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ABSTRACT

Context. Turbulent diffusion of large-scale flows and magnetic fields plays a major role in many astrophysical systems, such as stellar
convection zones and accretion discs.
Aims. Our goal is to compute turbulent viscosity and magnetic diffusivity which are relevant for diffusing large-scale flows and
magnetic fields, respectively. We also aim to compute their ratio, which is the turbulent magnetic Prandtl number, Pmt, for isotropically
forced homogeneous turbulence.
Methods. We used simulations of forced turbulence in fully periodic cubes composed of isothermal gas with an imposed large-scale
sinusoidal shear flow. Turbulent viscosity was computed either from the resulting Reynolds stress or from the decay rate of the large-
scale flow. Turbulent magnetic diffusivity was computed using the test-field method for a microphysical magnetic Prandtl number of
unity. The scale dependence of the coefficients was studied by varying the wavenumber of the imposed sinusoidal shear and test fields.
Results. We find that turbulent viscosity and magnetic diffusivity are in general of the same order of magnitude. Furthermore, the
turbulent viscosity depends on the fluid Reynolds number (Re) and scale separation ratio of turbulence. The scale dependence of
the turbulent viscosity is found to be well approximated by a Lorentzian. These results are similar to those obtained earlier for the
turbulent magnetic diffusivity. The results for the turbulent transport coefficients appear to converge at sufficiently high values of Re
and the scale separation ratio. However, a weak trend is found even at the largest values of Re, suggesting that the turbulence is not in
the fully developed regime. The turbulent magnetic Prandtl number converges to a value that is slightly below unity for large Re. For
small Re we find values between 0.5 and 0.6 but the data are insufficient to draw conclusions regarding asymptotics. We demonstrate
that our results are independent of the correlation time of the forcing function.
Conclusions. The turbulent magnetic diffusivity is, in general, consistently higher than the turbulent viscosity, which is in qualitative
agreement with analytic theories. However, the actual value of Pmt found from the simulations (≈0.9−0.95) at large Re and large scale
separation ratio is higher than any of the analytic predictions (0.4−0.8).
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1. Introduction

Turbulent transport is often invoked to explain phenomena in
astrophysical systems such as accretion (e.g. Shakura & Sunyaev
1973; Frank et al. 2002), maintenance of stellar differential rota-
tion (Rüdiger 1980, 1989; Rüdiger et al. 2013), and large-scale
magnetic field generation (Moffatt 1978; Krause & Rädler 1980).
Turbulence is typically thought to diffuse large-scale structures
analogously to molecular diffusion but at a rate that is several
orders of magnitude higher (e.g. Väisälä et al. 2014).

Turbulent diffusion coefficients, such as turbulent viscos-
ity (νt) and magnetic diffusivity (ηt), are often estimated using
arguments from the mixing length theory (MLT) according to
which νt ≈ ηt ≈ ul/3, where u and l are the characteristic veloc-
ity and length scale of the turbulence. Such estimates yield
values of the order of 108−109 m2 s−1 for the solar convection
zone, which coincide with values estimated for the turbulent
magnetic diffusivity ηt from sunspot decay in the quenched case

(Krause & Rüdiger 1975; Petrovay & van Driel-Gesztelyi 1997;
Rüdiger & Kitchatinov 2000) and from cross helicity measure-
ments in the unquenched (quiet Sun) case (Rüdiger et al. 2011).
With the advent of the test-field method (Schrinner et al. 2005,
2007), it has become possible to measure turbulent transport coef-
ficients that are relevant for the electromotive force (e.g., the tur-
bulent magnetic diffusivity) from simulations. Detailed studies
using this method indicate that the MLT estimate yields the cor-
rect order of magnitude in the kinematic regime (e.g. Sur et al.
2008; Käpylä et al. 2009a), provided that l is identified with the
inverse of the wavenumber kf of the energy-carrying eddies. This
result can further be affected by other physical properties, such
as the presence of kinetic helicity in the flow, which can reduce
the value of ηt (Brandenburg et al. 2017). The test-field method
also revealed an approximately Lorentzian dependence on the
wavenumber of the mean field (Brandenburg et al. 2008a).

In the absence of a corresponding test-field method for
hydrodynamics, the estimates of νt are typically much less
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accurate than those obtained for ηt from such methods. Esti-
mates of turbulent viscosity from shearing box simulations, how-
ever, also indicate a value of the order of the MLT estimate
(e.g. Snellman et al. 2009; Käpylä et al. 2010). Computing νt
from simulations with imposed linear shear flows is problem-
atic due to hydrodynamical instabilities that can be excited
(e.g. Elperin et al. 2003; Käpylä et al. 2009b). Furthermore, also
non-diffusive contributions to the turbulent stress exist. First,
the anisotropic kinetic alpha (AKA) effect can occur in the
presence of Galilean non-invariant flows1 and can give rise to
hydrodynamic instabilities analogous to the electromagnetic
dynamo (e.g. Frisch et al. 1987; Brandenburg & von Rekowski
2001; Käpylä et al. 2018)2. Second, anisotropic turbulence with
global rotation leads to a Λ effect, which is relevant for causing
differential rotation (e.g. Rüdiger 1989; Kitchatinov & Rüdiger
2005; Käpylä & Brandenburg 2008; Käpylä 2019a). Typically,
these effects cannot easily be disentangled from the contribu-
tion of turbulent viscosity. Additionally, a spatially non-uniform
kinetic helicity Yokoi & Brandenburg (2016) in rotating non-
mirror symmetric flows leads to the generation of large-scale
flows.

Contrary to the microphysical magnetic Prandtl number,
which can vary over tens of orders of magnitude in the astrophys-
ical context, depending on the physical characteristics of the sys-
tem under study (e.g. Brandenburg & Subramanian 2005), the
ratio of νt to ηt, that is the turbulent magnetic Prandtl number
Pmt, is thought to be of the order of unity in the astrophysi-
cally relevant regime of high Reynolds numbers. Nevertheless,
astrophysical applications of the possibility of Pmt being differ-
ent from unity have been discussed. These include both accretion
disc turbulence and solar convection. In the context of accretion
onto a magnetised star, one often assumes that the field lines of
the star’s magnetic field are being dragged with the flow towards
the star, so as to achieve a pitch angle suitable for jet launching
(Blandford & Payne 1982). This requires the turbulent magnetic
diffusivity to be small (Elstner & Rüdiger 2000), while subse-
quent work has shown that Pmt has only a weak influence on the
pitch angle (Rüdiger & Shalybkov 2002).

Another application has been suggested in the context of
the solar convection zone. For flux transport dynamos to explain
the equatorward migration of the sunspot belts, one must assume
the turbulent magnetic diffusivity to be of the order of 107 m2 s−1

(Chatterjee et al. 2004). On the other hand, to prevent the con-
tours of constant angular velocity from being constant on cylin-
ders, the turbulent viscosity must be around 109 m2 s−1, or even
larger (Brandenburg et al. 1990). Thus, again, a turbulent mag-
netic Prandtl number in excess of unity is required for this model
to be successful. A large turbulent viscosity is sometimes argued
to be a consequence of the magnetic stress from small-scale
dynamo action (Karak et al. 2018). Whether this idea has a solid
foundation remains open, however.

The analytic estimates of the turbulent magnetic Prandtl
number range between 0.4 under the first-order smoothing
approximation (FOSA) to 0.8 under various versions of the τ
approximation (Yousef et al. 2003; Kitchatinov et al. 1994), of
which the spectral minimal τ approximation (MTA) applied
to fully developed turbulent convection yields values in the
range 0.23−0.46 (Rogachevskii & Kleeorin 2006). Different
renormalisation group analyses yield Pmt ≈ 0.42−0.79 (e.g.

1 More precisely one had to speak about flows whose statistical prop-
erties are Galilean invariant or non-invariant.
2 In those papers, the presence of a deterministic forcing function made
the flow Galilean non-invariant.

Fournier et al. 1982; Kleeorin & Rogachevskii 1994; Verma
2001; Jurčišinová et al. 2011). Furthermore, the turbulent mag-
netic Prandtl number has been studied from simulations of
forced turbulence with a decaying large-scale field component
by Yousef et al. (2003) who found that Pmt is approximately
unity irrespective of the microphysical magnetic Prandtl and
Reynolds numbers. However, their dataset is limited to a few
representative cases that do not probe the Reynolds number or
scale dependences systematically.

Our aim is to compute the turbulent viscosity and turbulent
magnetic Prandtl number from direct simulations of homoge-
neous isotropically forced turbulence where we systematically
vary the Reynolds number and scale separation ratio and com-
pare the obtained results with analytic ones. To achieve this, we
impose a large-scale shear flow with a harmonic profile on the
(non-rotating) flow and determine the turbulent viscosity either
from the generated Reynolds stresses or from the decay rate of
the large-scale flow. For obtaining the turbulent magnetic diffu-
sivity we employ the test-field method.

2. Model

2.1. Basic equations

We model a compressible gas in a triply periodic cube with edge
length L. It obeys an isothermal equation of state defined by
p = c2

sρ, with pressure p, density ρ and constant speed of sound
cs. Hence, we solve the continuity and Navier–Stokes equations
with both an imposed random and large-scale shear forcing

D ln ρ
Dt

= −∇ · U, (1)

DU
Dt

= −c2
s∇ ln ρ +

1
ρ
∇ · (2νρS) + f −

1
τ

(
Uy − U

(0)
y

)
êy, (2)

where D/Dt = ∂/∂t + U · ∇ is the advective time derivative,
U is the velocity, ν is the constant kinematic viscosity, Si j =
1
2 (Ui, j + U j,i)− 1

3δi j∇ ·U is the traceless rate of strain tensor, and
the commas denote spatial derivatives. The forcing function f is
given by

f = f 0N(t) f k(t) Re
{
exp

[
i
(
k(t) · x + φ(t)

)]}
, (3)

where k(t) is a random wavevector and

f k(t) =
(
k × e(t)

)
/

√
k2
−

(
k · e(t)

)2 (4)

is used to produce a nonhelical transversal sinusoidal f , where
e(t) is an arbitrary random unit vector, not aligned with k, and
φ(t) is a random phase. N(t) = c3/2

s (k/δt)1/2 is a normalisation
factor, k = |k|, δt is the length of the integration time step and
f0 is a constant dimensionless scaling factor. The quantities k,
e, and φ change at every time step, so that the external force is
delta-correlated (white) in time. Numerically, we integrate the
forcing term by using the Euler–Maruyama scheme (Higham
2001). We consider models where k is within a narrow shell of
wavevectors with k close to a chosen kf , and determined such
that the forcing always obeys the periodic boundary conditions.

The last term in Eq. (2) maintains a large-scale shear flow
on top of the forced background turbulence via relaxing the
horizontally (xy) averaged part of the y velocity, indicated by
the overbar, towards the temporally constant profile U

(0)
y ; êy is

the unit vector in the y-direction. The relaxation time scale τ
is chosen to match the turnover time (urmskf)−1 of the turbu-
lence, where urms is the rms value of the fluctuating velocity,
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urms =
〈(

U − U
)2〉1/2

t , with the average taken over the full vol-
ume as indicated by the angle brackets, and over the statisti-
cally steady part of the simulations, indicated by the subscript
t. Our results are not sensitive to the relaxation time τ in the
range 0.1 < τurmskf < 10 so the (arbitrary) choice τurmskf = 1 is
justified. We choose a simple harmonic form for the shear flow
according to

U
(0)
y = U0 cos(kUz), (5)

where U0 is the flow amplitude, and kU = k1, 2k1, . . . , kmax
U ,

k1 = 2π/L.

2.2. Input and output quantities

We measure density in terms of its initially uniform value ρ0,
velocity in units of the sound speed cs, and length in terms
of k−1

1 . Furthermore, in the cases with the test-field method
employed, we choose a system of electromagnetic units in which
µ0 = 1, where µ0 is the permeability of vacuum. The simula-
tions are fully defined by choosing the forcing amplitude f0 and
scale kf/k1, kinematic viscosity ν, microscopic magnetic Prandtl
number

Pm =
ν

η
, (6)

where η is the microscopic magnetic diffusivity in the test-field
method, and the shear parameter

Shc =
U0kU

cskf
· (7)

We further assume that the scale of the test fields always equals
that of the imposed large-scale flow, that is kB = kU , and that the
value of Pm for the test-field simulations equals unity. For the
scale separation ratioS we employ the definition

S = kf/kU . (8)

The following quantities are used as diagnostics of our models.
We quantify the level of turbulence in the simulations by the fluid
and magnetic Reynolds numbers

Re =
urms

νkf
, Rm =

urms

ηkf
= Pm Re. (9)

The strength of the imposed shear is measured by the dynamic
shear number

Sh =
U0kU

urmskf
· (10)

Guided by MLT and FOSA, we normalise both the turbulent vis-
cosity and magnetic diffusivity by

νt0 = ηt0 = urms/3kf , (11)

while the turbulent magnetic Prandtl number is given by

Pmt =
νt

ηt
· (12)

3. Computation of νt and ηt

3.1. Mean-field analysis

In what follows, we rely upon Reynolds averaging, specifically
defining the mean quantities as averages over x and y. Hence,
they can only depend on z and time. Averages are indicated by
overbars and fluctuations by lowercase or primed quantities, thus
U = U + u, ρ = ρ + ρ′ etc.

3.1.1. Hydrodynamics

In the incompressible case all turbulent effects can be subsumed
in the Reynolds stress tensor Qi j = uiu j whose divergence
appears in the evolution equation of the mean flow. Including
compressibility and starting from

∂t(ρUi) + ∂ j(ρUiU j) = −∂iP + . . . , (13)

where the dots stand for viscous and external forces, one obtains
after averaging

∂t(ρ′ui + ρU i)

+ ∂ j(ρ uiu j + U iρ′u j + U jρ′ui + ρ′uiu j + ρU iU j)

= −∂iP + . . . . (14)

The contributions proportional to the Reynolds stresses, ρ uiu j,
no longer cover all turbulent effects originating from the iner-
tial terms. However, in our weakly compressible setups with
Ma ≈ 0.1 the difference between, for example |(ρuy)′uz/ρ0u2

rms|

and |ρ uyuz/ρ0u2
rms| is O(10−2)3. Thus, we will consider, as in the

incompressible case, only the Reynolds stresses4. When restrict-
ing to first order in the mean quantities, they can be decomposed
into three contributions,

Qi j = Q(0)
i j + Q(ln ρ)

i j + Q(U)
i j (15)

where Q(0)
i j is already present in the absence of both a mean flow

U and a gradient of ln ρ, Q(ln ρ)
i j is occurring due to the presence

of ∇ln ρ, and Q(U)
i j occurs due to the presence of U (for a justi-

fication see Appendix A). As in our simulations no significant
∇ln ρ occurs, we disregard Q(ln ρ)

i j . Further, as the fluctuations are

isotropically forced, the only non-zero components of Q(0)
i j are

Q(0)
xx = Q(0)

yy = Q(0)
zz . Apart from small fluctuations, they do not

depend on z and thus do not act onto the mean flow. Note that due
to the absence of a global rotation there is also no contribution
of the Λ effect in Qi j. In what follows we drop the superscript
(U) for brevity.

For sufficiently slowly varying mean flows and sufficient
scale separation, Qi j can be approximately represented by the
truncated Taylor expansion

Qi j = Ai jkUk + Ni jklUk,l, (16)

with the symmetry requirements

Ai jk = A jik, Ni jkl = N jikl. (17)

Here, Ai jk describes the AKA effect, while Ni jkl comprises turbu-
lent viscosity (amongst other effects)5. For isotropic (and hence

3 Neglecting density fluctuations may not be rigorously justified,
given that the variety of potentially new effects owing to compress-
ibility has not yet been fully explored, but see the recent studies by
Rogachevskii et al. (2018) and Yokoi (2018) for the electromotive force.
However, recent hydrodynamic results for the Λ effect suggest that the
effect of compressibility is weak up to Ma ≈ 0.8 (Käpylä 2019b).
4 Further turbulence effects result from the term S · ∇ ln ρ, but are not
considered here either because of our assumption of weak compressibil-
ity. We recall that S is the traceless rate of strain tensor used in Eq. (2).
5 Note that relation (16) is yielding the stresses without truncation
when interpreted to be a representation of the Fourier-transformed
kernel of a general convolution-like relationship between Qi j and U j
(cf. Brandenburg et al. 2008a).
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homogeneous) fluctuations, that is in the kinematic limit U → 0,
Ai jk = 0, and Ni jkl must have the form

Ni jkl = −νt(δikδ jl + δilδ jk) − ζtδi jδkl, (18)

where the constants νt and ζt are the turbulent shear and bulk
viscosities, respectively. The Reynolds stresses appear then cor-
respondingly as

Qi j = −νt(U i, j + U j,i) − σtδi j∇ · U, (19)

with the first term reproducing the Boussinesq ansatz. Although
our turbulence is isotropically forced, the presence of finite shear
causes it to be anisotropic with preferred directions given by the
direction of the mean flow U and, say, its curl, W = ∇×U. Given
that it is the divergence of Qi j which enters the mean momen-
tum equation and mean quantities depend only on z, merely the
components Ai3k and Ni3k3 matter in (16). As U needs not to be
solenoidal, Uz might in general depend on z and the turbulent
bulk viscosity is then of interest.

Further simplification is obtained when assuming that the
mean velocity has only one component. In our setup, the mean
flow is always very close to the maintained one, that is, U ≈
U

(0)
∼ ey. Then we have

Qi3 = Ai32Uy + Ni323 Uy,z = aiUy + ni Uy,z, (20)

where we have introduced new coefficients ai = Ai32 and ni =
Ni323. Comparison with (19) reveals that for Uy → 0 with
isotropic forcing n2 → −νt while ai and n1,3 should approach
zero.

We note that the AKA-effect can only be expected to appear
in Galilean non-invariant flows (Frisch et al. 1987). This is not
the case for the flows considered here, because the forcing is δ
correlated in time, so there is no difference between a forcing
defined in an arbitrary inertial frame and a forcing defined in the
(resting) lab frame.

3.1.2. Magnetohydrodynamics

We consider only z dependent mean fields in which case the
mean electromotive force E, when truncated in analogy to (16),
can be represented by two rank–2 tensors

Ei = αi jB j − ηi jJ j, J = ∇ × B, i, j = 1, 2, 3, (21)

where J = ∇ × B is the current density. Given that all quantities
depend only on z, we have Jz = 0 and because Bz = const. by
virtue of ∇ · B = 0, Ez(z) has no effect on the evolution of B.
Hence we set Bz = 0 and restrict our interest to the components
αi j and ηi j with i, j = 1, 2. As the pseudo-tensor αi j can for non-
helical forcing merely be constructed from the building blocks
U i and W j by the products U iW j and U jW i, within its restricted
part, only the components α12 and α21 can be non-zero for our
setup. Building blocks for the anisotropic part of the restricted
ηi j are here

W iW j,U iU j, and higher order terms, (22)

hence the off-diagonal components η12,21 need to vanish. So all
the relevant components, except an isotropic contribution to η,
have leading order in U0 of at least 2. In the limit U0 → 0 we
have αi j → 0 while η11,22 → ηt.

3.2. Imposed shear method

We apply three methods to extract the mean-field coefficients
from the simulation data:
M1: The mean flow Uy depends on z, and as it is approximately

harmonic, its zeros do not coincide with those of its deriva-
tive Uy,z = −W x. Hence the coefficients ai and ni can be
isolated by

ai

(
zW

j , t
)

= Qiz

(
zW

j , t
)
/Uy

(
zW

j , t
)
, (23)

ni

(
zU

j , t
)

= −Qiz

(
zU

j , t
)
/W x

(
zU

j , t
)
, (24)

where zU
j and zW

j are the zeros of Uy and W x, respectively.
ai and ni are then further subjected to temporal averaging.
In general, their values at the different zeros will only coin-
cide in the limit U0 → 0, but in our case the differences
turned out to be smaller than the error bars.

M2a: We use constant fit coefficients ai and ni in the time aver-
aged simulation data of Qiz, Uy, and ∂zUy:

Qiz = aiUy + ni∂zUy. (25)

M2b: Alternatively, we drop the non-diffusive contribution and
use only a single coefficient ni as a fit parameter:

Qiz = ni∂zUy. (26)

For method M1 we divide the time series of ai and ni into three
parts and define the largest deviation from the average, taken
over the whole time series, as the error. For M2a,b we similarly
perform the fit for data averaged over three equally long parts
of the time series and take the error to be the largest deviation
from the fitted values obtained from a time average over the full
time series. Our results indicate that only the Reynolds stress
component Qyz shows a significant signal that can be related to
the mean-field effects discussed above.

Figure 1 shows the horizontally averaged mean flow Uy(z, t),
Reynolds stress component Qyz(z, t), and the z profiles of its
temporal average along with −νtUy,z from method M2b. The
imposed velocity profile induces a large-scale pattern in the
Reynolds stress with the same vertical wavenumber, but with a
vertical shift of π/2.

3.3. Decay experiments

Apart from measuring the response of the system to imposed
shear, it is possible to measure the turbulent viscosity indepen-
dently from the decay of large-scale flows. We refer to this pro-
cedure as M3. We employ this method to check the consistency
of methods M1 and M2 in a few cases.

The dispersion relation for the large-scale flow Uy is given
by

ω = −νTk2
z , (27)

where νT = ν + νt and kz is the wavenumber of the flow.
Equation (27) is valid if large-scale velocities other than Uy, the
pressure gradient, and the effects of compressibility are negligi-
ble. We measure the decay rate of the kz = kU constituent of the
flow by extracting its amplitude using Fourier transform and fit-
ting an exponential function to the data. The clear exponential
decay is drowned out by the random signal from the turbulence
after a time that depends on the amplitude of the initial large-
scale flow and other characteristics of the simulations. Thus we
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Fig. 1. Horizontally averaged velocity Uy(z, t) (top), Q̃yz(z, t) = Qyz/u2
rms

(middle), and its temporal average in comparison with −νtUy,z/u2
rms

(bottom) from Run E9 (see Table 2) with k̃f = kf/k1 = 5, k̃U = kU/k1 = 1,
Sh ≈ 0.04, and Re ≈ 497. νt from method M2b.

limit the fitting to the clearly decaying part of the time series
which typically covers roughly 300 turnover times.

To reduce the effect of the stochastic fluctuations of the tur-
bulence, we perform N independent realisations of the decay and
measure νt from the decay rate in each case. This is achieved
by using N uncorrelated snapshots from the fiducial run with
imposed shear flow as initial conditions for decay experiments,
see Fig. 6 for representative results where N = 10. Such snap-
shots are separated by at least 80 turbulent eddy turnover times.
An error estimate is obtained by dividing the obtained values of
νt into two groups and considering the largest deviation of aver-
ages over these from the average over the full set.

3.4. Test-field method

We use the test-field method, originally described in
Schrinner et al. (2005, 2007), to determine the turbulent transport
coefficients αi j and ηi j. Our formulation is essentially the same
as in Brandenburg et al. (2008b). The fluctuating magnetic fields
are evolved with the flow taken from the simulation by

∂aT

∂t
= U × bT + u × B

T
+

(
u × bT

)′
+ η∇2aT, (28)

where bT = ∇ × aT, η is the magnetic diffusivity, and B
T

is
one out of a set of large-scale test fields. Neither the fluctuating
fields aT nor the test fields BT act back on the flow. Each of the
test fields yields an electromotive force (EMF)

E = u × bT. (29)

Assuming that the mean field B varies slowly in space and time,
the electromotive force can be written as

Ei = αi jB j + βi jk
∂Bk

∂x j
, (30)

where αi j and βi jk represent the α effect and turbulent diffusion,
respectively. These coefficients can be unambiguously inverted
from Eq. (30) by choosing an appropriate number of independent
test fields.

We use four stationary z dependent test fields

B
1c

= B0(cos kBz, 0, 0), B
2c

= B0(0, cos kBz, 0), (31)

B
1s

= B0(sin kBz, 0, 0), B
2s

= B0(0, sin kBz, 0),

where kB is a wavenumber. As explained in Sect. 3.1.2, Eq. (30)
simplifies here to Eq. (21) with ηi1 = βi23 and ηi2 = −βi13.
Because of α11,22 = 0, α12,21 → 0 for U0 → 0 we neglect
the latter for weak imposed shear flows and simplify Eq. (21)
further to

Ei = −ηi jJ j. (32)

We are interested in the diagonal components of ηi j which we
represent in terms of the turbulent diffusivity by

ηt = 1
2 (η11 + η22). (33)

In the case of homogeneous isotropic turbulence, the turbulent
transport coefficients are uniform across the system and volume
averages are appropriate. In the present case, however, the tur-
bulence can neither be considered fully isotropic nor homoge-
neous due to the imposed z dependent shear flow, which makes
the coefficients also anisotropic and z dependent. Both effects are
weak though in the computed ηt; see Sect. 4.2 for the effect of
anisotropy.

Exponential growth of the test solutions bT at high Rm is a
known issue in the test-field method (Sur et al. 2008). To circum-
vent it, we reset the bT periodically to zero with a resetting time
that is roughly inversely proportional to the magnetic Reynolds
number.

The error of the turbulent magnetic Prandtl number is com-
puted from

δPmt ≈ Pmt

(
δνt

νt
+
δηt

ηt

)
, (34)

where δνt and δηt are the errors of turbulent viscosity and diffu-
sivity, respectively.

4. Results

We perform several sets of simulations where we vary the
forcing wavenumber kf , determining the scale separation ratio,
fluid and magnetic Reynolds numbers Re and Rm, respectively,
and the wavenumber of the large-scale flow kU . Representa-
tive examples of the flow patterns realised in runs with small,
medium, and high Reynolds numbers (from left to right) and
forcing wavenumbers k̃f = (3, 5, 10, 30) (from top to bottom,
Sets D−G) are shown in Fig. 2. We also typically evolve the test-
field equations in our runs so the results pertaining to νt and ηt
are always obtained from the same simulation. All of our runs
are listed in Tables 1–3.

In Fig. 3 we show representative results for a2 and νt obtained
with the methods M1 and M2a from Sets A–C (see Table 1)
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Fig. 2. Normalised streamwise velocity component Ũy = Uy/cs at the periphery of the computational domain for increasing scale separation ratio
(from top to bottom), and increasing Reynolds number (left to right) for selected runs from D1 to G6.

with forcing wavenumbers 3, 5, and 10. The coefficient a2, cor-
responding to the AKA-effect, is consistent with zero for all
values of shear and with both methods that can detect it. This
conclusion applies to all of our models and is consistent with the
Galilean invariance of our forcing.

We note that, as a2 from method M2a is always very small,
it has a negligible effect on the quality of the fit and the value
of νt in comparison to method M2b. For simplicity, we present
results obtained using M2b in what follows. Overall, no statisti-

cally significant values were obtained for the coefficients a1, a3,
n1, and n3.

4.1. Turbulent viscosity

4.1.1. Dependence on position and sensitivity to shear
The turbulent viscosities obtained for the two zeros employed
in M1 (M11 and M12 in Fig. 3) agree within error estimates and
agree also with those obtained from M2a and M2b. This suggests
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Fig. 3. AKA–effect coefficient a2 (top) and turbulent viscosity νt (bottom) as functions of Sh for three scale separation ratios,S = 3 (Set A, left),
5 (Set B, middle), and 10 (Set C, right). The colours refer to methods M1 (blue and red), and M2a (black). M11 and M12 refer to the two zeros
employed in Eqs. (23) and (24).

Table 1. Summary of the runs with varying shear.

Run Re Sh Shc [10−5] k̃f Ma ν̃t η̃t Pmt Grid

A1 21 0.015 160 3 0.105 1.509 1.899 0.795 723

A2 21 0.030 319 3 0.106 1.566 1.873 0.836 723

A3 21 0.060 638 3 0.106 1.575 1.912 0.824 723

A4 22 0.146 1595 3 0.109 1.452 1.900 0.764 723

A5 25 0.264 3191 3 0.121 1.496 2.098 0.713 723

A6 35 0.369 6381 3 0.173 1.618 2.192 0.738 723

B1 21 0.009 98 5 0.105 1.768 2.018 0.876 1443

B2 21 0.019 196 5 0.105 1.699 2.031 0.836 1443

B3 21 0.037 392 5 0.106 1.769 2.097 0.844 1443

B4 21 0.091 981 5 0.107 1.760 2.083 0.845 1443

B5 23 0.171 1962 5 0.115 1.818 2.361 0.770 1443

B6 33 0.235 3923 5 0.167 2.180 4.048 0.538 1443

C1 21 0.005 50 10 0.106 1.856 2.110 0.880 1443

C2 21 0.009 100 10 0.106 1.905 2.113 0.901 1443

C3 21 0.019 199 10 0.106 1.916 2.136 0.897 1443

C4 21 0.047 499 10 0.106 1.926 2.216 0.869 1443

C5 22 0.092 997 10 0.109 1.969 2.450 0.804 1443

C6 23 0.131 1496 10 0.115 2.063 2.811 0.734 1443

C7 29 0.136 1994 10 0.147 3.140 5.037 0.623 1443

Notes. Ma = urms/cs is the Mach number, ν̃t = νt/νt0, and η̃t = ηt/ηt0.
Furthermore, k̃B = k̃U = 1 in all runs yielding S = k̃f . Here and in
subsequent tables, νt is measured with method M2b and ηt with the test-
field method.

that νt has only a weak dependence on z or that its spatial profile
is such that it is not captured by this method.

When the amplitude of the shear flow is varied, the values of
νt start to increase rapidly at the largest values of Sh; see Fig. 3.
This is because the Navier–Stokes equations are inherently non-
linear. Therefore, imposing a large-scale flow has an impact on
the turbulence. However, if the shear is sufficiently weak, such
feedback is small and reliable results for νt can be obtained. To
assess this question, we perform simulations at fixed kinematic
viscosity and given forcing wavenumber kf while varying the

shear systematically. With the other quantities held unchanged,
the fluid Reynolds number is a measure of the rms–velocity of
the turbulence. In Fig. 4, we show the Reynolds numbers realised
in the same sets as in Fig. 3. We find that Re increases mildly
as a function of Sh for weak shear (Sh . 0.1) and starts to
increase sharply at higher values while the location of the tran-
sition depends weakly on the forcing wavenumber such that the
larger the kf , the smaller Sh is needed for the increase to occur.

The increase of Re is due to the fact that the turbulence
becomes increasingly affected by the imposed shear and attains
significant anisotropy. In some cases with the highest values of
Sh, we also see large-scale vorticity generation, which is likely
related to what is known as vorticity dynamo (e.g. Käpylä et al.
2009b). Such hydrodynamic instability can be excited by the
off-diagonal components of the turbulent viscosity tensor in
anisotropic turbulence in the presence of shear (Elperin et al.
2003, 2007).

These tests suggest that values of Sh below 0.1 are needed
for the influence of the shear on the turbulence to remain
weak. However, the excitation condition of the vorticity dynamo
manifestly depends on the scale separation ratio and likely
also on the Reynolds number. In our runs, we choose a
constant value of Shc for which Sh remains clearly below
the excitation threshold (note that Shc = Sh Ma). Another
factor supposedly contributing at large Reynolds numbers is
shear-produced turbulence – possibly through some sort of finite
amplitude instability. Given that the shear strengths (in terms
of Sh) considered here are relatively small, this effect is likely
to be weak in comparison to the turbulence production due to
the applied forcing.

4.1.2. Dependence on Re

Results for the turbulent viscosity as a function of the fluid
Reynolds number are shown in Fig. 5 for Sets D−G (see Table 2).
Here the value of the shear parameter Shc is constant in each set.
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Table 2. Summary of the runs with varying Reynolds numbers.

Run Re Sh Shc [10−5] k̃f Ma ν̃t η̃t Pmt Grid

D1 1.8 0.144 813 3 0.056 0.505 0.857 0.589 643

D2 4.9 0.106 813 3 0.077 1.068 1.594 0.670 643

D3 16 0.080 813 3 0.101 1.481 1.896 0.781 643

D4 36 0.071 813 3 0.114 1.508 1.832 0.823 643

D5 77 0.067 813 3 0.121 1.430 1.735 0.824 1283

D6 198 0.065 813 3 0.124 1.329 1.590 0.836 1283

D7 401 0.065 813 3 0.126 1.247 1.551 0.804 2563

D8 816 0.064 813 3 0.128 1.310 1.489 0.880 5123

E1 0.9 0.112 500 5 0.045 0.242 0.447 0.540 643

E2 1.5 0.094 500 5 0.053 0.434 0.762 0.570 643

E3 2.4 0.080 500 5 0.062 0.702 1.182 0.594 643

E4 8.8 0.056 500 5 0.089 1.468 2.007 0.732 643

E5 20 0.047 500 5 0.106 1.665 2.020 0.824 643

E6 45 0.043 500 5 0.117 1.693 1.901 0.891 1283

E7 121 0.040 500 5 0.124 1.578 1.733 0.911 2563

E8 246 0.040 500 5 0.125 1.485 1.678 0.885 2563

E9 497 0.039 500 5 0.127 1.382 1.604 0.862 5123

F1 0.3 0.080 254 10 0.032 0.096 0.156 0.617 1283

F2 0.9 0.057 254 10 0.045 0.274 0.454 0.603 1283

F3 3.4 0.037 254 10 0.069 1.049 1.532 0.685 1283

F4 8.9 0.028 254 10 0.089 1.670 2.103 0.794 1283

F5 21 0.024 254 10 0.106 1.905 2.116 0.900 1283

F6 59 0.021 254 10 0.119 1.787 1.926 0.928 2563

F7 123 0.021 254 10 0.123 1.700 1.802 0.943 5123

F8 249 0.020 254 10 0.125 1.607 1.712 0.939 5123

G1 0.7 0.021 84 30 0.041 0.205 0.356 0.577 2883

G2 1.9 0.015 84 30 0.058 0.675 1.114 0.606 2883

G3 5.2 0.011 84 30 0.078 1.429 2.090 0.684 2883

G4 16 0.008 84 30 0.102 1.930 2.215 0.871 2883

G5 38 0.007 84 30 0.114 1.915 2.072 0.924 5763

G6 79 0.007 84 30 0.120 1.856 1.844 1.007 5763

Notes. All quantities have the same meanings as in Table 1. Again k̃B =
k̃U = 1 andS = k̃f .

Additionally, the normalized relaxation time τurmskf = 1 is kept
fixed by adjusting τ, and k̃f is varied between 3 (Set D) and 30
(Set G). Furthermore, these runs use k̃U = k̃B = 1.

We find that for low Re and poor scale separation the sig-
nal is noisy and produces large errors in νt unless very long
time series are produced. The runs with kf ≈ 3 and Re ≈ 1
were in all sets typically run for several thousand turnover
times whereas for larger Reynolds numbers and scale separa-
tions the integration times can be an order of magnitude shorter.
The results in the low Reynolds number regime are in agree-
ment with νt ∝ Re as expected from analytic studies using
FOSA (Krause & Rüdiger 1974). The value of νt increases until
Re ≈ 10 after which it saturates roughly to a constant between
one and two times νt0 depending on the scale separation ratio
S . However, we still see a slow decrease for the highest val-
ues of Re which likely indicates that even the highest resolu-
tion simulations are not in the regime of fully developed tur-
bulence. We note that the Mach number changes by a factor
between roughly two (Set D) to four (Set F) between the extreme
runs in each set. However, Ma saturates in the high-Re runs so
compressibility effects are unlikely to explain the slow declining
trend of νt.

There is also a dependence on the scale separation ratio such
that higher values of S result in larger values of ν̃t. In theory
νt should converge towards the value at infinite scale separa-
tion. This is confirmed by Sets F and G where k̃f = 10 and 30,
respectively.

Fig. 4. Reynolds number as a function of Sh for three scale separation
ratios, S = 3 (blue), 5 (red), and 10 (black), or Sets A, B, and C,
respectively.

Fig. 5. Turbulent viscosity νt, normalised by νt0, as a function of the
Reynolds number Re for sets of runs with different scale separation ratio
S , but Shc = const. within each of the Sets D (blue), E (red), F (black),
and G (purple). The dotted black line is proportional to Re.

4.1.3. Results from M3

As a representative example, Fig. 6 shows the decay of the k = k1

constituent of Uy for ten independent initial conditions derived
from Run F8. We compare the results for νt from methods M2b
and M3 in Fig. 7 for Sets F and Fd. The runs of the latter were set
up such that N = 10 snapshots from each of the runs in Set F with
imposed shear were used as initial conditions. Thus each run in
Set F works as a progenitor to ten decay experiments with the
same system parameters in Set Fd. We find that the results from
methods M2b and M3 coincide within the error estimates for low
and intermediate Reynolds numbers (Re . 20). However, there
is a systematic tendency for the νt from the decay experiments to
exceed the value from the Reynolds stress method for Re & 30
by 10–20%.

4.1.4. Dependence on scale separation ratio

The dependence of νt on the scale separation ratio S for four
different forcing scales is given in Table 3 (Sets H–K). We fit the
data to a Lorentzian as a function of the inverse scale separation
ratioS −1
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Table 3. Summary of the runs with varying scale separation ratio S =
kf/kU .

Run Re Sh Shc [10−4] k̃f S Ma ν̃t η̃t Pmt Grid

H1 20 0.077 81 3 3.0 0.106 1.517 1.894 0.801 1443

H2 20 0.153 163 3 1.5 0.106 1.101 1.477 0.746 1443

H3 20 0.229 244 3 1.0 0.106 0.784 1.168 0.671 1443

I1 20 0.047 50 5 5.0 0.106 1.705 2.037 0.837 1443

I2 20 0.094 100 5 2.5 0.107 1.436 1.782 0.806 1443

I3 20 0.140 150 5 1.7 0.107 1.120 1.538 0.728 1443

I4 20 0.187 200 5 1.3 0.107 0.942 1.337 0.704 1443

J1 21 0.024 25 10 10 0.106 1.883 2.142 0.879 1443

J2 21 0.048 51 10 5.0 0.106 1.790 2.009 0.891 1443

J3 21 0.072 76 10 3.3 0.106 1.584 1.899 0.834 1443

J4 21 0.095 102 10 2.5 0.107 1.421 2.111 0.673 1443

J5 21 0.119 127 10 2.0 0.107 1.265 1.635 0.774 1443

J6 21 0.166 178 10 1.4 0.107 1.015 1.396 0.727 1443

K1 16 0.008 8.4 30 30 0.102 1.930 2.215 0.871 2883

K2 17 0.016 17 30 15 0.103 4.343 6.481 0.670 2883

K3 16 0.025 25 30 10 0.102 1.981 2.286 0.867 2883

K4 16 0.042 42 30 6.0 0.102 1.790 2.096 0.854 2883

K5 17 0.083 85 30 3.0 0.103 1.512 1.855 0.815 2883

K6 17 0.123 127 30 2.0 0.103 1.247 1.628 0.766 2883

K7 17 0.164 170 30 1.5 0.103 1.057 1.426 0.741 2883

Notes. All quantities have the same meanings as in Table 1.

νt(kU/kf) =
νt(0)

1 + σ(kU/kf)2 =
νt(0)

1 + σS −2 , (35)

where νt(0) and σ are fit parameters6. We also fit the data to a
more general function where the exponent c of kU/kf is another
fit parameter:

νt(kU/kf) =
νt(0)

1 + σ(kU/kf)c =
νt(0)

1 + σS −c · (36)

The inverse relative errors νt/δνt are used as weights in the fit.
The data and the fits are shown in Fig. 8. While the data is
in reasonable agreement with a Lorentzian with νt(0) = 1.90
and σ = 1.80, the more general function with νt(0) = 2.00,
σ = 1.61, and c = 1.44 yields a somewhat better fit. Data con-
sistent with Lorentzian behaviour has been found earlier for ηt
in low Reynolds number turbulence (Brandenburg et al. 2008a);
see Table 4 for an overview of the σ values found previously
in various cases ranging from magnetic diffusion in isotropic
turbulence to passive scalar diffusion in shear flows, in which
σ was typically below unity. However, a value of c close to
4/3, as found here, is indeed expected for fully developed Kol-
mogorov turbulence; see the discussion in the conclusions of
Madarassy & Brandenburg (2010).

Note that σ was found to be larger under the second-order
correlation approximation (SOCA), but the reason for this depar-
ture is unclear. Also, looking at Table 4, there is no obvious
connection between the values of σ in different physical circum-
stances. More examples are needed to assess the robustness of
the results obtained so far.

Knowing the value ofσ is important for more accurate mean-
field modelling. In physical space, a prescription like Eq. (35)
corresponds to a convolution, which makes the Reynolds stress
at a given position dependent on the mean velocity within a
certain neighbourhood. In that way, non-locality is modelled.

6 The parameter σ determines the intersection position of the asymp-
totics νt(0) and νt(0)S 2/σ, where νt becomes νt(0)/2, asS =

√
σ.

Fig. 6. Amplitude of the k = k1 constituent of Uy(z, t) normalised by
urms in Run F8d as a function of time from ten independent realisations
of the decay. The solid red lines show exponential fits to the data.

Fig. 7. Turbulent viscosity as a function of Re from method M2b,
Set F (black) and from corresponding decay experiments (method M3),
Set Fd (red).

This is generally ignored in the common use of turbulent
viscosity, although some attempts have been made to include
such affects to leading order (Rüdiger 1982). Ignoring non-
locality corresponds to the limit σ → 0 or kU/kf → 0, which is
often a questionable assumption; see Brandenburg & Chatterjee
(2018) for a discussion in the context of spherical mean-field
dynamos.

4.2. Turbulent diffusivity ηt

The turbulent magnetic diffusivity ηt from Sets D–G is shown in
Fig. 9. We find a similar qualitative behaviour as for νt so that for
small magnetic Reynolds numbers the value of ηt is proportional
to Rm and the results converge when the scale separation ratio is
increased. As in the case of the turbulent viscosity, we find a weak
declining trend as a function of Rm at its highest values which
was neither observed by Sur et al. (2008) in similar simulations
without shear nor by Brandenburg et al. (2008b) and Mitra et al.
(2009) in runs where the large-scale flow was imposed via the
shearing-box approximation. However, the error estimates in the
aforementioned studies are clearly greater than in the present one
and thus a weak decreasing trend as a function of Rm cannot be
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Fig. 8. Turbulent viscosity as a function of the inverse scale separation
ratio kU/kf for the four normalised forcing wavenumbers k̃f = 3 (blue),
5 (red), 10 (black), and 30 (purple), corresponding to Sets H–K, respec-
tively. Fits according to Eqs. (35) and (36) are shown by dotted and
dashed lines, respectively.

Table 4. Examples of σ values found previously in other cases.

σ Case References

0.16 Shear flow, passive scalar Madarassy & Brandenburg (2010)
0.38 Passive scalar Brandenburg et al. (2009)
0.25 Roberts flow, ηt, non-SOCA Brandenburg et al. (2008a)
1 Roberts flow, α & ηt, SOCA Brandenburg et al. (2008a)
1.80 νt, isotropic turbulence Present work

ruled out. Furthermore, the shear flows in the present simulations
are significantly weaker than in the cases of Brandenburg et al.
(2008b) and Mitra et al. (2009), such that their influence on the
turbulent transport coefficients is also weaker.

We assess the effect of the shear flow on the results by per-
forming an additional set of simulations in which it is omitted,
but otherwise the same parameters as in Set F are employed. We
show the results for the difference of ηt in these sets in Fig. 10.
The difference is typically of the order of a few per cent such
that in most cases the value from the case with shear is greater.
This is of the same order of magnitude as the error estimates for
ηt. Thus we conclude that the systematic error due to the large-
scale anisotropy induced by the shear flow is insignificant in the
determination of the turbulent diffusivity.

4.3. Turbulent magnetic Prandtl number
Our results for Pmt as a function of Reynolds number and scale
separation ratio S are shown in Fig. 11. We find that Pmt for
Re & 20 is roughly a constant for each value of k̃f while increas-
ing from roughly 0.8 for k̃f = 3 to 0.95 for k̃f = 10. Especially
at low Re, the convergence with respect to the scale separation
is not as clear as for νt and ηt individually. With respect to low
Reynolds numbers, we see an increasing trend starting from val-
ues between 0.55 and 0.65 at Re ≈ 5 until Re ≈ 20. At even
lower Re the uncertainty in the determination of νt becomes
larger and the values of Pmt have substantial error margins.

The turbulent magnetic Prandtl number has been computed
with various analytical techniques, see Table 5. Considering the
limit of ν → 0 or Re → ∞, different flavours of FOSA yield
either Pmt = 0.8 (Kitchatinov et al. 1994) or 0.4 (Yousef et al.
2003), whereas MTA results for fully developed turbulent con-

Fig. 9. Turbulent diffusivity ηt, normalised by ηt0, as a function of the
magnetic Reynolds number Rm for runs with Shc = const. within each
of the Sets D (blue), E (red), F (black), and G (purple). The dotted black
line is proportional to Rm andSB = kf/kB.

Fig. 10. Relative difference δη̃t = (η(0)
t −ηt)/ηt of turbulent magnetic dif-

fusivity from Set F and a corresponding set without shear, here denoted
by superscript zero. The vertical bars indicate the error estimates of η̃t
from Set F.

vection favours lower values (Rogachevskii & Kleeorin 2006).
A similar spread of values from Pmt ≈ 0.42 (Verma 2001) to
≈0.7−0.8 (Fournier et al. 1982; Kleeorin & Rogachevskii 1994;
Jurčišinová et al. 2011) has been reported using renormalisation
group methods for the case of three spatial dimensions and weak
magnetic fields.

Particularly at high scale separation, our results are not com-
patible with any of the analytic results but indicate a higher
value than all of the theories. This can be due to the fact that
the turbulence in the simulations is not in the fully developed
regime and because the scale separation achieved is still insuf-
ficient. Furthermore, analytic theories must resort to approx-
imations that cannot be justified in high-Reynolds number
turbulence.

4.4. Dependence on forcing time scale

The bulk of the simulations considered here use a δ correlated
random (white) forcing, see Eq. (3), such that a new wavevector
is chosen at every time step. It cannot, however, be ruled out a
priori that the results depend on the correlation time of the forc-
ing. Here we test the sensitivity of the results with respect to this
correlation time by comparing the default case of white–in–time

A93, page 10 of 12

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935012&pdf_id=8
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935012&pdf_id=9
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935012&pdf_id=10


P. J. Käpylä et al.: Turbulent viscosity from simulations

Fig. 11. Turbulent magnetic Prandtl number Pmt as a function of the
Reynolds number Re for the same sets of runs as in Fig. 6. Pm = 1
is used in all runs. The dotted horizontal lines indicate the extrema of
analytical results from different methods; see Table 5.

Table 5. Comparison of values of Pmt from analytic and numerical
studies.

Pmt Method References

0.4 FOSA Yousef et al. (2003)
0.8 FOSA Kitchatinov et al. (1994)
0.23–0.46 Spectral MTA, convect. Rogachevskii & Kleeorin (2006)
≈0.72 Renormalisation group Fournier et al. (1982)
≈0.79 Renormalisation group Kleeorin & Rogachevskii (1994)
≈0.42 Renormalisation group Verma (2001)
≈0.71 Renormalisation group Jurčišinová et al. (2011)
≈1 DNS, dec. MHD turb. Yousef et al. (2003)
≈0.9 DNS, high Re Present work
0.55–0.65 DNS, low Re Present work

forcing with cases where the forcing wavevector is held constant
for a time δtf . We take Run C4 as our fiducial model where
δtfkfurms ≈ 0.02 and δtf is equal to the time step of the simula-
tion. We increased δtfkfurms in steps by a factor of 50 altogether
and computed turbulent viscosity, magnetic diffusivity, and mag-
netic Prandtl number; see Fig. 12. We find that νt, ηt, and Pmt are
essentially constant in this range of parameters. Our method of
switching the forcing with a period δtf is crude because it induces
discontinuities, but the approximate constancy of the coefficients
suggests that robust results for the turbulent transport coefficients
are obtained nevertheless.

5. Conclusions

We have computed the turbulent viscosity (νt) and magnetic
diffusivity (ηt) from simulations of forced turbulence using
imposed shear flows and the test-field method, respectively. As
expected, νt and ηt are found to be proportional to the respective
Reynolds number at low Re and Rm. With increasing values of
Re and Rm, the turbulent transport coefficients saturate at around
Re ≈ Rm ≈ 10, but show a weakly decreasing trend beyond.
The value of the turbulent viscosity estimated from the Reynolds
stress, which is interpreted to reflect the response of the system
to a large-scale flow, and from the decay of a mean flow in the
presence of turbulence are in fair agreement. However, the lat-
ter yields systematically slightly higher values for high Reynolds
numbers by less than 10%.

Fig. 12. Coefficients νt (black) and ηt (red), normalised by νt0 and ηt0,
respectively; and Pmt (blue) as functions of δtfkfurms using Run C4 as
the fiducial model.

The turbulent magnetic Prandtl number Pmt saturates
between 0.8 and 0.95 for Re & 10 depending on the scale sep-
aration ratio. We note that these values are somewhat higher
than those from the renormalisation group approach and, espe-
cially, the first-order smoothing approach. The value of Pmt
computed here corresponds to the kinematic case where the
magnetic field is weak, which is often not the case in astro-
physical systems. Analytic studies predict quenching of turbu-
lent viscosity and magnetic diffusivity when the magnetic fields
are dynamically significant (e.g. Kitchatinov et al. 1994). The
quenching of ηt has also been computed from numerical sim-
ulations (e.g. Käpylä & Brandenburg 2009; Brandenburg et al.
2008c; Karak et al. 2014). Similar studies for turbulent viscos-
ity are so far lacking. Such results will be reported elsewhere.

One of the other remaining issues to be addressed in the
future is the role of compressibility effects, in particular that
of fluctuations of ρ. In addition to making analytic progress by
identifying potentially new effects owing to their presence, it
would be useful to extend our simulations to the regime of larger
Mach numbers. Another possible extension of our work is to
study the potential of a small-scale dynamo to give rise of mag-
netic stresses that could enhance the turbulent viscosity, as has
been suggested in the solar context to alleviate the discrepancies
between observations and simulations of differential rotation and
convective velocities (Karak et al. 2018).
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Appendix A: Justification for Eq. (15)

In the isothermal case, it is convenient to consider the quantity
H = ln ρ instead of the density itself resulting in equations linear

in H and free of triple correlations of fluctuating quantities. We
denote the turbulence present under the condition U = ∇H = 0
by u(0). If u(0) describes isotropic turbulence, only the diagonal
components Qii exist. Proceeding to the situation U = 0,∇H ,
0, indicated by the superscript (0,H) the fluctuations u, h can be
written as u = u(0) + u(0,H), h = h(0) + h(0,H). Correspondingly,
the mean force is

F = 2ν s · ∇h − u · ∇u = F (0) + F (0,H) (A.1)

with s = S − S, and

F
(0) = 2ν s(0) · ∇h(0) − u(0) · ∇u(0), (A.2)

F
(0,H) = 2ν

(
(s(0) + s(0,H)) · ∇h(0,H) + s(0,H) · ∇h(0))
− (u(0) + u(0,H)) · ∇u(0,H) − u(0,H) · ∇u(0). (A.3)

Restricting to first order in the mean quantities, we get

F
(0,H) = 2ν

(
s(0) · ∇h(0,H) + s(0,H) · ∇h(0))

− u(0) · ∇u(0,H) − u(0,H) · ∇u(0). (A.4)

Analogously, for U , 0,∇H = 0, we have

F = F (0) + F (U,0) (A.5)

with

F
(U,0) = 2ν(s(0) · ∇h(U,0) + s(U,0) · ∇h(0))

− u(0) · ∇u(U,0) − u(U,0) · ∇u(0) (A.6)

in first order. If now both U and ∇H do not vanish, one can see
from the equations for the fluctuating quantities, again restricted
to first order in the mean quantities,

∂th(U,H) = −U · ∇h(0) − u(0) · ∇H − ∇ · u(U,H) (A.7)

−

(
u(0) · ∇h(U,H) + u(U,H) · ∇h(0)

)′
,

∂tu(U,H) = −c2
s∇h(U,H) + ν∇2u(U,H) (A.8)

+ 2ν
(
s(0) · ∇h(U,H) + s(U,H) · ∇h(0)

)′
−

(
u(0) · ∇u(U,H) + u(U,H) · ∇u(0)

)′
+ 2ν

(
s(0) · ∇H + S · ∇h(0)

)
(A.9)

− u(0) · ∇U − U · ∇u(0),

that due to their linearity in h(U,H), u(U,H), and the additivity of
their inhomogeneities depending on U and H, respectively,

h(U,H) = h(0,H) + h(U,0), (A.10)

u(U,H) = u(0,H) + u(U,0), (A.11)

holds and hence

F = F (0) + F (U,0) + F (0,H) (A.12)

to first order in U and H. Given that the major part of F is ∇ ·Q,
an equivalent relationship can be assumed for Q.
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