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A b s t r a c t :  Hydrodynamic simulations of the solar convection zone can be used to model 
the generation of differential rotation and magnetic fields, and to determine mean-field 
transport coefficients that are needed in mean-field models. The importance of the over- 
shoot layer beneath the solar convection zone is discussed: it is the place where the magnetic 
field accumulates, although most of the field regeneration can still occur in the convection 
zone proper. We also discuss how systematically oriented bipolar regions can emerge from 
the convection zone where the magnetic field is highly intermittent. 

1 Introduction 

The engine driving solar and stellar  act ivi ty is the dynamo. In theories of the solar 
corona and solar wind the dynamo magnet ic  fields are an impor tan t  input  quantity.  
In order to compute  the loss of angular  momentum during the evolution of the Sun 
we need to know the magnet ic  field s t rength as a function of the  angular  velocity. 
Propert ies  of differential rota t ion and magnet ic  field geometry are bound  to change 
during this complicated evolut ionary process which can only be unders tood  using 
detai led and realistic dynamo models. Thus, a be t te r  unders tanding  of the solar 
dynamo is essential.  

At present it is not feasible to compute  realist ically in a direct s imulat ion the 
evolution of magnet ic  fields and fluid turbulence,  because of the large range of 
different t ime and length scales that  are impor tant .  Therefore, one expects the mean- 
field approach to be well-suited to address certain questions of solar and stel lar  
magnet i sm (e.g. Schmitt  1993). In this theory, nondiffusive contr ibut ions  to the 
turbulent  electromotive force and the Reynolds stress tensor are described by c~- 
and A-effects, respectively. These effects are  responsible for generat ing large scale 
magnet ic  fields and driving differential ro ta t ion (Krause &: R/idler 1980, R(idiger 
1989). Progress has recently been made to derive the Rossby number  dependence 
of c~- and A-effects, as well as the turbulent  magnet ic  diffusivity, the eddy viscosity, 
and the eddy conduct ivi ty  (e.g. Rfidiger & Kitchat inov 1993, Kiiker et al. 1993). 

* The Nat ional  Center for Atmospher ic  Research is sponsored by the Nat ional  
Science Foundat ion  
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2 Axel Brandenburg 

In the mean-field approach solutions are only found for long time and length 
scales. In spite of such simplifications, this approach is actually rather complicated 
compared to direct three-dimensional simulations, because there are so many differ- 
ent turbulent transport coefficients, and because they are nonlinear in the magnetic 
field strength and the angular velocity. However, since our knowledge of these de- 
pendencies is based on uncontrolled approximations, it is essential to confirm such 
results using direct simulations. The problem here is that the conditions under which 
the mean-field approach applies usually do not overlap with those accessible to direct 
simulations. This includes in particular the requirement of scale separation which is 
not satisfied in our simulations (and not even in the Sun[). 

We first discuss some key issues of dynamo simulations, such as magnetic buoy- 
ancy and the formation of large scale fields and bipolar regions. Such simulations are 
used to evaluate a and its dependence on various parameters. Some recent progress 
in constructing solar mean-field dynamos is reported and finally the question of the 
seat of the dynamo is discussed. 

2 N u m e r i c a l  S i m u l a t i o n s  

Using a numerical simulation of idealised turbulent compressible convection in a 
small box at reasonably high magnetic Reynolds number it has been possible to 
study properties of the dynamo process, the formation of magnetic flux tubes and 
the magnetic buoyancy associated with such flux tubes; see Nordlund et al. (1992) 
and Brandenburg et al. (1993a). In these simulations the magnetic field grows on 
a dynamical (turnover) time scale until saturation sets in and a statistically steady 
state is reached approximately. By splitting the Lorentz force J x B in the simula- 
tion into its various components, it has been demonstrated that both the magnetic 
pressure gradient force (magnetic buoyancy) and the tension force (component of 
B.  VB in the direction of B) are unimportant for saturation (Nordlund et al. 1992). 
Thus, saturation is accomplished mainly by the curvature force that prevents the 
flux tubes from bending beyond a certain point. 

There is a strong tendency for the magnetic field to be sucked by  the concen- 
trated convective downdrafts and subsequently advected downwards to the bottom 
of the convection zone (Brandenburg et al. 1991a). This raises the question whether 
it makes sense to consider magnetic flux tubes as passive objects subjected to the 
influence of magnetic buoyancy. On the other hand, the magnetic field in these simu- 
lations is not yet strong enough to produce highly buoyant flux tubes. Nevertheless, 
in the simulations mentioned above, the maximum magnetic field strength in the 
overshoot layer can be 2 to 8 times larger than the local value of the equipartition 
field strength, Ben = ut(#op) 1/~, where #0 is the permeability, p the density, and ut 
the rms-velocity of the turbulent motions. 

What needs to be changed in the simulations to make the flux tubes more in- 
tense? First of all, magnetic flux tubes are rather small objects (at least in the 
simulations) and they eventually disappear due to dissipation. In the Sun, dissipa- 
tion is much smaller than in simulations with a finite number of mesh points. Thus, 
flux tubes would live longer and there would then be more time for them to gain 
maximal field strength. Secondly, in the simulations the Math number at the bottom 
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Hydrodynamical Simulations of the Solar Dynamo 3 

of the convection zone is still unrealis t ical ly large and the magnet ic  field energy is 
only 3-10% of the kinetic energy density, i.e. 

VA << Ut << c (in simulations), (1) 

where VA = (B2/pop} 1/2 is the Alfv6n velocity, and c the speed of sound. At the 
bo t tom of the solar convection zone, the s i tuat ion is p robably  more like 

ut ~ VA << c (solar overshoot layer). (2) 

Larger sound velocities and smaller Mach numbers (Ma) are au tomat ica l ly  obta ined 
by choosing the Rayleigh number  (Ra) large enough. This may be demons t ra ted  by 
solving the s t andard  mixing length equations for the same setup used in numerical  
simulations of convection in an unstable  layer with a stable layer beneath  (Table 1). 
Here we define Ra Pr  = (gd a/~2)(1 - ~ 7 a d / ~ T r a  d), where g is gravity (5 104 cm/s2),  d 
the thickness of the unstable  layer in the model  (100 Mm), and .~ the mean radiat ive 
diffusion coefficient, which is varied in order to vary Ra. Pr  = u/N is the Prand t l  
number.  

Table  1. Turbulent velocity and Mach number at the bottom of the unstable layer for 
mixing length models with different Rayleigh number, but solar values for temperature 
and density. For RaPr  = 1024, the solar luminosity L = L® is reached 

Ra Pr  ut Ma L / L o  

106 2 0 k m / s  10 -1 109 
1012 2 k m / s  10 -~ 106 
1024 2 0 m / s  10 -4 1 

The turbulent  velocity ut is a slowly decreasing function of Ra. Realistic models of 
the lower par t  of the solar convection zone can only be obtained when Ra Pr  is of the 
order 1024 (Ra of the order  103°). If Ra was too small,  ~ would be too large, and the 
radiat ive flux that  enters from below would be too large for a realistic t empera tu re  
gradient.  Consequently, in order to model  realist ically the deep solar convection 
zone, subgrid-scale diffusivities have to be employed to stabil ise the scheme whilst 
reducing ~ to realist ically small values. 

3 M a g n e t i c  F i e l d  Loops  and B i p o l a r  R e g i o n s  

Even though in our simulations the magnet ic  field is unrealis t ical ly weak, there 
is a clear tendency for the formation of bipolar  regions. An example of such an 
event is shown in Fig. 1, where we plot magnet ic  field vectors for a s imulat ion 
with an imposed horizontal  magnetic  field with B0 = 0.06Beq, in the presence 
of rota t ion (the inverse Rossby number  is Ro - I  = 2l?d/u, = 1.6), the magnet ic  
Reynolds number  Rm = utd/r~ = 120, and the resolution 63 × 63 x 37 mesh points 
(Brandenburg et al. 1993b). 
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Fig.  1. Magnetic field vectors in a simulation with an imposed magnetic field B0 in the 
x-direction (from the left to the right on the paper). Note the formation of a big loop 
producing a bipolar region at the upper surface. The boundaries of the unstable region are 
marked by dotted lines 

It turns out tha t  bipolar  regions are often aligned with the direction of the mean 
magnetic  field, even though it is ra ther  weak compared  with the field in typical  
flux tubes.  The large scale magnet ic  field is usually strongest in the lower overshoot 
layer. Due to persistent  pumping  of magnetic  field into this layer, the magnet ic  field 
is able to accumulate  here (Brandenburg et al. 1991a, Rfidiger & Kitehat inov 1992, 
Petrovay & Szak£1y 1993). In the present simulations the  field is still ra ther  i rregular  
in the overshoot layer, but  it is conceivable that  under  more realistic circumstances 
the turbulent  t ime scales are much longer in this layer, thus giving enough t ime for 
individual  flux tubes to line up with the large scale field. 

4 Development  of Large Scale Fields 

Following the pioneering work of Frisch et al. (1975) and Pouquet  et al. (1976), a 
large scale magnet ic  field is generated in the presence of either magnetic  or kinetic 
helicity by an inverse cascade of the magnetic  helicity which, in turn,  gives rise to 
an inverse cascade of the magnet ic  energy. This leads to a bui ld-up of the magnet ic  
field at large scales. This effect is also seen in simulations of a convective dynamo 
action. In Fig. 2 we plot the magnet ic  energy spect rum M(k) for two different times 
(approximate ly  10 turnover t imes apar t )  for a run with R, ,  = 1000, R o  - 1  m_ 1, at a 
resolution of 63 a mesh points (Nordlund et al. 1992). 
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Fig. 2. Magnetic energy spectra during the growth phase (t = tl) and the saturated phase 
(t = t2) of a dynamo (lower and upper solid curve). For comparison, the kinetic energy 
spectrum at t = t~ is also shown (dotted line) 

The a-effect formalism of Steenbeck, Krause & Rgdler (1966) may be considered 
as a linearised version of the fully nonlinear approach mentioned above. In Fig. 3 we 
show that a simple, one-dimensional, aS-dynamo gives rise to an inverse cascade, 
similar to the inverse cascade in MHD turbulence. This is illustrated in the second 
panel of Fig. 3, where we show a sequence of magnetic energy spectra from a simple 
cascade model of convective MHD turbulence (Brandenburg 1992). The main dif- 
ference is that in the a-effect dynamo the growth of magnetic energy at small scales 
is not described. 

The difference in the form of the magnetic energy spectra during the growth 
phase of the dynamo and during the saturated phase is an important property. The 
development of small scale structures is an inherently kinematic process: as time goes 
on, larger and larger structures develop. This is also seen by comparing snapshots 
of simulations: during the growth phase of the dynamo the flux tubes are thinner 
than at later times when the flux tubes become more clearly defined (Brandenburg 
et al. 1991b). 

5 I n t e r m i t t e n c y  a n d  S m a l l  S c a l e  F i e l d s  

It has been argued that magnetic fluctuations that are very strong compared to 
the large scale magnetic field can lead to a severe quenching of the a-effect and 
the turbulent magnetic diffusivity (Vainshtein & Cattaneo 1992). The fluctuating 
magnetic field is considered strong enough when the ratio q - ( B 2 ) / ( B )  2 is of the 
order of Rm. This would be the case if the magnetic energy spectrum had an inertial 

77 



6 Axel Brandenburg 

4 

0 

- 4  

0 

- 4  

a - e f f e c t ,  
. . . .  T . . . .  , . . . .  , . . . .  

" , , ,  ]. 
- . . . . . . . . . . .  . . - " - 2  ', 

2 / l ' " ' "  

"J "'~- k ~ . ' ~ . ~ l  It,. 

1.0 1.5 2.0 2.5 
lgk  

- 6  - 6  

- 8  - 8  
0.5 0.5 

c a s c a d e  m o d e l  

1.0 1.5 2 .0  2.5 
lgk  

Fig.  3. Magnetic energy spectra of a one-dimensional a-effect dynamo (left panel) and a 
simple cascade model of MHD turbulence (right panel). The numbers on the curves indicate 
increasing time 

range that  increases like k +l/a with wave number  k (Moffatt 1961). By contrast ,  if 
the magnet ic  energy had for example a k -1 spectrum, q would asymptot ica l ly  only 
increase like In Rm (Zeldovich et al. 1983, Kleeorin et al. 1990). Fur thermore,  as the 
mean magnet ic  field s t rength  increases, the quant i ty  q is quenched and becomes of 
order uni ty  as I(B)l ~ /~eq (Kleeorin et al. 1990, Brandenburg  et al. 1993b). In 
other words, it is possible that  the magnet ic  f luctuations are of comparable  order  of 
magni tude  to the mean magnet ic  field. 

It is impor tan t  to note that  the quant i ty  (B 2) can be significantly underest i-  
mated  if the magnet ic  field continues to be in termit tent  and nonsmooth down to 
the smallest  scales resolved. This is a par t icular  problem when observational  da t a  
are analysed. It is sometimes possible to ext rapola te  to the  limit of perfect resolution 
by measuring the moments  of the average magnetic  field at different resolution, 

/3,~(r) = (l(B>r]">. (3) 

Here, <-..)r denotes an average over a box of scale r, and (...) is an average over the 
entire computa t ional  volume. The funct ion/32(r)  is closely related to the magnetic  
energy spectrum. As an example we show in Fig. 4 the scaling of 13~(r) for da ta  
from a numerical  s imulat ion with Ra = 106, Pr  - u / ~  = 0.2, and PrM ------ u/rl = 4 
(Nordlund et al. 1992). 

Note that  in the lin-log plot (Fig. 4) the curves are almost straight  lines at small 
scales of r,  which is related to an exponential  power spect rum of the magnetic energy 
in the dissipat ion range. This suggests that  it is possible to ext rapola te  to r = 0. 
For example,  at the smallest  resolved scale, r0 = 1mesh size, B2(r6) is 4.710 -4, 
but  the ex t rapola ted  value /32(0) increases to about  6.410 .4  . In the present case 
we have q ,~ B2(O)/Be(32ro) = 350. Since the average magnet ic  field over the entire 
box vanishes due to bounda ry  and initial  conditions, this rat io depends strongly on 
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Fig. 4. B2(r) and B~(r) for data of a numerical simulation with dynamo effect. (In the 
plot, the square of Bl(r) is shown to allow comparison with B2(r).) Ra = 106, Pr = 0.2, 
and PrM = 4. The inset shows a log-log plot of the same data 

the scale at which the denominator is evaluated. For example at half the scale this 
ratio is much smaller: 132(O)/B2(16ro) = 32. 

The slope n = d ln  B1/dln r, evaluated at the skin layer scale r ~ LR~, 1/2, is the 
cancellation exponent (Oft et al. (1992, Bertozzi et al. 1993). In the present case, 
where there is a small scale dynamo, this exponent is around 0.2. A nonvanishing 
exponent indicates that the field is still "rough" down to the smallest scale resolved. 
There is however no power law behaviour, but instead Bn(r) is proportional to 
exp(--r/rd) with rd ~ 3r0 (for n = 2). 

6 T h e  c~-Effect E v a l u a t e d  f r o m  S i m u l a t i o n s  

The a-effect can in principle be evaluated from numerical simulations of convection 
(e.g. Brandenburg et al. 1990). Using such simulations one can compute a as a 
function of I(B)I. In the simulations of Brandenburg et al. (1993b), a seems to 
be surprisingly insensitive to I(B)l. Unfortunately it is not (yet?) possible to a t ta in  
sufl3ciently large values of Rm, and it therefore remains open whether a is a sensitive 

function of the magnetic Reynolds number  Rm. For example, a ,,~ R~,, 1/2 has been 
obtained by Childress (1979) and Perkins &: Zweibel (1989) for a model with a steady 
flow, and Vainshtein & Cattaneo (1992) argue that  the onset of a-quenching occurs 
for progressively weaker fields as R,,  increases. However, their argument  requires 
q = O(Rm), implying a magnetic energy spectrum that increases towards larger 
k. This issue is still controversial, but  it should be noted that  there is evidence 
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that in the inertial range the magnetic spectrum does indeed decrease like k -1 (see 
discussion in Brandenburg et al. 1993b). 

Another important  application of such simulations is to determine the lat i tudinal  
dependence of a. Current theories (e.g. R~diger &= Kitchatinov 1993) axe restricted 
to only linear dependencies of a on ~ • ~ c¢ cos 8, where ~ symbolises the preferred 
direction due to a stratification of density or turbulent  intensity, and 8 is colatitude. 
In Fig. 5 we show the longitudinal  (¢-) component of a, (u' × B')C~/(B¢,), as a 
function of 8 for two different values of Ro -1 . 
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Fig. 5. Left panel: The latitudinal dependence of a for a simulation with Ra = 3105 
(Ro -1 = 1.6) and Ra = 105 (Ro -1 = 3.0). In all cases, Ta = 3104 , Pr = 0.5, and 
PrM = 0.5. Right panel: Tile depth dependence of a for the same parameters as before, 
but with Ro -1 = 3.0 and 0 = 90 °. The dotted vertical lines denote the boundaries of the 
convection zone 

Note that a deviates from a simple cos 8 law. Indeed, there is no reason to expect 
such a simple dependence to be valid for strong stratification and rapid rotation, 
in which case higher powers in ~ • ~ must occur in the a expressions. R/]diger & 
Brandenburg (1993) used the empirical formula 

a(8) = a0 cos 8(1 - au  cos28). (4) 

with a v  ~ 1 to model the solar dynamo in the overshoot layer. A similar lat i tudinal  
dependence of a has previously been suggested in order to explain a concentration 
of the sunspot activity maximum at low latitudes (Yoshimura 1975, Belvedere et 
al. 1991). Schmitt (1987) finds a similar dependence of an a-effect that is based on 
magnetostrophic waves. 

There is another effect that can be seen in simulations in a spherical shell: inside 
the cylinder tangent to the inner radius of the shell the kinetic helicity is virtually 
zero for rapid rotation (e.g. Rieutord et al. 1993). It is not obvious whether this 
effect operates in the Sun, or whether it is an artifact of the simulations not being 
sufficiently turbulent .  
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In contrast to earlier estimates of a from convection simulations with weak strat- 
ification (Brandenburg et al. 1990), a now tends to be reduced in the bulk of the 
convection zone and concentrated towards the boundaries of the convection zone 
(Fig. 5). In any case, a is rather small and only a few percent of ut. Whether  or 
not mean-field dynamo action is possible with such a weak and localised a-effect de- 
pends crucially on the value of the turbulent magnetic diffusion, r/t. Theory predicts 
a decrease of r h for large inverse Rossby numbers (Kitchatinov & R/idiger 1993), 
and simulations also give values of ~h that  are smaller than standard estimates. 

The effect of r/t-quenching by the magnetic field has long been recognised 
(Roberts ~z Soward 1975). A severe suppression of t h has been found in a spe- 
cial two-dimensional case (Cattaneo & Vainshtein 1991), but this does not seem to 
carry over into the three-dimensional regime (Nordlund et al. 1993). A suppression 
of tit can be inferred from simulations by monitoring the decay rate of the large 
scale magnetic field component.  For the convection simulations of Brandenburg et 
al. (1993b) we estimate t h ~ 0.2r~0 for strong fields (B ~ 0.2Beq), and r/t ,~ 0.4~0 for 
weak fields (B ~ 0.006Beq), where 71o = ½utd is a rough estimate for reference. 

7 Mean-Field Dynamos 

Using an a-effect of the form (4) with a u  = 1, Riidiger ~ Brandenburg (1993) 
computed mean-field dynamos for the overshoot layer beneath the solar convection 
zone, taking the full Rossby number dependence, the full a- tensor and the turbulent 
diffusivity into account (Rfidiger ,~ Kitchatinov 1993). We already know from the 
Krause formula for a (Krause 1967) that  a becomes negative at the bot tom of the 
convection zone, because of the sharp gradient in the turbulent velocity. Beneath the 
interface of the convection zone and the radiative interior, the turbulent magnetic 
diffusivity gradually goes to zero. The magnetic field tends to accumulate in this 
interface; see Fig. 6. 

Magnetic buoyancy acts mostly in the upper part  of the convection zone, but it 
turns out that  this effect can drastically increase the cycle period. Furthermore, due 
to the intermittent nature of the magnetic field, the effective electromotive force is 
reduced by a factor e. For e = 0.2 - 0.5 the correct cycle period can be obtained. 

All dynamo models with solar-like differential rotation (012/c9r > 0 in the equa- 
torial plane) have the common problem that  at low latitudes poloidal and toroidal 
fields are in phase, which is in contrast to the observations. However, the indicators 
of these two field components probe different depths in the convection zone, and it is 
therefore plausible that the observed phase relation strongly depends on the depths 
where poloidal and toroidal fields are measured (Br somewhere close to the surface 
and Be at the bot tom of the convection zone). At intermediate and high latitudes, 
the poloidal and toroidal fields are in phase - in agreement with the solar field. 
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Fig. 6. Butterfly diagram for the By and the Be components of the mean magnetic field 
from a c~-dynamo model for the Sun together with meridional cross-sections showing 
poloidal field lines and contours of the toroidal field 

8 D i s c u s s i o n  

Numerical simulations of MHD convection can help to improve significantly our 
understanding of solar and stellar magnetism. Such simulations suggest the possi- 
bility of dynamo action in the entire convection zone with field advection down to 
the bottom. Thus, whilst the magnetic field turns out to be strongest at this inter- 
face, the actual generation of the magnetic field in this layer is perhaps relatively 
unimportant.  

This picture seems to be in contrast to the other possibility that most of the 
dynamo generation happens in the overshoot layer itself. The general problem with 
this approach is that in the overshoot layer the kinetic energy of the fluid motions 
is probably relatively weak and of the order of, or less than, the magnetic energy 
in that layer. Indeed, convective dynamo models presented so far typically generate 
magnetic fields whose strength does not significantly exceed the kinetic energy den- 
sity of the turbulent motions that are generating this field. It seems therefore more 
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natural to generate magnetic field in the convection zone where the kinetic energy 
of the turbulent motions is large. Turbulent pumping and suction of the magnetic 
field by the intense downdrafts leads to an accumulation of the magnetic field at 
the interface, where the magnetic energy may then easily exceed the kinetic energy 
of the motions. 

A systematic large scale magnetic field is expected to occur in deeper regions 
where the motions are slow enough. The dynamo process seen in numerical simu- 
lations generates a small scale magnetic field that consists of a number  of intense 
flux tubes. Future mean-field models of the solar magnetic field should therefore 
incorporate such small scale fields which, in principle, may play an active role in the 
formation of large scale fields via inverse cascade type mechanisms. Future simula- 
tions, on the other hand, should be carried out in larger boxes that  include effects 
of the spherical geometry of t he  Sun. 
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