 CPUs), we use n0 = 2.5 × 1010 m−3 for the Smoluchowski equation.
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