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ABSTRACT

The possibility of explaining shear flow dynamos in terms of a magnetic shear–current (SC) effect is exam-
ined. A competing explanation is the incoherent α–shear dynamo effect. Our primary diagnostics is the deter-
mination of the turbulent magnetic diffusivity tensor, in particular the off-diagonal diffusivity tensor component
ηyx, a systematically negative sign of which would imply coherent dynamo action through SC, in systems where
the mean flow in the y direction has a constant x derivative. To be able to measure turbulent transport coeffi-
cients from systems with strong magnetic fluctuations, we present an extension of the test–field method (TFM)
that is capable of such measurements in the case where the pressure gradient term is dropped from the MHD
equations, which is a nonlinear TFM (NLTFM). The hydrodynamic equation is related to Burger’s equation and
the resulting flows are referred to as magnetized burgulence. We use both kinetic and magnetic forcings, to
mimic cases without and with simultaneous small-scale dynamo action (SSD). When the simplified MHD flow
is forced kinetically, negative ηyx values are obtained with exponential growth in both the radial and azimuthal
magnetic field components. Using stochastic monochromatic magnetic forcing, the exponential growth is no
longer seen, and NLTFM yields positive values of ηyx. In an attempt to recover the exponential growth seen in
the kinetically forced case, we also employ an alternative forcing function with lowest k vectors being removed
– in this case the exponential growth is recovered, but the NLTFM results do not change dramatically. Our
analysis of the dynamo numbers for the coherent SC and incoherent α and SC effects show that the incoherent
effects are the main drivers of the dynamo instability in majority of cases. The coherent SC effect is mildly
enhancing the dynamo action in the kinetically forced cases, while we find no evidence for magnetic SC in our
simulations.

1. INTRODUCTION

In recent years, the possibility of large-scale dynamo
(LSD) action through the shear–current effect (Rogachevskii
& Kleeorin 2003, 2004) in flows where more conventional
dynamo effects, such as the α effect arising through stratifi-
cation and rotation, cannot operate, has gained a lot of inter-
est. In turbulence lacking helicity, say, due to the absence of
rotation or stratification in density or turbulence intensity, the
α tensor vanishes. The turbulent magnetic diffusivity tensor
η, however, is always found to have finite and positive diag-
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onal components. Its off-diagonal components are in general
also finite if there is rotation or shear. Rotation alone gives
rise to the Ω×J or Rädler effect (Rädler 1969a,b) and shear
alone to the shear–current (SC) effect. For a suitable sign of
the relevant off-diagonal component of η, the latter can lead
to dynamo action even without rotation, but the former would
not without shear. Both the Rädler and SC effects have been
discussed as additional or even major dynamo effects in stars
(Pipin & Seehafer 2009), accretion disks (Lesur & Ogilvie
2008; Blackman 2010), and galactic magnetism (Chamandy
& Singh 2018).

Astrophysical flows are also subject to vigorous small-
scale dynamo (SSD) action, which should occur in any flow
where the magnetic Reynolds and Prandtl numbers are large
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enough. The SSD produces strong, fluctuating magnetic
fields at scales smaller than the forcing scale of the turbu-
lence, on time scales short in comparison to the LSD in-
stability (see, e.g., Brandenburg et al. 2012). Usually, the
SSD is thought to be detrimental to α-effect driven dy-
namos, where dynamo action can be strongly suppressed in
high Reynolds number regimes (e.g., Cattaneo & Vainshtein
1991; Vainshtein & Cattaneo 1992), unless the system can
get a rid of small-scale magnetic helicity by interacting with
its surroundings through helicity fluxes (e.g., Blackman &
Field 2001; Brandenburg 2001; Brandenburg & Subramanian
2005). In the absence of magnetic background turbulence it
has not yet been possible to verify the existence of a dynamo
driven by the SC effect (Yousef et al. 2008; Brandenburg
et al. 2008; Singh & Jingade 2015). Failure to understand the
origin of large-scale magnetic fields in these numerical works
in terms of the SC effect, together with the findings of signif-
icant α fluctuations in Brandenburg et al. (2008), provided
enough motivation to explore the possibility of LSD action
driven solely due to fluctuating α in shearing systems. Such
an incoherent α–shear dynamo was studied analytically in a
number of previous works, suggesting a possibility of gen-
eration of large-scale magnetic fields due to purely temporal
fluctuations in α in the presence of shear (Heinemann et al.
2011; Mitra & Brandenburg 2012; Sridhar & Singh 2014).

It has, however, been claimed that in the presence of forc-
ing in the induction equation, mimicking magnetic back-
ground turbulence provided, e.g., by the SSD, a thus mag-
netically driven SC dynamo exists (Squire & Bhattacharjee
2015, 2016). These studies reported the generation of a large-
scale magnetic field, usually on the scale of the computa-
tional domain, with magnetic forcing while in the case of
kinetic forcing only, the generated patterns were reported to
be temporally more erratic and spatially less coherent. For
a flow in y direction, sheared in x, an attempt was made to
measure the turbulent transport coefficients using the Second
Order Cumulant Expansion method of Marston et al. (2008),
and the results indicated negative ηyx and ηxx in the pres-
ence of magnetic forcing. Incidentally, if confirmed in this
case, a negative ηxx could also imply dynamo action (Lan-
otte et al. 1999; Devlen et al. 2013). At that time, however,
a suitable test-field method (TFM), providing another mea-
surement tool for the turbulent transport coefficients, was not
yet available.

Here, we present first steps towards such a toolbox, extend-
ing the method developed by (Rheinhardt & Brandenburg
2010, (RB10)) to include the self–advection term and rota-
tion, albeit still limited to simplified MHD (SMHD) equa-
tions, with the pressure gradient term being dropped. Al-
though this method does not yet provide a completely suit-
able tool for the systems studied by Squire & Bhattacharjee
(2015, 2016), it does provide a working solution for simpli-

fied shear dynamos with magnetic forcing, mimicking SSD,
and can be envisioned to enable important scientific insights.
In this paper, we present the method, referred to as “nonlin-
ear test-field method” (NLTFM), and tests against previously
studied cases, along with other validation results. As our ma-
jor topic, we analyze runs with simplified MHD equations
that exhibit dynamo action in the same parameter regime as
previously claimed to host magnetic SC (MSC) effect dy-
namos.

2. MODEL AND METHODS

We perform local Cartesian box simulations with shearing-
periodic boundary conditions to implement large-scale shear
as a linear background flow imposed on the system. The
shear occurs in the x direction, which could represent, e.g.,
the direction from the rotational centre of a cosmic body.
Here, y is the stream-wise, or azimuthal, direction, and z

points into the vertical direction. The magnitude of the shear-
ing motion is described by the input parameter S such that
the imposed linear shear flow is US = Sxŷ. The rotation
of the domain, Ω = (0, 0,Ω), is described by the input pa-
rameter Ω, the magnitude of the angular velocity. In most
of the simulations reported in this paper, however, rotation is
neglected, as here we concentrate on studying the possibility
of the SC effect alone. We will, however, retain rotation in
the model equations for completeness. Our boxes have edge
lengths Lx = Ly , and Lz with aspect ratio A = Lz/Lx cho-
sen A = 1 in many cases, but we consider also vertically
elongated boxes with A = 4, 8, 16. All calculations were
carried out with the PENCIL CODE.1

2.1. Simplified MHD

As stated in the introduction, the equations of SMHD as de-
fined here are similar to those of MHD, but lack the pressure
gradient. Correspondingly, the density ρ is held constant. We
solve the equations for the magnetic vector potential A and
the velocity U ,

DAA=U ×B + FK + η∇2A, (1)

DUU =−U ·∇U + J ×B/ρ+ FM

+ν(∇2U + ∇∇ ·U/3) (2)

with the linear expressions

DAA=DA+ Sx̂Ay, (3)

DUU = (D + 2Ω×)U + SŷUx (4)

D=∂/∂t+ Sx∂/∂y. (5)

B = ∇×A is the magnetic field, J = ∇×B is the current
density in units where the vacuum permeability is unity, FK

1 http://github.com/pencil-code

http://github.com/pencil-code
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and FM are kinetic and magnetic forcing functions, respec-
tively, η is the (molecular) magnetic diffusivity, and ν is the
kinematic viscosity, both considered constant. Equation (2)
can be considered a 3-dimensional generalization of Burgers’
equation, which is why we refer to its turbulent solutions as
“burgulence”.

The main advantage of using SMHD is to avoid the neces-
sity of dealing with density fluctuations and corresponding
effects in the mean quantities. However, as self-advection
U · ∇U is no longer discarded, we are here more general
than RB10 the models of which suffered, in physical terms,
from the implied assumption of slow fluid motions, that is,
small Strouhal numbers (St� 1) or small Reynolds numbers
(Re � 1). A complete neglect of the self-advection term is
inadequate in the present context given that shear plays its
essential role just via this term. So merely the terms aris-
ing from an additional mean flow and from the fluctuating
velocity alone could be neglected. The latter neglect, how-
ever, would be equivalent to restricting the method to the
second-order correlation approximation (SOCA) w.r.t. to the
self-advection term which is not desirable.

2.2. Full MHD

The full MHD system of equations (FMHD), here with an
isothermal equation of state, is more complex because of the
occurrence of the pressure gradient, by which we need an ad-
ditional evolution equation for the density. Also the viscous
force is more complex, hence

DAA=U ×B + FK + η∇2A,

ρ(DU +U ·∇)U + ∇p=J ×B + ρFM + ∇ · (2νρS),

(D +U ·∇) ln ρ=−∇ ·U . (6)

Here, Sij = (Ui,j + Uj,i) − 1
3∇ · U are the components

of the rate-of-strain tensor S, where commas denote partial
differentiation, and p is the pressure related to the density via
p = c2sρ, with cs = const being the isothermal sound speed.

2.3. Nonlinear TFM

Throughout, we define mean quantities by horizontal av-
eraging, i.e., averaging over x and y, denoted by an over-
bar. So they depend on z and t only. Fluctuations are de-
noted by lowercase symbols or a prime, e.g., a = A − A,
u = U − U , and (u × b)′ = u × b − u× b. Nor-
mally taken to be a Reynolds average, in situations with shear
the complication arises that US 6= US (when defined to
be ∝ x, the mean even vanishes), being hence not a pure
mean, while ∂iUSj is spatially constant, hence a pure mean.
However, (US ·∇G)′ = US ·∇g for an arbitrary quantity
G = G + g. This is a consequence of US ·∇G = 0 and
US ·∇g =

∫ ∫
Sx∂yg dxdy =

∫
Sx
(∫
∂yg dy

)
dx = 0,

the latter because of periodicity in y.

The evolution equations for the fluctuations of the mag-
netic vector potential, a, and the velocity, u, are following
from Eqs. (1) and (2) as

DAa=u×B + (u× b)′ + fK + η∇2a, (7)

DUu=
(
J × b+ j ×B + (j × b)′

)
/ρ+ fM (8)

+(u ·∇u)′ + ν
(
∇2u+ ∇∇ · u/3

)
,

Terms with the mean flowU have been dropped because they
are suppressed in the simulations. Further, FK = FM = 0,
that is, the forcings are pure fluctuations.

We solve these equations not by setting B to the actual
mean field resulting from the solutions of Eqs. (1) and (2),
but by setting it to one of several test fields,BT. Those are

B(1) = (cos kBz, 0, 0), B(2) = (sin kBz, 0, 0), (9)

B(3) = (0, cos kBz, 0), B(4) = (0, sin kBz, 0), (10)

where kB is the wavenumber of the test field, being a multi-
ple of 2π/Lz . From the solutions of Eqs. (7) and (8) we can
construct the mean electromotive force, E = u× b and the
mean ponderomotive force, F = j × b/ρ− u ·∇u, which
are then expressed in terms of the mean field by the ansatzes

E i = αijBj − ηijJj , (11)

F i = φijBj − ψijJj , (12)

where i, j adopt only the values 1, 2 as a consequence of set-
ting the anyway constant Bz arbitrarily to zero. Hence, each
of the four tensors, αij , ηij , φij , ψij , has four components,
i.e., altogether we have 16 unknowns.

In the quasi-kinematic test-field method (QKTFM) (see
Sect. 2.4), E , considered as a functional of u, U , and B,
is linear in B. In the more general case with a magnetic
background turbulence, this is a priori no longer the case. To
deal with this difficulty, RB10 added the evolution equations
for the background turbulence (u0,b0) which are similar to
Eqs. (7) and (8), but for zero mean field, to the equations
of the TFM. In general, E can be split into a contribution
u0 × b0 that is independent of the mean field and a contribu-
tion

EB̄ = u0 × bB̄ + uB̄ × b0 + uB̄ × bB̄, (13)

where uB̄ and bB̄ denote the solutions of Eqs. (7) and (8) in
the absence of any forcing (called “test problems”) which are
supposed to vanish for vanishing B. Using u = u0 + uB̄

and b = b0 + bB̄ , EB̄ can be written in two equivalent ways
as

EB̄ = u× bB̄ + uB̄ × b0 = u0 × bB̄ + uB̄ × b. (14)

Both become linear in quantities with subscript B when b
and u are identified with the fluctuating fields in the main
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run, which is the system (1)–(2) solved simultaneously with
the test solutions. In this way, we have recovered the men-
tioned linearity property of E[B] of the QKTFM. Likewise,
one writes the part of the mean ponderomotive force F ,
which results from the Lorentz force as

j × bB̄ + jB̄ × b0 or j0 × bB̄ + jB̄ × b ; (15)

and that resulting from self-advection as

u ·∇uB̄ +uB̄ ·∇u0 or u0 ·∇uB̄ +uB̄ ·∇u ; (16)

see Equations (29) and (30) of RB10. Corresponding ex-
pressions can be established for the fluctuating parts of the
bilinear terms, (u × b)′, (j × b)′, and (u ·∇u)′. We recall
that the different formulations of the fluctuating parts, result
in different stability properties of the test problems, see also
the test results presented in Appendix B.1. Here we chose to
use in Eqs. (14)–(16) and the corresponding versions of the
fluctuating terms the first one, resulting in what is called the
ju method; see Table 1 of Rheinhardt & Brandenburg (2010).

The kinematic limit —The given alternative formulations be-
come equivalent when the mean quantities, possibly evolv-
ing in the main run, are too weak to have a marked influence
on the fluctuating fields. Then, u → u0 and b → b0. Em-
ploying this means dropping terms like uB̄ × bB̄ in mean
EMF and mean force as is the correct way to obtain the latter
as quantities of first order in B. Then all possible versions
of the NLTFM (which actually ceases to be nonlinear) give
identical results up to roundoff errors.

2.4. Quasikinematic TFM

We now state here for comparison the governing equations
for the QKTFM (see also Schrinner et al. 2005, 2007). They
consist of just Eq. (7), but not Eq. (8), and Eq. (11). Then,
Eq. (14) reduces simply to

EB̄ = u× bB̄ (17)

Obviously, the contribution uB̄ × b0 is missing. Again, for
further details see RB10.

2.5. Forcing

The standard forcing, implemented in the PENCIL CODE,
employs white–in–time “frozen” harmonic non-helical plane
waves. Their wavevectors are randomly selected from a thin
shell in k space of radius kf that fit into the periodic com-
putational domain (for details see, e.g. Käpylä et al. 2020).
In most of our simulations, we apply this forcing for both
fK and fM in Eqs. (7) and (8). The wavevectors are further
selected such that no mean field or mean flow are directly
sustained, that is, the case ky = 0 is excluded.2 However,

2 Without shear, only those with kx = ky = 0 had to be excluded, but due
to shear-periodicity, 2π/kx is no longer an integer fraction of Lx.

due to roundoff errors, it is unavoidable that averages over
harmonic functions deviate slightly from zero. We call this
effect “leakage of the forcing into the mean fields”. Being
without effect for the velocity as we remove its mean perma-
nently, strong shear could produce a linearly growing By out
of a smallBx due to such leakage. This is why we checked its
effect in purely magnetic runs and found the growth of By to
be limited and both components to stay within margins close
to numerical precision. Nevertheless, as will be discussed in
Sect. 3.1, with this magnetic forcing setup, the mean mag-
netic fields very quickly (in a few turnover times) reach dy-
namically effective strengths without showing a clear expo-
nential stage.

Hence, another forcing setup was designed, referred to as
“decimated forcing”. In addition to ensuring that the case
ky = 0 is excluded, we took out all those wavevectors for
which |kx,y,z|/k1 ≤ kmin/k1 = 2. As will be discussed in
the results section, the decimated forcing has the advantage
of reducing the amplitude of the mean fields generated during
the initial stages, thus allowing us to determine the growth
rate of an exponentially growing dynamo instability. While
the standard choice is expected to provide a good approxima-
tion to homogeneous isotropic velocity turbulence, isotropy
could be lost in the decimated case, given that all wavevec-
tors are parallel or almost parallel to the spatial diagonals of
the box.

However, as is discussed in Appendix A, the generated tur-
bulence does not markedly deviate from that by the standard
forcing in terms of isotropy. Also, repeating the kinetically
forced runs (fM = 0) with decimated forcing do not signifi-
cantly alter the dynamo solutions.

2.6. Input and output quantities

The simulations are fully defined by choosing the shear
parameter S, the forcing setup, amplitude, and wavenumber,
kf , the kinematic viscosity ν, and the magnetic diffusivity η.
The boundary conditions are (shearing) periodic in all three
directions. The following quantities are used as diagnostics:
We quantify the strength of the turbulence by the fluid and
magnetic Reynolds numbers

Re =
urms

νkf
, ReM =

urms

ηkf
= PrM Re, (18)

where

PrM =
ν

η
, (19)

is the magnetic Prandtl number, along with the Lundquist
number,

Lu =
Brms

ηkf
. (20)

The strength of the imposed shear is measured by the dy-
namic shear number

ShK =
S

urmskf
. (21)



SHEAR–CURRENT EFFECT IN MAGNETIZED BURGULENCE 5

As in earlier work, we normalize the turbulent magnetic dif-
fusivity tensor by the SOCA estimate

η0 = urms/3kf (22)

or the molecular diffusivity η. The magnetic field is normal-
ized by the equipartition field strength, Beq = 〈µ0ρu

2〉1/2,
where µ0 is the vacuum permeability (here set equal to unity)
and angle brackets denote volume averaging.

We define the root-mean-square (rms) value of a field V as
Vrms = 〈V 2〉1/2. The rms values of the mean field compo-
nents are computed asBi,rms =

〈
B

2

i

〉1/2
z

, where 〈.〉z denotes
averaging over z.

2.7. Resetting

The test problems Eqs. (7) and (8) are often unstable, but
this does not necessarily affect the values of the resulting tur-
bulent transport coefficients: They usually show statistically
stationary behavior over limited time spans although the test
solutions are already growing. For safety reasons, we always
reset them to zero in regular intervals (typically every 50 time
units); see Hubbard et al. (2009) for a discussion. We also
remove 20% of data from the beginning of each resetting in-
terval, to mask the initial transient due to the resetting.

2.8. Mean flow removal

In all cases, be it full or simplified MHD, the first insta-
bility to be excited is the generation of mean flows in the
horizontal velocity components. These are most likely sig-
natures of the vorticity dynamo (see, e.g., Elperin et al. 2003;
Käpylä et al. 2009). They have a strong effect on the dy-
namics and can de-stabilize the test problems. Therefore, we
have decided to suppress all mean flows by subtracting them
from the solutionU in every timestep. We will return to their
effect in a forthcoming publication.

3. RESULTS

The naming of the runs is such that the first letter, F or
S, indicates full or simplified MHD, while the second and/or
third refers to the forcing regime: K and KM referring to
purely kinetic and combined kinetic and magnetic forcing
with equal amplitude, respectively. The number following
the letters indicates the vertical aspect ratio A of the box. A
trailing letter “d” stands for “decimated forcing”.

3.1. Overall behavior of the main runs

As our starting point, we defined a setup, related to one
from Squire & Bhattacharjee (2015), with marginal dynamo
excitation (in incompressible MHD) with an aspect ratio
A = 8. We denote this run as FK8a, and tabulate ReM,
the growth rate of the initial kinematic stage, λ, and the η
components measured by QKTFM in Table 1. As reported
by Squire & Bhattacharjee (2015), we also observe an ini-
tial decay of the rms and mean magnetic fields, but later on
temporary saturation at very low values, after which a very

slow decay is observed, indicative of a nearly marginally ex-
cited dynamo state. Due to the finite Bx present at all times,
a much stronger (roughly 40 times) By is maintained due to
the shear, but as the dynamo is nearly marginal, these mean
fields remain at very low strengths.

Next, we repeat this run, but with SMHD which yields
Run SK8a in Table 1. Now rms and mean fields grow, the
mean radial and azimuthal components showing exponential
growth at the same rate, albeit still very slow. Nevertheless,
the dynamo instability is somewhat easier to excite than in
FMHD. The azimuthal component is again much stronger
than the radial one with the ratio By,rms/Bx,rms similar to
the FMHD case.

We continue by repeating these runs with decreased mag-
netic diffusivity, resulting in roughly six times larger mag-
netic Reynolds number, ReM (Runs FK8b and SK8b). In
both simulations we observe exponential growth of the rms
and mean magnetic fields, somewhat faster with SMHD than
with FMHD. We also determine the fastest growing dynamo
mode and its vertical wavenumber, kz and list them in Ta-
ble 3; the fastest growing mode is the nearly the same,
kz/k1 = 9, in both models. Hence, we can conclude that,
going from FMHD to SMHD retains the dynamo mode, but
changes its excitation condition and growth rate somewhat.

As the dynamo growth is slow, simulations with A = 8

are too costly to be run until saturation. Hence, to investigate
whether with reducedA the dynamo mode could be retained,
we repeated the runs with A = 1 (Runs FK1a, FK1b, SK1a
and SK1b). As is evident from Tables 1 and 3, these runs be-
have very much like their tall box counterparts, the low-ReM
FMHD model being slightly subcritical and the high-ReM
one supercritical, while the SMHD runs are both supercrit-
ical. The fastest growing mode now has k/k1 = 1, corre-
sponding to k/k1 = 8 in the tall box. We also perform a set
of runs in SMHD with A = 4; see Runs SK4a and SK4b.
The former exhibits a very slowly decaying solution instead
of a growing one, which is an anomaly in the SMHD set,
but the latter one, again, exhibits a growth rate very similar
to the cubic (SK1b) and tall box (SK8b) cases, both with a
wavenumber kz/k1 = 4. All in all, the ‘b’ runs give rather
clear evidence that the cubic simulation domains retain the
same dynamo mode as the taller ones.

The time evolution of the rms and mean fields from the
cubic runs, integrated until saturation, are shown in the top
panel of Figure 1 with solid and broken lines, respectively.
The growth rate of the SMHD run is somewhat larger, but
the saturation strength is lower than in FMHD. The ratio
By,rms/Bx,rms, however, is the same. We also show the mean
fields in a zt diagram in Figure 2, top panel. We see the emer-
gence and saturation of the Fourier mode k = 1 both in the
radial and azimuthal components, where each negative (pos-
itive) patch ofBy is accompanied by a much weaker positive
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Table 1. Summary of the runs with constant shear and forcing wavenumber.

Run ReM λ/(η0k
2
f ) ηxx/η0 ηyy/η0 ηyx/η0 ηxy/η0 αrms/η0kf ηrms/η0

FK1a 2.1 −0.0354 0.557±0.006 0.547±0.007 0.048±0.001 0.351±0.009 0.018±0.009 0.054±0.013
FK1b 11.9 0.0140 0.608±0.015 0.598±0.014 0.023±0.001 0.419±0.032 0.022±0.011 0.031±0.012
FK8a 2.1 −0.0008 0.572±0.010 0.563±0.011 0.044±0.002 0.378±0.009 0.001±0.002 0.048±0.014
FK8b 12.7 0.0166 0.641±0.019 0.634±0.017 0.023±0.001 0.473±0.024 0.009±0.005 0.026±0.009
SK1a 2.0 0.0006 0.367±0.001 0.393±0.002 −0.003±0.000 0.279±0.002 0.021±0.004 0.009±0.001
SK1b 12.3 0.0183 0.440±0.004 0.412±0.001 −0.011±0.002 0.461±0.009 0.020±0.009 0.017±0.009
SK4a 2.1 −0.0042 0.367±0.003 0.390±0.003 −0.004±0.000 0.279±0.003 0.008±0.002 0.006±0.001
SK4b 13.3 0.0185 0.334±0.037 0.339±0.044 −0.004±0.005 0.239±0.073 0.008±0.004 0.007±0.008
SK8a 2.1 0.0033 0.367±0.003 0.390±0.004 −0.003±0.000 0.274±0.003 0.006±0.002 0.005±0.002
SK8b 12.8 0.0192 0.401±0.005 0.424±0.005 −0.015±0.000 0.367±0.010 0.007±0.002 0.017±0.004
SKM1a 1.9 — 1.794±0.039 1.278±0.045 0.200±0.025 −0.725±0.083 0.010±0.055 0.250±0.090
SKM4a 2.1 — 2.012±0.179 1.191±0.014 0.221±0.012 −0.560±0.015 0.046±0.017 0.230±0.072
SKM8a 1.8 — 3.054±0.625 1.481±0.131 0.338±0.064 −0.186±0.045 0.036±0.011 0.352±0.213
SKM16a 2.0 — 2.238±0.552 1.215±0.010 0.249±0.062 −0.580±0.055 0.022±0.008 0.260±0.191
SKM1ad 2.1 0.0103 1.228±0.214 1.326±0.074 0.247±0.043 0.237±0.117 0.149±0.062 0.441±0.212
SKM4ad 1.9 0.0315 1.279±0.150 1.455±0.066 0.222±0.022 0.369±0.072 0.081±0.017 0.270±0.119
SKM8ad 1.5 0.0948 1.688±0.165 2.040±0.150 0.516±0.061 0.383±0.154 0.111±0.069 0.543±0.260

Notes: For all runs, kf/k1 = 5 (k1 = 2π/Lx), and S = −0.25, yielding a roughly invariable ShK of −1.6. In runs with labels ‘a’, the
magnetic Prandtl number PrM is 1/3, while for ‘b’ it is 20.

(negative) patch in Bx. The patches disappear and re-appear
quasi-periodically, and also their vertical position is not con-
stant. In comparison to Squire & Bhattacharjee (2015), who
show similar plots of simulations with parameters closely
matching ours, the appearance of By in their purely kinet-
ically forced run (their Figure 9(a)) is much more erratic
than in our SMHD runs. Comparing to the kinetically forced
FMHD results of Brandenburg et al. (2008) (their Figure 7),
however, our solution looks very similar, although they had
much higher ReM and also higher PrM, which should have
enabled a simultaneous SSD.

Finally, we repeat the simulations, labelled ‘a’ (PrM =

1/3), with the same parameters, but using the magnetic forc-
ing in addition to the kinetic one, so that the same rms veloc-
ity is obtained as in the kinetically forced cases, with equal
contributions from the kinetic and magnetic forcings. This
set of parameters should very closely correspond to the case
studied in Squire & Bhattacharjee (2015), Figure 9(d). As
seen there, too, we observe a nearly immediate appearance
(during the first five turnover times) of a strong By as is
shown for Run SKM1a in Figure 1, lower panel. Although
Squire & Bhattacharjee (2015) did not show the evolution
of Bx, our results give indication that By arises due to the
action of the strong shear on Bx. After the initial rapid
growth, we do not see any further increase of Bx while lin-
ear growth up to turmskf ≈ 170 and quasi-regular oscilla-

tions occur in By . Hence, we are not able to report a growth
rate for Run SKM1a in Table 1, and also not for the larger
A runs SKM4a, SKM8a and SKM16a for the same reason.
From Figure 2, middle panel, we see that, again, the kz = 1

vertical Fourier mode is the preferentially excited one, al-
though the patterns seen in the zt plots are much more short–
lived and erratic in time than in the kinetically forced coun-
terpart SK1a (same figure, top panel). Remarkably, there
is no kinematic stage, but the large–scale pattern appears
nearly instantly. (Note that the whole time range shown for
Run SKM1a is roughly as long as the kinematic range exhib-
ited by Run SK1b.) The appearance and evolution ofBy also
disagrees with the results of Squire & Bhattacharjee (2015),
who observed a much less erratic pattern to arise in a closely
matching parameter regime see their Figure 9(d).

The rapidly emerging mean fields in the magnetically
forced runs are related to the standard forcing scheme used
in all the simulations presented so far. Even if this scenario
could be regarded as a genuine dynamo instability, its inves-
tigation is out of the scope of our current numerical setup, be-
cause obviously much higher cadence in time should be used
in an attempt to follow the possible kinematic stage. Also,
the simulations should be started from a fully matured tur-
bulent MHD background state, as currently the mean–field
growth occurs during the initial transient state, where even
turbulence itself is not yet saturated.
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Figure 1. Time evolution of rms and mean magnetic field strengths
from different runs. Top: comparison of a higher–Rm FK (black),
an SK (orange), and a decimated SKM run (blue). Bottom: compar-
ison of SKM runs with A = 1, with standard (blue, Run SKM1a)
and decimated (black, Run SKM1ad) forcing. Solid - Brms, dotted
- By,rms, dashed - Bx,rms.

Hence, instead of fully dwelling on the cause of the rapid
initial growth, we turn into using the decimated forcing func-
tion with kmin = 2, and repeat Run SKM1a as a decimated
version, now denoted SKM1ad and shown in Figure 1 lower
panel (black lines). We still see the rapid appearance of the
mean fields, but their magnitudes are now much lower than
in the case of our standard forcing, plotted with blue lines
in the same figure for comparison. After the rapid excitation
phase, we observe a slow exponential growth of both Bx and
By , reminiscent of the dynamo instability seen in the FK and
SK runs. The growth rate is now larger than in the kinetically
forced counterparts FK1a and SK1a, see Table 1; when com-
pared with the higher–ReM runs FK1b and SK1b, as can be
seen from Figure 1 upper panel, the growth rates are nearly
equal. We also produced two more runs with varying aspect

ratio A (SKM1ad and SKM8ad), and notice that the growth
rate is increasing with A.

Based on these runs with different forcings, we propose
that the slow dynamo instability could have been drowned by
the stronger initial mean fields when forced with the standard
forcing function. Although the growth rate of the dynamo
instability is similar to the kinetically forced cases, and the
growing wavenumber of the dynamo instability are the same
in both cases, the change of the growth rate as function of
the aspect ratio of the box indicates that some key properties
of the dynamo instability do change when magnetic forcing
is used. In the next section we make an attempt to inves-
tigate what exactly has changed by measuring the turbulent
transport coefficients in the systems with the relevant TFM
variant.

3.2. Turbulent transport coefficients

3.2.1. Strong shear cases

In this subsection we compare cases of strong shear in ki-
netically forced FMHD and SMHD, and kinetically and mag-
netically forced SMHD, measured with the appropriate vari-
ant of the TFM. We choose S = −0.25, which, with the
selected amplitude of the forcing, results in the shear number
ShK ≈ −1.6, indicating a strong influence of shear on the
system. This setup closely matches the cases investigated by
Squire & Bhattacharjee (2015).

First we use the QKTFM to measure the turbulent trans-
port coefficients in the kinetically forced FMHD cases, the
results being presented in Table 1. We measure zero mean
in all α components, hence we tabulate only the rms values
of the α fluctuations; αrms = 〈α2

ij〉
1/2
t . the same applies

to all other runs studied here. In the low ReM cases (FK1a,
FK8a) we measure relatively isotropic diagonal components
of the η tensor, positive and somewhat smaller values of ηxy
and much smaller positive values of ηyx. The magnitude of
the normalized ηyx values, however, exceeds the correspond-
ing fluctuations in α. In these cases, no indications of LSD
instability is seen.

In the high ReM cases (FK1b and FK8b), the diagonal
components of η have, as expected, higher magnitudes,
showing only mild anisotropy, as in the low ReM cases, so
that the ηxx somewhat exceeds ηyy . ηxy is increased with
respect to the diagonal components, reaching roughly 3/4
of their magnitudes. ηyx is still positive, and decreases in
magnitude. In these cases we see LSD action, but with ηyx
being positive, it seems unlikely that the dynamo is of SC-
origin, in agreement with previous numerical studies (Yousef
et al. 2008; Brandenburg et al. 2008; Singh & Jingade 2015).
They did not consider as large values of the shear param-
eter as here, so we can now extend this conclusion to the
strong shear regime. This is consistent with a series of ear-
lier analytical works which treated shear non-perturbatively
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Table 2. Summary of the runs with varying shear.

Run ShK ηxx/η0 ηyy/η0 ηyx/η0 ηxy/η0 αrms/(η0kf) ηrms/η0

SKM1a001 −0.094 2.125±0.028 2.129±0.012 0.030±0.016 0.001±0.009 0.094±0.015 0.137±0.050
SKM1a002 −0.187 2.126±0.024 2.131±0.009 0.045±0.009 −0.023±0.003 0.101±0.029 0.142±0.066
SKM1a003 −0.278 2.120±0.023 2.123±0.015 0.061±0.006 −0.035±0.009 0.092±0.034 0.137±0.036
SKM1a004 −0.369 2.123±0.011 2.121±0.013 0.088±0.005 −0.063±0.017 0.096±0.014 0.153±0.043
SKM1a005 −0.458 2.122±0.020 2.109±0.013 0.093±0.017 −0.084±0.009 0.081±0.033 0.147±0.047
SKM1a006 −0.547 2.101±0.013 2.074±0.003 0.107±0.017 −0.125±0.005 0.088±0.032 0.164±0.071
SKM1a008 −0.719 2.084±0.004 2.046±0.023 0.133±0.022 −0.173±0.014 0.084±0.019 0.173±0.081
SKM1a009 −0.808 2.116±0.048 2.049±0.016 0.165±0.013 −0.218±0.024 0.077±0.032 0.196±0.074
SKM1a01 −0.873 2.057±0.033 1.962±0.016 0.164±0.023 −0.237±0.031 0.081±0.034 0.196±0.083
SKM1a011 −0.947 2.053±0.037 1.932±0.006 0.165±0.008 −0.275±0.019 0.080±0.031 0.197±0.073
SKM1a015 −1.226 1.968±0.014 1.775±0.027 0.193±0.019 −0.391±0.033 0.074±0.027 0.219±0.094
SKM1a02 −1.582 1.963±0.070 1.622±0.015 0.219±0.010 −0.535±0.007 0.067±0.018 0.233±0.068
SKM1a021 −1.623 1.911±0.011 1.553±0.008 0.220±0.025 −0.542±0.018 0.064±0.030 0.238±0.103
SKM1a025 −1.709 1.769±0.026 1.303±0.012 0.207±0.018 −0.549±0.055 0.058±0.030 0.223±0.083
SKM1a031 −1.985 1.676±0.058 1.150±0.011 0.228±0.012 −0.628±0.053 0.056±0.024 0.238±0.069
SKM1a0325 −2.057 1.662±0.103 1.114±0.024 0.224±0.002 −0.663±0.110 0.050±0.014 0.236±0.035
SKM1a035 −2.156 1.630±0.062 1.060±0.004 0.238±0.013 −0.686±0.023 0.052±0.012 0.248±0.083

Notes: Forcing wavenumber kf/k1 = 5. The magnetic Reynolds number, ReM, varies from 1.4 (for weak shear) to 2.1 (for strong shear), and
the Lundqvist number, Lu, from 4.2 (for weak shear) to 4.8 (for strong shear).

and found no evidence of SC-assisted LSD (Sridhar & Sub-
ramanian 2009a,b; Sridhar & Singh 2010; Singh & Sridhar
2011). We analyze the possible dynamo driving mechanism
in more detail in Sect. 3.3.

Next we turn to the kinetically forced SMHD cases, ana-
lyzed both with the QKTFM and NLTFM, yielding consis-
tent results, as discussed in Sect. B.2. The biggest difference
to FMHD is that all η components are systematically smaller
in SMHD, and moreover, ηyx has changed sign to negative
values, being statistically significant within errors; see Ta-
ble 1. Also, the rms α values are similar or a bit larger, and
clearly exceed the ηyx component. In the face of the turbu-
lent transport coefficients, it seems understandable that for
the low ReM cases the LSD is excited in SMHD, but not in
FMHD, as the diffusive coefficients are lower, while the in-
ductive ones are larger. Also, the sign of ηyx would now be
favorable to enable the SC effect to support a LSD. Further,
it is noteworthy that the diagonal components of η become
more notably anisotropic, but now ηyy mostly exceeds ηxx.
In Figure 3, we show for Run SK1b the probability density
distributions of all tensor components. The diagonal α com-
ponents exhibit larger values than the off-diagonal ones, αxx
being especially strong. The off-diagonal components are
very similar to each other, while αyy is slightly larger than
them, but clearly smaller than αxx. The diagonal η compo-
nents are close to being isotropic. ηyx is fluctuating tightly
around zero, and exhibits a very small negative mean. The
distribution of ηxy is broad, but always in the positive.

Lastly, we turn to the kinetically and magnetically forced
SMHD cases, analyzed with the NLTFM. In the low-ReM
runs, all components of η show larger magnitudes in compar-
ison to the kinetically forced cases. Its diagonal components
now show very strong anisotropy, with ηxx being again dom-
inant over ηyy as in the FMHD cases. ηxy has changed sign
to negative values, while ηyx is again positive. The rms val-
ues of α and η are (mostly) increased, in particular those of
the latter. The probability density functions of the transport
coefficients, shown in Figure 3, right column, show clearly
the anisotropy of the diagonal components of η and the sign
change of ηxy to large negative values, with ηyx now exhibit-
ing a clearly positive mean with some negative values as well.
The α components are very similar to the kinetically forced
SMHD case, with αxx attaining much larger values than αyy
and the off-diagonal components. The positive sign of ηyx
rules out the existence of a SC–effect dynamo in these cases.
As will be discussed in detail in Sect. 3.3, the α and η fluc-
tuations then remain as possible candidates to provide the
necessary ingredients for a LSD.

3.2.2. Dependence on the shear parameter

In this section we report on the dependence of the turbulent
transport coefficients on the shear number ShK in runs with
both kinetic and magnetic forcing. We list our runs, their ba-
sic diagnostics, and the turbulent transport coefficients mea-
sured with the NLTFM, in Table 2. As the standard forc-
ing was used here, we did not see any exponential growth
in the evolution of the mean fields; see Sect. 3.1 for a rea-
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Figure 2. Butterfly (zt) diagrams ofBy (first, third and fifth panel)
and Bx (second, fourth and sixth panel). Run SK1b is kinetically
forced SMHD, SKM1a kinetically and magnetically forced SMHD,
and SKM1ad is a counterpart of SKM1a, but with decimated forc-
ing.

soning. Hence, no growth rates are reported, and we note
that all the transport coefficients are measured from a stage,
where the mean magnetic fields are dynamically significant.
Our purpose is to scan a wider range of shear strengths for
possible occurrences of a negative ηyx as function of ShK,
which could enable an SC-driven LSD. The results are de-
picted in Figure 4, where we present the η components in two

different normalizations. As can be seen, with weak shear
(|ShK| < 0.5), the diagonal components of η are isotropic,
while with stronger shear, anisotropy develops such that ηxx
linearly increases while ηyy linearly decreases in the SOCA
normalization. Normalizing to molecular diffusivity, both
components are decreasing linearly, ηxx less steeply than
ηyy. For weak shear, ηyx adopts small positive values, which
keep increasing linearly with shear in the SOCA normaliza-
tion. The linear trend is less clear in the molecular diffusivity
normalization. Furthermore, ηxy attains weakly negative val-
ues for weak shear, and increasingly negative ones for strong
shear. The trend is very close to linear when molecular dif-
fusivity is used for normalization. Hence, we find no possi-
bility for an MSC effect driven dynamo at any shear number
investigated.

The dependencies of ηij on shear, as obtained here, are in
broad agreement with the results of Singh & Sridhar (2011)
based on an analytical study in which arbitrarily large values
of the shear parameter S could be explored; see references
therein for more discussion. The two off-diagonal compo-
nents ηxy and ηyx were found to start from zero at zero shear
and, while the more relevant ηyx increases with |S| to re-
main positive, ηxy behaves in a more complicated manner
than found here, exhibiting both signs depending on the value
of S: It decreases with increasing |S| to become negative up
to a certain value of shear, as in the present work; we refer
the reader to Singh & Sridhar (2011) for more detail on its
behavior at larger shear.

3.2.3. Dependence on the aspect ratio

We have studied the dependence of the turbulent transport
coefficients on the aspect ratio A of the domain in the three
different cases (FMHD, SMHD with kinetic/kinetic and mag-
netic forcing) with fixed shear parameter S = −0.25. The
measured growth rate of the rms magnetic field, which co-
incides with the ones of of Bx and By except for standard
magnetic forcing, and the measured turbulent transport coef-
ficients are listed in Table 1; see runs with labels 4, 8, and 16,
indicating A.

In the kinetically forced FMHD and SMHD cases, the
growth rate of the magnetic field is largely independent of
the aspect ratio of the box, indicating that always one and the
same dynamo mode is growing. We also measure the verti-
cal wavenumber of the fastest growing dynamo mode in the
kinematic stage, (see Table 3) which support this conclusion,
as we see the wavenumber increasing proportional toA. The
turbulent transport coefficients do not show a marked depen-
dence on A either.

In SMHD with standard kinetic and magnetic forcing, the
situation is somewhat different. As we cannot draw conclu-
sions on the growth rate of the magnetic field in these cases,
we use the corresponding cases with decimated forcing as a
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Figure 3. Probability density functions of all turbulent transport coefficients. Top: αij , bottom: ηij . Left: kinetically forced SMHD Run SK1b,
right: kinetically and magnetically forced SMHD Run SKM1a.

Figure 4. Dependence of the turbulent diffusivity tensor components, measured with NLTFM, on the shear number in the kinetically and
magnetically forced cases. In the big plots we normalize to the SOCA estimate η0, while in the insets to the molecular diffusivity η.
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guideline. The latter (see Table 1, runs with label end ‘d’)
show that the growth rate is increasing with A, but we did
not have the resources to verify this trend for the tallest box
with A = 16. In Figure 5 we show ηyx as a function of A.
It can be seen that the magnitudes of the turbulent transport
coefficients change somewhat as function of the aspect ratio,
although the magnitudes seem to saturate for the tallest box.
The diagonal components grow in magnitude, ηxx somewhat
more than ηyy making the anisotropy in the turbulent diffu-
sivity even larger. The negative values measured for ηxy tend
to get smaller in taller boxes. The positive values of ηyx in-
crease with A, hence we see no tendency for larger boxes
to be more favorable for the SC dynamo. The fluctuating α
and η behave similarly, with their magnitudes first increasing,
but then decreasing for the tallest box. The decimated forc-
ing cases show a similar trend forA = 4 and 8 (SKM4ad and
SKM8ad) while the caseA = 1 (SKM1ad) shows higher val-
ues of the transport coefficients not agreeing with this trend.

As the number of grid points is proportional to A at fixed
resolution, resource limitations dictated to integrate the large
A runs only over significantly shorter time spans. However,
as we have discussed above, the mean fields grow initially
very rapidly in all runs with standard forcing, irrespective of
the aspect ratio. Hence, the effect of the different integration
times on the values of transport coefficients can be ruled out.

One could also speculate that some spatio-temporal nonlo-
cality (see e.g. Rheinhardt & Brandenburg 2012) might come
into play with magnetic forcing, but when choosing our forc-
ing wavenumbers, we have taken care of the kf being scaled
with respect to the computation domain vertical extent such
that the forcing wavenumber should have remained constant.
Our procedure, however, does not take into account memory
effects in any way.

The dependence of the growth rate on the aspect ratio could
also be due to different dynamo modes being excited in boxes
of different size, as was found by Shi et al. (2016) in a similar
context, but including rotation. They found the dynamo to be
more efficient in taller boxes, and interpreted this by having
“cut out” some modes in the smaller boxes. However, deter-
mining the vertical wavenumber of the fastest growing mode
in the kinematic stage for the decimated forcing runs, we find
no evidence for this. As the turbulence in the cases with stan-
dard and decimated forcing is different though, we cannot
regard this as completely conclusive evidence that rules out
this scenario.

3.3. Interpretation of the dynamo instability

For SC driven dynamos, the dispersion relation from lin-
ear stability analysis for solutions, exponential in time, reads
(see, e.g., Brandenburg et al. 2008)

λ±
ηTk2z

= −1± 1

ηT

√(
S

k2z
+ ηxy

)
ηyx + ε2, (23)

Figure 5. Dependence of ηyx on the aspect ratio A for SMHD
cases with standard kinetic and magnetic forcing.

with ηT = η + ηt, ηt = (ηxx + ηyy)/2, ε = (ηxx − ηyy)/2.
A necessary and sufficient condition for growing solutions
is that the radicand is positive, and larger than η2T. In other
words (for ε ≈ 0)

DηS ≡
(
S

k2z
+ ηxy

)
ηyx
η2T

> 1. (24)

Equation (23) is often further simplified by ignoring the con-
tribution from ηxy , as it is considered negligible in compar-
ison to S/k2z . This also holds for the systems studied here,
but we note that ηxy , in all cases studied here, is much larger
than ηyx, and in the kinetically forced cases even comparable
to the diagonal components. Hence, setting it to zero, as has
been done in some fitting experiments to determine the tur-
bulent transport coefficients (see, e.g., Shi et al. 2016), is not
justified. Also, especially in the magnetically forced cases,
the η tensor becomes highly anisotropic, in which case the
assumption ε ≈ 0, also often made in fitting experiments (Shi
et al. 2016), breaks down in the strong shear regime, too.

For incoherent α–shear driven dynamos, the relevant dy-
namo number reads (see, e.g., Brandenburg et al. 2008)

DαS =
αrms |S|
η2Tk

3
z

, (25)

where usually only the fluctuations of αyy are considered for
αrms. They determined the critical DαS to be ≈ 2.3 for
white–noise α fluctuations. Squire & Bhattacharjee (2015)
argued that an incoherent α–shear scenario should not lead
to amplification of a mean magnetic field unless the diago-
nal components of α would be markedly larger than the off-
diagonals. Although this was not so in the moderate shear
case, studied by Brandenburg et al. (2008), we have now
clearly identified such a situation, both in kinetically and
magnetically forced SMHD cases, see Figure 3. Hence the
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Table 3. Dynamo numbers for the runs in Table 1.

Run kzLz/2π DηS DηrmsS DαS

FK1a 1* −1.4 1.6 2.8
FK1b 1 −3.9 5.3 19.2
FK8a 9* −1.0 1.1 0.7
FK8b 9 −2.8 3.2 4.7
SK1a 1 0.1 0.3 2.9
SK1b 1 2.7 4.2 25.5
SK4a 4 0.1 0.2 1.5
SK4b 4 1.3 2.6 14.6
SK8a 4 0.5 0.7 8.2
SK8b 9 2.1 2.4 3.6
SKM1a 1* −2.7 3.3 6.8
SKM4a 4* −2.9 3.0 3.0
SKM8a 4* −12.2 12.7 13.1
SKM16a 9* −9.4 9.9 7.5
SKM1ad 1 −4.0 7.2 19.6
SKM4ad 4 −3.4 4.1 9.8
SKM8ad 8 −5.7 6.1 6.8

Runs marked with * are not dynamo active, hence the wavenumber
of the growing dynamo mode is extracted from other runs of similar
aspect ratio.

possibility of an incoherent α–shear dynamo cannot be ruled
out for our simulations.

Brandenburg et al. (2008) also discussed the possibility of
a contribution from an incoherent SC effect by fluctuations
of ηyx. They studied a model, where both incoherent effects
were acting together, the incoherent α effect mainly through
αyy while the incoherent SC effect was described by a dy-
namo number

DηrmsS =
ηyx,rms |S|
η2Tk

2
z

. (26)

They found that for small DηrmsS the critical dynamo num-
ber, detected for the incoherent α effect alone, was not much
altered while for higher values that critical number could be
much reduced. Hence, to decide which dynamo effect is at
play in systems with large fluctuations, one should always
consider the dynamo numbers for both incoherent effects si-
multaneously.

Moreover, the presence of a coherent SC effect can alter
the dynamo excitation condition which we now account for
by adding a coherent induction term from ηyx to the simpli-
fied zero-dimensional (0-D) dynamo model of Brandenburg
et al. (2008); see their Appendix C. We have verified that dy-
namo action in the 0-D model without any incoherent effects
takes place when DηS is exceeding unity, as expected from
the stability criterion (24). We compute new stability maps
in the DηrmsS –DαS plane for a series of dynamo numbers

DηS , in the range [−1.5, 2]. These values are similar in mag-
nitude as those realized in our simulations, although not cov-
ering the extremal values obtained in the magnetic forcing
cases. These are shown in Figure 6, where panels (d) and
(e) closely match the stability map of the incoherent effects
alone (compare with Figure 12 of Brandenburg et al. 2008).
As expected, adding a coherent SC effect with a positiveDηS

enhances the dynamo instability, especially by lowering the
critical dynamo number for the incoherent α–shear dynamo.
This is seen through the shift of the stability line (white con-
tours in Figure 6) to the left (towards smaller values of DαS)
from (f) to (i). The incoherent SC dynamo threshold is also
lowered, but the effect is more subtle, as seen through the
much less dramatic shift of the stability boundary downwards
(towards smaller values of DηrmsS) in Figure 6, panels (f)–
(i). For DηS > 1, the coherent SC effect alone would result
in the excitation of a dynamo, but the presence of the inco-
herent effects cause small islands in which dynamo action is
suppressed; see the dark red areas surrounded by the white
contour in Figure 6, panels (g and h).

In the dynamo numbers (24)–(26) we also need the ver-
tical wavenumber kz of the dynamo mode which we deter-
mined from Fourier analysis of the mean fields during the
kinematic phase of the dynamo. For those runs that are not
dynamo active, we used kz from a corresponding dynamo
active run with higher ReM (for kinetically forced runs) or
a different forcing function (for kinetically and magnetically
forced runs), but the same aspect ratio; see Table 1, and de-
note those runs for which we obtained kz from elsewhere
with an asterisk. We also note that, if the dynamo enters sat-
uration, the kinematically preferred mode is not necessarily
any longer present. Independent of the aspect ratio of the
box, all the saturated models exhibit a magnetic field at the
scale of the box or, in other words, at the smallest permissible
wavenumber.

In the FMHD cases, we obtain negative DηS and incoher-
ent SC dynamo numbers of similar magnitude, with DαS

tending to be larger than DηrmsS , especially in Run FK1b.
In the case of Run FK8a, no dynamo action is seen, and none
of the dynamo numbers predict a dynamo either. In the other
case without dynamo, Run FK1a, the η-related dynamo num-
bers predict no dynamo action, while DαS alone would do
so (DαS = 2.8 > DαS,crit = 2.3). Its critical value, how-
ever, can be increased in this case, mainly by the presence of
the rather strong coherent SC with a negative dynamo num-
ber. The two dynamo active cases have DαS clearly above
the critical value. Hence, the presence of moderate suppress-
ing factors cannot prevent the dynamo instability. It clearly
seems to be the incoherent α–shear one in the FMHD cases,
because DηS is far too small in this case.

In the kinetically forced SMHD cases, however, ηyx is,
negative, allowing for the possibility of a coherent SC dy-
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Figure 6. Stability diagrams for different values of DηS : from top left to bottom right, -1.5,-1.0,-0.5,-0.1,0.1,0.5,1.0,1.5, and 2.0.
White: zero–growth–rate contour.

namo. All our runs of this type are dynamo-active, but only
the high ReM cases exhibit supercritical DηS (> 1). Except
for the case of Run SK4a, the DαS and DηrmsS values indi-
cate supercriticality for the incoherent dynamo instabilities,
explaining again most of our findings. Run SK4a has a low
positive DηS , but also the incoherent effects are well below
their critical dynamo numbers. The coherent SC effect could,
therefore, assist the dynamo, but this effect should be negligi-
ble according to the 0-D model. Hence, this dynamo remains
unexplained with any dynamo scenario. Dynamo excitation
is easier than in the FMHD cases, which might indicate that
the coherent SC effect assists dynamo action favorably, but
this could also be due to the SMHD simplifications.

In the kinetically and magnetically forced SMHD cases,
the dynamo numbers indicate stability against the MSC ef-
fect, but are all, according to individual 0-D model runs (not
presented here), supercritical for the incoherent dynamo ef-

fects, the incoherent SC effect being even more pronounced
now than in the kinetically forced cases. Although the cases
with standard forcing do not show exponential growth, their
decimated forcing counterparts do so. Hence our interpre-
tation here is that a dynamo is present in all the cases with
kinetic and magnetic forcing. Even though the coherent SC
effect now exhibits larger negative dynamo numbers we find,
by running individual 0-D models, that in all cases it should
not be able to damp the dynamo instability. Hence, again, the
most likely mechanism for exciting the dynamo is the inco-
herent α–shear effect, with supercritical dynamo numbers in
all cases. However, we cannot rule out the co-existence of an
incoherent SC effect, as some runs also indicate supercriti-
cality against it.

4. CONCLUSIONS
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We have studied different types of sheared MHD systems
with the quasi-kinematic (QKTFM) and non-linear (NLTFM)
test-field methods. In those cases studied with the NLTFM,
we simplified the MHD equations neglecting the pressure
gradient in the momentum equation which allows us to ig-
nore the equation for the fluctuating density in the test-field
formulation, simplifying it somewhat. In the case of the full
MHD equations studied with the QKTFM, we extend the pre-
vious results to even stronger shear, but still find no evidence
for negative values of the ηyx component that could lead to
LSD action through the SC effect.

In kinetically forced magnetized burgulence (SMHD), we
measure negative values of ηyx. Indeed, dynamo action with
both radial and azimuthal magnetic field components grow-
ing exponentially at the same rate is found. The dynamo
numbers for the coherent and the incoherent effects, based on
the measured turbulent transport coefficients, however, when
employed in a simplified 0–D dynamo model, indicate that
even in this case the dynamo is mainly driven by the inco-
herent α–shear effect, possibly assisted by the coherent SC
effect one.

In the case of systems with standard magnetic forcing,
we do not find exponential growth of the mean magnetic
field. When we repeat this experiment with a decimated forc-
ing function, removing the lowest wavenumbers, exponential
growth is recovered. Hence, in our interpretation, there is still
a dynamo instability in the magnetically forced cases, but it
becomes engulfed by the rapid growth of the mean field due
the presence of these low wavenumbers in the forcing, pre-
venting us from seeing the exponential growth of the mean

field. The measured ηyx are again positive, and increasing
as a function of the magnitude of shear and the aspect ratio
of the box, therefore incapable of driving a dynamo through
the MSC effect. The computed dynamo numbers, compared
against the 0-D model, again indicate the most likely driver
of the dynamo to be the incoherent α–shear effect.

We acknowledge that the simplified MHD equations used
here prevent our conclusions from being generally applica-
ble. Hence we cannot fully reject the postulated possibility
of a dynamo driven by the MSC effect. The measurements
should be repeated with the full MHD equations, analyzed
with a fully compressible TFM, also solving for the density
fluctuations.
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Figure 7. PDFs of all three velocity components from 643 shearless SMHD runs with kf = 5. (a): standard; (b): decimated forcing with
kmin/k1 = 2. All pdfs are nearly Gaussians with kurtosis ∼ 3.

Table 4. η tensor components measured with the different variants of NLTFM from Run SKM1a007.

Method ηxx/η0 ηyy/η0 ηyx/η0 ηxy/η0

ju 2.110± 0.023 2.089± 0.007 0.112± 0.026 −0.208± 0.028

jb 2.276± 0.152 2.106± 0.020 0.124± 0.009 −0.212± 0.018

bb 2.297± 0.144 2.116± 0.018 0.129± 0.018 −0.188± 0.017

bu 2.155± 0.047 2.127± 0.017 0.113± 0.014 −0.212± 0.022

APPENDIX

A. COMPARISON OF STANDARD AND DECIMATED FORCING FUNCTIONS

To investigate the possible anisotropy due to the removal of all |kx,y,z|/k1 ≤ kmin/k1 from the forcing (decimation), we
perform two hydrodynamic simulations without shear. Both runs were performed with 643 grid points and kf/k1 = 5, one
without decimation and one with, using kmin/k1 = 2. All other parameters were the same and urms was similar in the two cases.
In Figure 7 we show probability density functions (PDFs) of the three components of u from a snapshot of each run. These
PDFs are normalized such that

∫
P (ui) dui = 1. We find that the PDFs of ux, uy , and uz are in both cases on top of each other

suggesting that the stochastic flows are nearly isotropic, at least in a statistical sense.
Furthermore, we define a dimensionless quantity ζ(θ, φ) =

√
〈(u · n̂)2〉/urms, with n̂ = (sin θ cosφ, sin θ sinφ, cos θ),

which is useful to assess the degree of anisotropy, where θ and φ are the polar and azimuthal angles, respectively, as in a spherical
coordinate system. Figure 8 shows snapshots of ζ(θ, φ) which reveal anisotropic features, both in the standard (undecimated)
and the decimated case. However, at least in the undecimated case the flows are expected to be statistically isotropic when data
from a large number of snapshots are combined, as there is no preferred direction in the system. We show the variation of ζ as a
function of φ at two fixed values of θ (45◦ and 90◦) in Figure 9, after performing an average over eight snapshots. As expected,
the degree of anisotropy decreased compared to a single snapshot; it is below 7% as inferred from the values of ζ in Figure 9.
We also notice an m = 2 modulation which is more pronounced in the decimated case, likely due to gaps in the thin k shell
around kf . The statistical isotropy of the flow is expected to be improved further at higher resolution and when data from a longer
time-series are combined.
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Figure 8. Two snapshots (top/bottom) of ζ =
√
〈(u · n̂)2〉/urms, in the θφ plane. Left: undecimated; right: decimated with kmin/k1 = 2.

Figure 9. Variation of ζ with the azimuthal angle φ at polar angles θ = 45◦ (left) and 90◦ (right), after averaging over 8 snapshots. Solid/black:
undecimated; dashed/red: decimated with kmin/k1 = 2.

B. COMPARISON AND VALIDATION OF THE NLTFM

B.1. Comparison of the different variants of the NLTFM

As is described in Rheinhardt & Brandenburg (2010), with respect to the terms u× b and j × b there are four possibilities to
define the NLTFM, depending on how one combines the fluctuating fields from the main run, u, b, j with the test solutions uB ,
bB , jB . These variants were denoted as ju (using j and u in the pondero- and electromotive forces, respectively), jb (using j and
b), bu (using b and u), and bb (using b in both). Further variants due to the term u·∇u are not considered here. Previously it was
concluded that the ju method would be the most stable one (Rheinhardt & Brandenburg 2010). Here we examine how the different
variants behave in SMHD with standard (random) forcing. The results for Run SKM1a007 are listed in Table 4 and depicted in
Figure 10, showing the ηxx component obtained with all four variants. We can see that jb and bb produce measurements that
are nearly identical at any phase of the simulation. The measurements with bu deviate from these occasionally, but the largest
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Figure 10. Time evolution of ηxx from Run SKM1a007 with the four variants of the NLTFM. Black: ju, blue: bb, orange: bu, red: jb. Upper
panel: early stages, lower panel: late stages of the simulation.

deviations occur for ju. While the three former variants tend to produce turbulent transport coefficients that clearly grow within
the resetting intervals, ju produces plateaus, this difference being especially pronounced in Figure 10, top panel. This is indicative
of the test problems getting unstable during the resetting interval, which can lead to overestimation of and increased uncertainties
in the measured transport coefficients. With the resetting time of 50 (in code units) in most of our simulations, however, the
measured differences between the variants were very small, but nevertheless we observed a tendency of the tensor components
to be larger in magnitude when jb and bb were used; see also Table 4. Hence, throughout the paper we use the ju variant which
produces measurements with clearer plateaus in the turbulent transport coefficients.

B.2. Kinetically forced SMHD analyzed with QKTFM and NLTFM

To further validate the NLTFM, we perform runs of kinetically forced SMHD, and measure the turbulent transport coefficients
with both QKTFM and NLTFM. We compare them in two regimes: one where the magnetic field is very weak, and another where
the magnetic field is already dynamically significant. We choose the setup SK4b, and show our results in Figure 11 in terms of
ηyx as function of time. Although some differences due to the randomness of the forcing have to be expected, we observe a very
good agreement between the two methods.
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Figure 11. Time evolution of ηyx from Run SK4b with QKTFM (orange) and NLTFM (black). Measurements from a stage, when the dynamo
field is still weak (left) and dynamically significant (right).
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