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The advantages of high-order finite difference scheme for astrophysical MHD and turbulence
simulations are highlighted. A number of one-dimensional test cases are presented ranging
from various shock tests to Parker-type wind solutions. Applications to magnetized accretion
discs and their associated outflows are discussed. Particular emphasis is placed on the
possibility of dynamo action in three-dimensional turbulent convection and shear flows,
which is relevant to stars and astrophysical discs. The generation of large scale fields is
discussed in terms of an inverse magnetic cascade and the consequences imposed by magnetic
helicity conservation are reviewed with particular emphasis on the issue of a-quenching.

9.1. Introduction

Over the past 20 years multidimensional astrophysical gas simulations have become a primary
tool to understand the formation, evolution, and the final fate of stars, galaxies, and their
surrounding medium. The assumption that those processes happen smoothly and in a non-
turbulent manner can at best be regarded as a first approximation. This is evidenced by the
ever improving quality of direct imaging techniques, e.g. using space telescopes. At the same
time not only have computers become large enough to run three-dimensional simulations
with relatively little effort, there have also been substantial improvements in the algorithms
that are used. In fact, there is now a vast literature on numerical astrophysics. An excellent
book was published recently by LeVeque et al. (1998) where both numerical methods and
astrophysical applications were discussed in great detail. Most of the applications focused
however on rather more “violent” processes such as supersonic jets, supernova explosions,
core collapse, and on radiative transfer problems, while hydromagnetic phenomena and
turbulence problems were only touched upon briefly. Meanwhile, hydromagnetic turbulence
simulations have become crucial for understanding viscous dissipation in accretion discs
(Hawley et al., 1995), and for understanding magnetic field generation by dynamo action in
discs (Brandenburg et al, 1995, 1996a; Hawley et al., 1996; Stone et al., 1996), stars (Nordlund
et al., 1992; Brandenburg et al., 1996b), and planets (Glatzmaier and Roberts, 1995, 1996).

Much of the present day astrophysical hydrodynamic work is based on the ZEUS code,
which has been documented in great detail and described with a number of test cases in a
series of papers by Stone and Norman (1992a, b). The main advantage is its flexibility in
dealing with arbitrary orthogonal coordinates which makes the code applicable to a wide
variety of astrophysical systems. The code, which is freely available on the net, uses artificial
viscosity for stability and shock capturing, and is based on an operator split method with
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270 Axel Brandenburg

2nd-order finite differences on a staggered mesh. Another approach used predominantly in
turbulence research are spectral methods (e.g. Canuto et al., 1988), which have the advantage
of possessing high accuracy. Although these methods are most suitable for incompressible
flows (imposing the solenoidality condition is then straightforward), they have also been
applied to compressible flows (e.g. Passot and Pouquet, 1987). As a compromise one may
resort to high-order finite difference methods, which have the advantage of being easy to
implement and yet have high accuracy. Compact methods (e.g. Lele, 1992) are a special
variety of high-order finite difference methods, but the truncation error is smaller than for an
explicit scheme of the same order. For example, compact schemes have been used by Nordlund
and Stein (1990) in simulations of solar convection (Stein and Nordlund, 1989, 1998) and
convective dynamos (Nordlund et al., 1992; Brandenburg et al., 1996b).

The use of compact methods involves solving tridiagonal matrix equations, making this
method essentially non-local in that all points are now coupled at once. This is problematic
for massively parallel computations, which is why Nordlund and Galsgaard (1995, see also
Nordlund et al., 1994) began to use explicit high-order schemes for their work on coronal
heating by reconnection (Galsgaard and Nordlund, 1996, 1997a, b). In their code the equations
are solved in a semi-conservative fashion using a staggered mesh. This code was also used by
Padoan et al., (1997) and Padoan and Nordlund (1999) in models of isothermal interstellar
turbulence in molecular clouds, and by Rögnvaldsson and Nordlund (2000) in simulations
of cooling flows and galaxy formation.

A somewhat different code was used by Brandenburg (1999) and Bigazzi (1999) in
simulations of the inverse magnetic cascade, by Kerr and Brandenburg (1999) in a work on
the possibility of a singularity of the non-resistive and inviscid MHD equations, and by
Sanchez-Salcedo and Brandenburg (1999, 2001) in simulations of dynamical friction. A
two-dimensional version of the code modelling outflows from magnetized accretion discs
has been described by Brandenburg et al. (2000). This code uses 6th-order explicit finite
differences in space and 3rd-order Runge-Kutta timestepping. It employs central finite
differences, so the extra cost of recentering a large number of variables between staggered
meshes each timestep is avoided.

Apart from high numerical accuracy, another important requirement for astrophysical gas
simulations is the capability to deal with a large dynamical range in density and temperature.
This requirement favors the use of non-conservative schemes, because then logarithmic
variables can be used which vary much less than linear density and energy density per unit
volume. Solving the non-conservative form of the equations can be more accurate than
solving the conservative form. The conservation properties can then be used as an indicator
for the overall accuracy.

In this chapter we concentrate on numerical astrophysical turbulence aspects starting
with a discussion of different numerical methods and a description of the results of various
numerical test problems. This is a good way of assessing the quality of a numerical scheme
and of comparing with other methods; see Stone and Norman (1992a, b) for a series of tests
using the ZEUS code. After that we discuss particular astrophysical applications including
stellar convection, accretion disc turbulence and associated outflows, as well as the generation
of magnetic fields (small and large scale) from turbulence in various astrophysical settings.

9.2. The Navier-Stokes equations

The discussion of magnetic fields will be postponed until later, because the inclusion of the
Lorentz force in the momentum equation is straightforward. We begin by writing down the
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Computational aspects of astrophysical MHD and turbulence 271

Navier-Stokes equations in non-conservative form and rewrite them such that the main
thermodynamical variables are entropy and either logarithmic density or potential enthalpy.
These variables have the advantage of varying spatially much less than, e.g. linear pressure
and density.

The primitive form of the continuity equation is

(9.1)

which means that the local change of density is given by the divergence of the mass flux at
that point. The Navier-Stokes equation can be written as

(9.2)

where  is the advective derivative, p is the pressure, Φ is the
gravitational potential, F is a body force (e.g. the Lorentz force), and τττττ is the stress tensor.

The Navier-Stokes equation is here written in terms of forces per unit volume. As argued
above, if the density contrast is large it is advantageous to write it in terms of forces per unit
mass and to divide by ρ. Before we can replace p and ρ by entropy and logarithmic density or
potential entropy we first have to define some thermodynamic quantities.

Internal energy, e, and specific enthalpy, h are related to each other by

(9.3)

where υ=1/ρ is the specific volume and ρ the density. The specific entropy is defined by

(9.4)

where T is temperature. The specific heats at constant pressure and constant volume are
defined as cp=dh/dT|p and cv=de/dT|v , their ratio is γ=cp/cv, and their difference is

, where  is the universal gas constant and µ the specific molecular weight.
In the following we assume cp and cv to be constant for all processes considered. Ionization

and recombination processes are therefore ignored here, although this is not a major obstacle;
see, e.g. simulations of Nordlund (1982, 1985), Steffen et al. (1989), Stein and Nordlund
(1989, 1998), Rast et al. (1993), and Rast and Toomre (1993a, b) where realistic equations of
state have been used.

We now assume that cp and cv are constant, so internal energy and specific enthalpy are
given by

(9.5)

This allows us then to write the specific entropy (up to an additive constant) as

(9.6)

The pressure gradient term in the momentum equation can then be written as

(9.7)
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272 Axel Brandenburg

where we have used

(9.8)

where c s is the adiabatic sound speed, and .

With these preparations the evolution of velocity u, logarithmic density In ρ, and specific
entropy s can be expressed as follows:

(9.9)

(9.10)

(9.11)

where f=F/ρ is the body force per unit mass, Γ and Λ are heating and cooling functions, v
kinematic viscosity and S is the (traceless) strain tensor with the components

(9.12)

In the presence of an additional kinematic bulk viscosity, ζ, the term 2ν S ij under the divergence
in (9.9) would need to be replaced by  and the viscous heating term, 2v S 2,
in (9.11) would need to be replaced by .

Instead of using ρ as a dependent variable one can also use the specific enthalpy h, which
allows us to write the pressure gradient as

(9.13)

This formulation is particularly useful if the entropy is nearly constant (or if the gas is
barotropic, i.e. p=p(ρ)) and if there is a gravitational potential Φ, so that the potential enthalpy
H=h+Φ can be used as dependent variable. In order to express (9.10) in terms of h we write
down the total differential of the specific entropy,

(9.14)

so

(9.15)

© 2003 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [

D
uk

e 
U

ni
ve

rs
ity

] 
at

 1
8:

18
 3

0 
N

ov
em

be
r 

20
16

 



Computational aspects of astrophysical MHD and turbulence 273

Furthermore, , and so the final set of equations is

(9.16)

(9.17)

(9.18)

where we have absorbed F in the potential enthalpy H=h+F. In this formulation the density
can be recovered as

(9.19)

(in dimensional form) or, for γ=5/3 and in non-dimensional form (where ρ0=p 0=cp=1),

(9.20)

We shall use either of the two sets of the equations, (9.9)–(9.11) or (9.16)–(9.18), in some of
the following sections, especially in connection with shock tests and stellar wind problems.
In these cases the gravity potential F is important and it turns out that the potential enthalpy
H≡h+Φ varies only very little near the central object even though Φ itself tends to become
singular.

The heating and cooling terms (Γ and Λ) are important, e.g. in the case of interstellar
turbulence which is driven primarily by supernova explosions which inject a certain amount
of thermal energy (∫ρΓdV) with each supernova explosion. MHD turbulence simulations of
this type were performed recently by Korpi et al. (1999). At the same time there is cooling
through various processes (e.g. bremsstrahlung at high temperatures) which transports energy
either non-locally via a cooling term Λ(T), or locally via thermal conduction or radiative
diffusion. In the radiative diffusion approximation we express Λ as , where
K is the radiative conductivity which is in general a function of temperature and density. The
radiative diffusivity (which has the same dimensions as the kinematic viscosity v) is given
by χ=K/(ρCp ), so

(9.21)

Since we shall use a non-conservative scheme with centered finite differences it is important
to isolate second derivative terms, so

(9.22)

where we have assumed for simplicity that χ is constant. In terms of s/c p and In ρ we have

(9.23)
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274 Axel Brandenburg

where  is a commonly used abbreviation in stellar astrophysics. For γ=5/3 we
have . We shall use (9.23) later in connection with shock and wind
calculations. However, we begin by discussing first a suitable numerical scheme which will
be used in most of the cases presented below.

9.3. The advantage of higher-order derivative schemes

Spectral methods are commonly used in almost all studies of ordinary (usually incompressible)
turbulence. The use of this method is justified mainly by the high numerical accuracy of
spectral schemes. Alternatively, one may use high-order finite differences that are faster to
compute and that can possess almost spectral accuracy. Nordlund and Stein (1990) and
Brandenburg et al. (1995) use high-order finite difference methods, e.g. 4th- and 6th-order
compact schemes (Lele 1992). 1

In this section we demonstrate, using simple test problems, some of the advantages of
high-order schemes. We begin by defining various schemes including their truncation errors
and their high wavenumber characteristics. We consider centered finite differences of 2nd-,
4th-, 6th-, 8th-, and 10th-order, which are given respectively by the formulae

(9.24)

(9.25)

(9.26)

(9.27)

(9.28)

for the first derivative, and

(9.29)

(9.30)

(9.31)

(9.32)

(9.33)

for the second derivative. The expressions for one-sided and semi-one-sided finite difference
formulae are given in Appendix A.

9.3.1. High wavenumber characteristics

The chief advantage of high-order schemes is their high fidelity at high wavenumber. Suppose
we differentiate the function sin kx, we are supposed to get k cos kx, but when k is close to the

© 2003 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [

D
uk

e 
U

ni
ve

rs
ity

] 
at

 1
8:

18
 3

0 
N

ov
em

be
r 

20
16

 



Computational aspects of astrophysical MHD and turbulence 275

Nyquist frequency, kNy =π/δx, where δx is the mesh spacing, numerical schemes yield effective
wavenumbers, keff , that can be significantly less than the actual wavenumber k. Here we
calculate keff from

(9.34)

When k=kNy , every centered difference scheme will give keff=0, because then the function
values of cos kx are just -1, +1, -1,…, so the function values on the left and the right are the
same, and the difference that enters the scheme gives therefore zero.

It is useful to mention at this point that for a staggered mesh, where the first derivative is
evaluated between mesh points, the value of the first derivative remains finite at the Nyquist
frequency, provided one does not need to remesh back to the original mesh. Especially in the
context with magnetic fields, however, remeshing needs to be done quite frequently, which
therefore diminishes the advantage of a staggered mesh.

In Fig. 9.1 we plot effective wavenumbers for different schemes. Apart from the different
explicit finite difference schemes given above, we also consider a compact scheme of sixth
order, which can be written in the form

(9.35)

for the first derivative, and

(9.36)

for the second derivative. As we have already mentioned in the introduction, this scheme
involves obviously solving tridiagonal matrix equations and is therefore effectively non-local.

In the second panel of Fig. 9.1 we have plotted effective wavenumbers for second
derivatives, which were calculated as

(9.37)

Of particular interest is the behavior of the second derivative at the Nyquist frequency,
because that is relevant for damping zig-zag modes. For a 2nd-order finite difference scheme

 is only 4, which is less than half the theoretical value of π 2=9.87. For 4th-, 6th-, and 10th-
order schemes this value is respectively 5.33, 6.04, and 6.83. The last value is almost the
same as for the 6th-order compact scheme, which is 6.86. Significantly stronger damping at
the Nyquist frequency can be obtained by using hyperviscosity, which Nordlund and Galsgaard
(1995) treat as a quenching factor that diminishes the value of the second derivative for
wavenumbers that are small compared with the Nyquist frequency. Accurate high-order second
derivatives (with no quenching factors) are important when calculating the current J in the
Lorentz force J×B from a vector potential A using . This will be
important in the MHD calculations presented below.

9.3.2. The truncation error

One can express fi -1, fi +1, etc., in terms of the derivatives of f at point i, so

(9.38)

(9.39)
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276 Axel Brandenburg

Figure 9.1 Effective wavenumbers for first and second derivatives using different schemes. Note that
for the second derivatives the 6th-order compact scheme is almost equivalent to the 10th-
order explicit scheme. For the first derivative the 6th-order compact scheme is still superior
to the 10th-order explicit scheme.

Inserting this into the finite difference expressions yields for the 2nd-order formula

(9.40)

The error scales quadratically with the mesh size, which is why the method is called second
order. The truncation error is proportional to the third derivative of the function. Because this
is an odd derivative it corresponds to a dispersive (as opposed to diffusive) error. Schemes
that are only first order (or of any odd order) have diffusive errors, and it is this what is
sometimes referred to as numerical diffusivity, which is not to be confused with artificial
diffusivity that is sometimes used for stability and shock capturing. For the other schemes
given in (9.25)–(9.28) the truncation errors are

(9.41)

(9.42)

(9.43)

For the 6th-order compact scheme the error scales like for the 6th-order explicit scheme, but
the coefficient in front of the truncation error is about 10 times smaller, so

(9.44)
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Computational aspects of astrophysical MHD and turbulence 277

For the second derivatives we have

(9.45)

(9.46)

(9.47)

(9.48)

Again, for the 6th-order compact scheme the scaling is the same as for the 6th-order
explicit scheme, but the coefficient in front of the truncation error is about five times less, so

(9.49)

This information about the accuracy of schemes would obviously be of little use if the
various schemes did not perform well when applied to real problems. For this reason we now
begin by carrying out various tests, including advection and shock tests.

9.3.3. Advection tests

As a first test we compare the various schemes by performing inviscid advection tests and
solve the equation Df/Dt=0, i.e.

(9.50)

on a periodic mesh. It is advantageous to use a relatively small number of meshpoints (here
we use Nx =8 meshpoints), because that way we see deficiencies most clearly. This case is
actually also relevant to real applications, because in practice one will always have small
scale structures that are just barely resolved.

After some time an initially sinusoidal signal will suffer a change in amplitude and phase.
We have calculated the amplitude and phase errors for schemes of different spatial order. For
the time integration we use high-order Runge-Kutta methods of third- or fourth-order, RK3
and RK4, respectively. In most cases considered below we use the RK3 scheme that allows
reasonable use of storage. It can be written in three steps (Rogallo, 1981)

(9.51)

where

(9.52)

where, f and g always refer to the current value (so the same space in memory can be used), but
 is evaluated only once at the beginning of each of the three steps at t=t0 , t1/

3=t0+γ1δt≈t0+0.5333δt, and at t2/3=t0+(γ1+ζ1+γ2)δt=t0+(2/3)δt. Even more memory-effective
are the so-called 2N-schemes that require one set of variables less to be hold in memory. Such
schemes work for arbitrarily high order, although not all Runge-Kutta schemes can be written
as 2N-schemes (Williamson, 1980; Stanescu and Habashi, 1998). These schemes work
iteratively according to the formula

(9.53)
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278 Axel Brandenburg

For a three-step scheme we have i=1,…, 3. In order to advance the variable u from u(n) at time
t(n) to u(n +1) at time t(n +1)=t(n)+δt we set in (9.53)

(9.54)

with u 1 and u 2 being intermediate steps. In order to be able to calculate the first step, i=1, for
which no wi -1 =w 0 exists, we have to require α 1=0. Thus, we are left with five unknowns,
α 2 , α 3 , ß 1 , ß 2 , and ß 3. Three conditions follow from the fact that the scheme be third order,
so we have to have two more conditions. One possibility is to choose the fractional times at
which the right-hand side is evaluated, e.g. (0, 1/3, 2/3) or even (0, 1/2, 1). In the latter case
the right-hand side is evaluated twice at the same time. It is therefore some sort of “predictor-
corrector” scheme. In the following, these two schemes are therefore referred to as “symmetric”
and “predictor-corrector” schemes. Yet another possibility is to require that inhomogeneous
equations of the form  with n=1 and 2 are solved exactly. Such schemes are abbreviated
as “inhomogeneous” schemes. The detailed method of calculating the coefficients for such
3rd-order Runge-Kutta schemes with 2N-storage is discussed in detail in Appendix B. Several
possible sets of coefficients are listed in Table 9.1 and compared with the favorite scheme of
Williamson (1980). Note that the 1st-order Euler scheme corresponds to ß 1=1 and the classic
second-order to α 2=-1/2, ß 1=1/2, and ß 2=1.

We estimate the accuracy of these schemes by solving the homogeneous differential
equation

(9.55)

The exact solution is u=tn . In Table 9.2 we list the rms error with respect to the exact solution,
for the range 1<t≤4 and fixed timestep δt=0.1 using n=-1, 2, or 3.

The length of the timestep must always be a certain fraction of the Courant-Friedrich-
Levy condition, i.e. δt=kCFLδx/Umax, where  and U max is the maximum transport
speed in the system (taking into account advection, sound waves, viscous transport, etc.).
Too long a timestep can not only lead to instability, but it also increases the error.

In Table 9.3 we give amplitude and phase errors for the various schemes. The most important
conclusion to be drawn from this is the fact that low-order spatial schemes result in large
phase errors. In the case of a 2nd-order scheme the phase error is 36° after a single passage of
a barely resolved wave through a periodic mesh. Higher-order schemes have easily a hundred
times smaller phase errors. The amplitude error, on the other hand, is virtually not affected by
the spatial order of the scheme. The amplitude error is mainly affected both by the temporal
order of the scheme and by the length of the timestep; see also Table 9.4. Therefore,

Table 9.1 Possible coefficients for different 2N-RK3 schemes
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Computational aspects of astrophysical MHD and turbulence 279

high-order schemes with low dissipation and dispersion are particularly important in
computational acoustics (Stanescu and Habashi, 1998). However, in applications to turbulence
a certain amount of viscosity is always necessary. This would decrease the amplitude of the
wave further and would eventually be even more important. (This additional viscosity could
be the real one, an explicit artificial, or an implicit numerical viscosity that would result from
the discretisation error or the numerical scheme; see Section 9.3.2.)

A common criticism of high-order schemes is their tendency to produce Gibbs phenomena
(ripples) near discontinuities. Consequently one needs a small amount of diffusion to damp
out the modes near the Nyquist frequency. Thus, one needs to replace (9.50) by the equation

(9.56)

Table 9.2 Errors (in units of 10-6) for different 2N-RK3
schemes, obtained by solving (9.55) in the range
1<t≤4 with δt=0.1 and different values of n.
Minimum values in each row are indicated in bold

Table 9.3 Amplitude and phase errors for inviscid advection of the
function f=cos kx with k=2π and N=8 meshpoints after t=20,
corresponding to 20 revolutions in a periodic mesh. The
amplitude error is counted positive when the amplitude
decreases. A positive phase error means that the solution lags
behind the theoretical one

Table 9.4 Dependence of the amplitude and phase errors on the length of
the timestep and the scheme used for the timestep. In all cases
spectral x-derivatives are used
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280 Axel Brandenburg

The question is now how much diffusion is necessary, and how this depends on the spatial
order of the scheme.

A perfect step function would produce large start-up errors; it is better to use a smoothed
profile, e.g. one of the form

(9.57)

where δx is the mesh width. For a periodic mesh of length L one would obviously use f=f(kx),
where k=2π/Lx. In that case the step width would be kδx. In the following we consider a
periodic domain of size Lx=1 with Nx =60 meshpoints, so we use k=2π/Lx =2π.

In Fig. 9.2 we plot the result of advecting the periodic step-like function, f(kx), over five
wavelengths, corresponding to a time T=L/u. The goal is to find the minimum diffusion
coefficient ν necessary to avoid wiggles in the solution. In the first two panels one sees that
for a 6th-order scheme the diffusion coefficient has to be approximately ν=0.01 uδx. For
ν=0.005 uδx there are still wiggles. For a 10th-order scheme one can still use ν=0.005 uδx
without producing wiggles, while for a spectral scheme of nearly infinite order one can go
down to ν=0.002 uδx without any problems.

We may thus conclude that all these schemes need some diffusion, but that the diffusion
coefficient can be much reduced when the spatial order of the scheme is high. In that sense it
is therefore not true that high-order schemes are particularly vulnerable to Gibbs phenomena,
but rather the contrary!

In Fig. 9.3 we compare the corresponding results of advection tests for 2nd- and 4th-order
schemes with the 6th-order scheme. It is evident that a 2nd-order scheme requires a relatively
high diffusion coefficient, typically around ν=0.05 uδx, but this leads to rather unacceptable
distortions of the original profile. (It may be noted that, if one uses at the same time a 1st-
order temporal scheme, which has antidiffusive properties, and a timestep which is not too
short, then the antidiffusive error of the timestep scheme would partially compensate the
actual diffusion and one could reduce the value of ν, but this would be a matter of tuning and
hence not generally useful for arbitrary profiles.)

9.3.4. Burgers equation

In the special case where the velocity itself is being advected, i.e. f=u, (9.56) turns into the
Burgers equation,

(9.58)

In one dimension there is an analytic solution for a kink,

(9.59)

where δ=ν/U is the shock thickness (e.g. Dodd et al., 1982). Note that the amplitude of the
kink is twice its propagation speed. Expressed in terms of the Reynolds number, Re=UL/ν, we
have δ=LRe- 1. (We note in passing that the dissipative cutoff scale in ordinary turbulence is
somewhat larger; δ=LRe- 3/4.)

In order to have a stationary shock we use the initial condition

(9.60)
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Computational aspects of astrophysical MHD and turbulence 281

Figure 9.2 Resulting profile after advecting a step-like function five times through the periodic mesh.
The dots on the solid line give the location of the function values at the computed meshpoints
and the dotted line gives the original profile. For the panels on the right-hand side the
diffusion coefficient is too small and the profile shows noticeable wiggles. δx=1/60.

In Fig. 9.4 we present numerical solutions using the 6th-order explicit scheme with different
values of the mesh Reynolds number, δxU/ν, which was varied by changing the value of v.
Here we used Nx =100 meshpoints in the range -1≤x≤1. Note that the overall error, defined
here as max(|f-fexact |), decreases with decreasing mesh width like δx5.

The test cases considered so far were not directly related to the Navier-Stokes equation,
e.g. which permits sound waves that can pile up to form shocks. This will be considered in the
next section.

9.3.5. Shock tube tests

A popular test problem for compressible codes is the shock tube problem of Sod (1951). On
the one hand, one can assess the sharpness of the various fronts. On the other hand, and
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282 Axel Brandenburg

perhaps most importantly, it allows one to test the conversion of kinetic energy to thermal
energy via viscous heating.

In the following we use the formulation of the compressible Navier-Stokes equations in
terms of entropy and enthalpy (9.16)–(9.18). We use units where p0 =ρ0 =cp=1 and adopt the
abbreviations Λ=ln ρ (not to be confused with the cooling function used in Section 9.2). In
one dimension (with ν=const) these equations reduce to

(9.61)

(9.62)

(9.63)

where dots and primes refer respectively to time and space derivatives, Qs describes the
change of entropy due to radiative diffusion, and Λ=ln ρ is the logarithmic density. In

Figure 9.3 Like Fig. 9.2, but for low-order schemes. Again, for the panels on the right-hand side the
diffusion coefficient is too small and the profile shows noticeable wiggles. For the 2nd-order
scheme one needs a viscosity of ν=0.05 uδx to prevent wiggles, but then the resulting
distortion of the original profile becomes rather unacceptable. δx=1/60.
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Computational aspects of astrophysical MHD and turbulence 283

(9.61)–(9.63) we have used the abbreviation

(9.64)

for the adiabatic sound speed squared, and  is the effective viscosity for compressive

motions. This 4/3 factor comes from the fact that in one-dimensional

(9.65)

and therefore

(9.66)

so , or . In the radiative diffusion approximation we have Qs=

-Λcond/(cpT), and so (9.23) gives in one dimension

(9.67)

In Fig. 9.5 we show the solution for an initial density and pressure jump of 1:10 and the
viscosity is now ν=0.6δx cs . In this case a small amount of thermal diffusion (with Prandtl
number χ/ν=0.05) has been adopted to remove wiggles in the entropy.

For stronger shocks velocity and entropy excess increase; see Figs. 9.6 and 9.7, where
the initial pressure jumps are 1:100 and 1:1000, respectively, and the viscosities are chosen
to be ν=1.6δx cs and ν=2.4δx cs . (For the stationary shock problem considered below we
also find that the viscosity must increase with the Mach number and, moreover, that the
two should be proportional to each other.) In the cases shown in Figs. 9.6 and 9.7 we were
able to put χ=0 without getting any wiggles in s. However, in the case of strong shocks

Figure 9.4 Numerical solution of the Burgers equation using the 6th-order explicit scheme with (9.60)
as initial condition. In the left-hand panel the lines give the exact solution (9.60) and the dots
give the numerical solution for the corresponding value of the mesh Reynolds number: δx U/
ν=0.5 (solid line), 1.0 (dotted line), and 2.0 (dashed line). In the right-hand panel the scaling
of the error with δx is shown.
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284 Axel Brandenburg

(pressure ratio 1:1000) the discrepancy between numerical and analytical solutions becomes
quite noticeable.

In many practical applications shocks occur only in a small portion of space. One can
therefore reduce the viscosity outside shocks or, conversely, use a small viscosity everywhere
except in the locations of shock, i.e. where the flow is convergent (negative divergent). This
leads to the concept of an artificial (Neumann-Richtmyer) shock viscosity,

Figure 9.6 Same as Fig. 9.5, but for an initial pressure jump of 1:100 and v=1.6δx cs. t=1.9.

Figure 9.7 Same as Fig. 9.6, but for an initial pressure jump of 1:1000 and υ=2.4dx cs. t=1.5.

Figure 9.5 Standard shock tube test with an initial pressure jump of 1:10 and v=0.6δx cs and χ/v=0.05.
The solid line indicates the analytic solution (in the limit  ) and the dots the numerical
solution. Note the small entropy excess on the right of the initial entropy discontinuity. t=2.7.
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Computational aspects of astrophysical MHD and turbulence 285

(9.68)

where �… �n.n. indicates averaging over nearest neighbors and the subscript+means that only
the positive part is taken.

The last panel in Figs. 9.6 and 9.7 shows quite clearly how the entropy increases behind
the shock. This entropy increase is just a consequence of the viscous heating term,  .
Without this term the solution would obviously be wrong everywhere behind the shock,
especially when the shock is strong.

A somewhat simpler situation is encountered with standing shocks. In Fig. 9.8 we give an
example of a numerically determined solution at Ma=100. The agreement in the jump for the
numerically determined solution (dotted line and dots) and the theoretical solution (solid
lines) is very good, although the position of the jump has moved away somewhat from the
initial location (x=0), but this is merely a consequence of having used more-or-less arbitrarily
a tanh profile to smooth the initial jumps. After some initial adjustment phase the profiles do
indeed remain stationary. Note also, however, that the entropy profile is slightly shifted
relative to the profiles of u and Λ.

It is interesting to note that when solving the Rankine-Hugionot jump conditions for
shocks one is allowed to use the inviscid equations provided they are written in conservative
form. Sometimes one finds in the literature the inviscid Navier-Stokes equations written in
non-conservative form. This is not strictly correct, because without viscosity there would be
no viscous heating and hence no entropy increase behind the shock. Moreover, it is quite
common to consider a polytropic equation of state, p=KρΓ. Again, in this case the entropy is
constant, and so energy conservation is violated. Nevertheless, given that polytropic
equations of state are often considered in astrophysics we consider this case in more detail in
the next subsection.

9.3.6. Polytropic and isothermal shocks

For polytropes with p=KρΓ , but Γ≠γ in general, we can write

(9.69)

so we can introduce a pseudo enthalpy h
~

 as

(9.70)

This is consistent with a fixed entropy dependence, where s only depends on ρ like

(9.71)

which implies that in the polytropic case (9.62) is discarded. In the adiabatic case, Γ=γ,
entropy is constant. In the isothermal case, , we have Γ→1, so entropy is not constant,
but it varies only in direct relation to—ln ρ and not as a consequence of viscous heating
behind the shock.
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286 Axel Brandenburg

In deriving the Rankine-Hugionot jump conditions one uses the conservation of mass,
momentum, and energy in a comoving frame, where the following three quantities are
constants of motion:

(9.72)

The values of these three constants can be calculated when all three variables, u, p, and ρ, are
known on one side of the shock. For polytropic equations of state, with p=Kρ γ , the energy
equation is no longer used, so there are only the following two conserved quantities,

(9.73)

The dependence of the velocity, density, pressure, and entropy jumps on the upstream Mach
number is plotted in Fig. 9.9 for the case γ=5/3 and compared with the polytropic case using
Γ=γ (Fig. 9.10).

Figure 9.8 Example of a very strong standing shock with Ma=100. Note the relative shift of the position
where s increases relative to where Λ=ln ρ increases. The viscosity is chosen to be ν=Ma×δx.
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Computational aspects of astrophysical MHD and turbulence 287

Note that the pressure jump, p2 /p1 , is almost independent of the value of γ and does also
not significantly depend on the polytropic assumption.

9.4. Non-uniform and lagrangian meshes

In many cases it is useful to consider non-uniform meshes, either by adding more points in
places where large gradients are expected, or by letting the points move with the flow
(lagrangian mesh). The lagrangian mesh is particularly useful in one-dimensional cases,
because then the mesh topology (i.e. the ordering of mesh points) remains unchanged. This
approach is related to the method of Smooth Particle Hydrodynamics; see Maron and Howes
(2001) for references and an improvement of this method. Another method that gains
constantly in popularity is adaptive mesh refinement (e.g. Grauer et al., 1998), which will not
be discussed here.

9.4.1. Non-uniform topologically cartesian meshes

The implementation of non-uniform meshes can be relatively easy when each of the new coordinates
depend on only one variable, e.g. when  and  are

Figure 9.9 The dependence of the velocity, density, pressure, and entropy jumps on the upstream Mach
number for the case γ=5/3 (solid line) and comparison with the polytropic case using Γ=γ
(dotted line). Note that the velocity and density jumps saturate at 1/4 and 4, respectively,
while there is no such saturation for the polytropic shock.

Figure 9.10 Like Fig. 9.9, but for γ=Γ=1.0001. Note that the velocity and density jumps saturate at much
more extreme values than for γ=5/3. Thus, the results using polytropic and ideal gas equa-
tions agree up to much larger Mach numbers than for γ=5/3.
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288 Axel Brandenburg

cartersian coordinate a uniform mesh. In the more general case, however, we have

(9.74)

so that x,y, and z derivatives of a function f can be calculated using the chain rule,

(9.75)

Corresponding formulae apply obviously for the other two direction, so in general we can
write

(9.76)

is the jacobian of this cocordinate transformation. This method allows onr to have resoluation,
e.g. near a central object,without howerver having high resolution anywhere else far away
from the central object. This is useful in connection with outflows from jets.

We discuss here one particular application that is relevant for simulating flows in a sphere.
It is possible to transform a cartesian mesh to cover a sphere without a coordinate singularity.
It will turn out, however, that there is a discontinuity in the jacobian. We discuss this here in
two-dimension. We denote the coordinate mesh by a tilde, so  are the coordinates in a
uniform cartesian mesh. We want to stretch the mesh such that points on the   and  axes are
not affected, and that the distance of points on the diagonal is reduced by a factor  (or
by  in three-dimension). This can be accomplished by introducing new coordinates (x,
y) as

(9.77)

where n is a large even number. In the limit n→∞ we may substitute

(9.78)

Examples of the resulting meshes for two different values of n are given in Fig. 9.11.

Figure 9.11 Examples of the resulting meshes for n=8 and n→∞ in which case (9.78) is used.
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Computational aspects of astrophysical MHD and turbulence 289

In order to obtain the jacobian of this transformation, , we have to consider separately
the cases  and . The derivation is given in Appendix C, and is most concisely
expressed in terms of the logarithmic derivative, so

(9.79)

(9.80)

where . Note that the jacobian is discontinuous on the diagonals. This is a
somewhat unfortunate feature of this transformation. It is not too surprising however that
something like this happens, because the diagonals are the locations where a rotating flow
must turn direction by 90° in the coordinate mesh. Nevertheless, it is possible to obtain
reasonably well behaved solutions; see Fig. 9.12 for an advection experiment using a
prescribed differentially rotating flow.

The fluid equations are still solved in rectangular cartesian coordinates, so, e.g. the
equation Ds/Dt=0 is solved in the form

(9.81)

Figure 9.12 Example of an advection experiment on a n=8 mesh.
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290 Axel Brandenburg

where the spatial derivatives are evaluated according to (9.75). For the velocity field, stress-
free boundary conditions, e.g. would be written in the form

(9.82)

where Sij is the rate of strain tensor,  and  are the cartesian components (i=x, y, z) of the
radial and azimuthal unit vectors, i.e.

(9.83)

are unit vectors in the r and  directions and  is the distance from the rotation
axis. The stress-free boundary conditions are then

(9.84)

and

(9.85)

9.4.2. Lagrangian meshes

We now consider a simple one-dimensional lagrangian mesh problem. Assume that � labels
the particle, then the lagrangian derivative is

(9.86)

Now, because

(9.87)

we have the well-known equation

(9.88)

As an example we now consider the Burgers equation,

(9.89)

We now take u(x, t)=u(�(x), t) to be a function of the coordinate variable � which, in turn, is
a function of x. The x-derivatives are obtained using the chain rule, i.e.

(9.90)

and likewise for the second derivative

(9.91)
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Computational aspects of astrophysical MHD and turbulence 291

Thus, the Burgers equation can then be written as

(9.92)

where the x variable is given by

(9.93)

A solution of these two equations is given in Fig. 9.13.
In the test problem above the initial meshpoint distribution was uniform. Although this is

not quite suitable for this problem, it shows that subsequently the mesh spacing became
narrower still, which means that the timestep in now governed by viscosity, ,
where the numerical factor is empirical. However, the mesh spacing does not need to be
governed by (9.93), so it is quite possible to come up with other prescriptions for the mesh
spacing.

Consider as another example the isothermal eulerian equations

(9.94)

(9.95)

Figure 9.13 Solution of the Burgers equation using a lagrangian mesh combined with a 6th-order explicit
scheme. The values of the mesh Reynolds number vary between δx U/v=0.5 and 2.0, where
δx refers to the initially uniform mesh spacing.
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292 Axel Brandenburg

In lagrangian form they take the form

(9.96)

(9.97)

(9.98)

The example above demonstrates clearly the problem that lagrangian mesh points can continue
to pile up near convergence points of the flow. This is a general problem with fully lagrangian
schemes. One possible alternative is to use lagrangian-eulerian schemes (e.g. Benson, 1992;
Peterkin et al., 1998; Arber et al., 2001), which combine the advantages of lagrangian and
eulerian codes, but involve obviously some kind of interpolation. Another alternative is to
use a semi-lagrangian code which advects the mesh points not with the actual gas velocity u,
but with a more independent mesh velocity U. Clearly, we want to avoid too small distances
between neighboring points, so one could artificially lower the effective mesh velocity by
involving, e.g. the modulus of the jacobian, |J|, which becomes large when the concentration
of mesh points is high. Thus, one could choose, e.g. U=u/(l+|J|). In the present case, |J|=|x’|-1. In
the following we discuss the formalism that needs to be invoked in order to calculate first and
second derivatives on an advected mesh.

9.4.3. Non-lagrangian mesh advection

The main advantage of a lagrangian mesh is that it allows higher resolution locally. Another
advantage, which is however less crucial, is that the nonlinear advection term drops out. The
main disadvantage is however that a lagrangian mesh may become too distorted and
overconcentrated, as seen in the previous section. In this subsection we address the possibility
of advecting the mesh with a velocity U that can be different from the fluid velocity. This way
one can remove the swirl of the mesh by taking a velocity that is the gradient of some other
quantity, i.e.

(9.99)

where Φmesh should be large in those regions where many points are needed. One possible
criterion would be to require that the number of scale heights per meshpoint, ,
does not exceed an empirical value of 1/3, say. Thus,  would be a necessary
condition. Another possibility would be to let Φmesh evolve itself according to some suitable
advection-diffusion equation. However, no generally satisfactory method seems to be available
as yet. In order to calculate the jacobian for the coordinate transformation one can make use
of the fact that the mesh evolves only gradually from one timestep to the next. For a more
extended discussion of mesh advection schemes we refer to the article by Dorfi in the book
by LeVeque et al. (1998).
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Computational aspects of astrophysical MHD and turbulence 293

9.4.3.1. Calculating the jacobian

Initially, at t=0, we have . After the nth timestep, at t=nδt, we calculate the new x-mesh,

x(n+1), from the previous one, x(n) , i.e.

(9.100)

Here,  is just the original coordinate mesh. Differentiating the ith component with
respect to the jth component, as we have done in Section 9.4.1, we obtain

(9.101)

where . In the expression above we have Ui on the mesh x(n) , but we need
to differentiate with respect to the new mesh x(n +1). This can be fixed by another factor

. Thus, we have

(9.102)

This can be written in matrix form,

(9.103)

where

(9.104)

is a transformation matrix and

(9.105)

is the incremental jacobian, so J(n)=M-1. To obtain the jacobian at t=2δt, e.g. we calculate

(9.106)

The jacobian at t=nδt is then obtained by successive matrix multiplication from the right, so

(9.107)

where  and  are the full (as opposed to incremental) jacobians at the new and
previous timesteps, respectively.
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294 Axel Brandenburg

9.4.3.2. Calculating the 2nd-order jacobian

A corresponding calculation (see Appendix D) for the second derivatives of a function f
shows that

(9.108)

where

(9.109)

is the 2nd-order jacobian. Like for the first derivative the 2nd-order jacobian can be obtained
by successive tensor multiplication,

(9.110)

where  and  are the 2nd-order jacobians at the new and previous timesteps,

respectively, and

(9.111)

is the incremental 2nd-order jacobian, which is calculated at each timestep as

(9.112)

where M was defined in (9.104) and

(9.113)

is the 2nd-order velocity gradient matrix on the physical mesh. Since M-1=J(n) is just the
incremental jacobian, we can write (9.112) as

(9.114)

Since the expressions (9.110) and (9.114) involve both a multiplication with , we can simplify
(9.110) to give

(9.115)

Here the expression  is of course the new jacobian, .
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Computational aspects of astrophysical MHD and turbulence 295

So in summary, the new 1st- and 2nd-order jacobians are obtained from the previous
ones via the formulae

(9.116)

(9.117)

(9.118)

(9.119)

where J=J (0→n +1) and K=K (0→n+1) has been assumed.

Since now the mesh is moving in time with the local speed U which is different from the gas
velocity u, the lagrangian derivative is

(9.120)

In all other respects the basic equations, written in cartesian form, are still unchanged, provided
all x, y, and z derivatives (first and second) are evaluated, as in (9.75) and (9.108), with the
components of the jacobian. As an example we show in Fig. 9.14 the result of a kinematic
collapse calculation where  and Ds/Dt=0 with a smoothed but localized
gravitational potential φ. In Fig. 9.15 we compare the results of an eulerian and a lagrangian
calculation using the same number of meshpoints. Already after some short time the eulerian
calculation begins to become underresolved and develops wiggles while the lagrangian
calculation proceeds without problems.

9.4.4. Unstructured meshes

We now discuss how we can calculate spatial derivatives of our variables from a non-uniformly
spaced ensemble of points. Consider the function f(x,y,z), which stand for one of the
components of a vector (velocity or magnetic vector potential) or a scalar, such as In ρ. We
approximate the function f(x, y, z) in the neighborhood of the point xi=(xi , yi , zi ) by a
multidimensional polynomial of degree N,

(9.121)

where l, m, and n are non-negative integers and c lmn are coefficients that are to be determined
separately for each point by applying (9.121) to all neighboring points xj . Note that c000=0
and does not need to be considered. Thus, for each point j we have a system of equations

(9.122)
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296 Axel Brandenburg

where fij=f(xi , yi , zi)-f(xj , yj , zj) and x ij =x i -x j . This system of equations can be written in matrix
form

(9.123)

where 1≤(a, ß)≤M and M is the spatial dimension of the matrix, which is related to N and the
dimension as follows:

(9.124)

When N=2 the matrix M is given by

(9.125)
 

and

(9.126)

Figure 9.14 Example of a collapse calculation. The second row shows only the inner parts with |x|,
|y|≤0.01 at the same times as in the upper row.
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Computational aspects of astrophysical MHD and turbulence 297

Here, jn (n=1, 2,…, M) are the M nearest neighbors of the point i. In general the matrix can be
written in the form

(9.127)

where J is the index of the point at which the derivative is to be calculated. The set of
exponents l(ß), m(ß), and n(ß) is given here for the case N=4 in three-dimensional

(9.128)

(9.129)

(9.130)

Figure 9.15 Comparison of lagrangian (+ signs) and eulerian (dots) calculations in the first two plots,
and later development (last two plots) where the eulerian no longer works. Note that already
in the second plot the eulerian calculation has developed noticeable wiggles which the
lagrangian proceeds without problems.
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298 Axel Brandenburg

where the vertical bars separate the sets of exponents that correspond to increasing orders.
Once the C vector has been obtained, the first derivatives of f are simply given by

(9.131)

Likewise, the second derivatives are given by

(9.132)

and the mixed second derivatives are given by

(9.133)

Although this method can be used for meshes that are static in time, it can also be used in
connection with multidimensional lagrangian schemes. In that case there may arise the
problem that neighboring points get very close together, and so small errors strongly affect
the coefficients. A good way out of this is to use a few more points and to solve the linear
matrix equation using singular value decomposition. An example of such a calculation is
shown in Fig. 9.16, where a passive scalar, with the initial distribution A(x, 0)=x, is advected
by the velocity, , which in turn is obtained by solving Kepler’s equation, ,
using the normalization GM=1. This windup problem corresponds to the windup of initially
horizontal magnetic field lines.

In diffusivity used in Fig. 9.16 was η=0.02, but due to the coarse resolution and the
implicit smoothing resulting from the singular value decomposition technique the effective
diffusivity is somewhat larger.

Figure 9.16 Two-dimensional advection problem on an unstructured lagrangian mesh. The dots indicate
the 1000 lagrangian particles which constitute the unstructured mesh.
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9.5. Implementing magnetic fields

As mentioned in Section 9.2, implementing magnetic fields is relatively straightforward. On
the one hand, the magnetic field causes a Lorentz force, J×B, where B is the flux density,

 is the current density, and µ0 is the vacuum permeability. Note, however, that
J×B is the force per unit volume, so in (9.9) we need to add the term J×B/ρ on the right-hand
side. On the other hand, B itself evolves according to the Faraday equation,

(9.134)

where the electric field E can be expressed in terms of J using Ohm’s law in the laboratory
frame, E=-u×B+J/σ, where σ=(ηµ0)-1 is the electric conductivity and η is the magnetic
diffusivity.

In addition we have to satisfy the condition . This is most easily done by
solving not for B, but instead for the magnetic vector potential A, where . The
evolution of A is governed by the uncurled form of (9.134),

(9.135)

where  is the electrostatic potential, which takes the role of an integration constant which
does not affect the evolution of B. The choice  is most advantageous on numerical
grounds. (By contrast, the Coulomb gauge , which is very popular in analytic
considerations, would obviously be of no advantages, since one still has the problem of
solving a the solenoidality condition.)

Solving for A instead of B has significant advantages, even though this involves taking
another derivative. However, the total number of derivatives taken in the code is essentially
the same. In fact, when centered finite differences are employed, Alfvén waves are better
resolved when A is used, because then the system of equations for one-dimensional Alfvén
waves in the presence of a uniform Bx 0 field in a medium of constant density ρ0 reduces to

(9.136)

where a second derivative is taken only once (primes denote x-derivatives). If, instead, one
solves for the Bz field, one has

(9.137)

where a first derivative is applied twice, which is far less accurate at small scales if a centered
finite difference scheme is used. At the Nyquist frequency, e.g. the first derivative is zero and
applying an additional first derivative gives still zero. By contrast, taking a second derivative
once gives of course not zero. The use of a staggered mesh circumvents this difficulty.
However, such an approach introduces additional complications which hamper the ease with
which the code can be adapted to other problems.

Another advantage of using A is that it is straightforward to evaluate the magnetic helicity
, which is a particularly important quantity to monitor in connection with dynamo and

reconnection problems.
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300 Axel Brandenburg

The main advantage of solving for A is of course that one does not need to worry about the
solenoidality of the B-field, even though one may want to employ irregular meshes or
complicated boundary conditions.

As we have emphasized before, when centered meshes are used, it is usually a good idea
to avoid taking first derivatives of the same variable twice, because it is more accurate to take
instead a second derivative only once. For this reason we calculate the current not as

, but as

(9.138)

Taking the gradient of  involves of course also taking first derivatives of the same
variable twice, but these contributions are cancelled by corresponding components of the

 term. There are some advantages relying here on the numerical cancellation, which is of
course not exact. The reason is that the full  term is important when used in the magnetic
diffusion term. If the diagonal terms, ∂2 Ax /∂x2, ∂2 Ay /∂y2, and ∂2 Az /∂z2 , which would all drop
out analytically, were taken out there would be no diffusion of A in the direction of A.

There is one more aspect that is often useful keeping in mind. There is a particular gauge
that allows one to rewrite the uncurled induction equation in such a form that the evolution
of A is controlled by the advective derivative of A. The calculation is easy. Write the induction
term u×B in component form and express B in terms of A, so

(9.139)

Here the last term contributes to the advective derivative, the first term can be removed by a
gauge transformation and the middle term is a modified stretching term, so the induction
equation takes the form

(9.140)

This gauge was used by Brandenburg et al. (1995) in order to treat a linear velocity shear
using pseudo-periodic (shearing box) boundary conditions. The formulation (9.140) can
also be useful when solving the induction equation using lagrangian methods. Note, however,
that the non-resistive evolution of A differs from that of B in that the indices of the matrix Uij

=∂ui /∂xj are interchanged and that the sign is different; positive for the B-equation,

(9.141)

and negative for the A-equation,

(9.142)

These two formulations are particularly advantageous when the velocity has a constant
gradient, as in the case of linear shear. In local simulations of accretion discs, e.g. the shear
component is , so , and all other Uij vanish. Hence

(9.143)
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Computational aspects of astrophysical MHD and turbulence 301

for the A-formulation, or

(9.144)

for the B-formulation. In these two formulations all dependent variables are clearly periodic
(or rather pseudo-periodic), so there is no term that is explicitly non-periodic such as 

. In the following, whenever magnetic fields are present, we use the A-formulation,
mainly because it guarantees the solenoidality of B everywhere (including the boundaries),
and also because it is easy to use.

9.5.1. Cache-efficient coding

Unlike the CRAY computers that dominated supercomputing in the eighties and early nineties,
all modern computers have a cache that constitutes a significant bottleneck for many codes.
This is the case if large three-dimensional arrays are constantly used within each timestep.
The advantage of this way of coding is clearly the conceptual simplicity of the code. A more
cache-efficient way of coding is to calculate an entire timestep (or a corresponding substep
in a three-stage 2N-Runge-Kutta scheme) only along a one-dimensional pencil of data within
the box. On Linux and Irix architectures, e.g. this leads to a speed-up by 60%. An additional
advantage is a drastic reduction in temporary storage that is needed for auxiliary variables
within each timestep.

9.6. Application to astrophysical outflows

9.6.1. The isothermal Parker wind

Before discussing outflows from accretion discs it is illuminating to consider first the one-
dimensional example of pressure-driven outflows in spherical geometry. A particularly simple
case is the isothermal wind problem, which is governed by the equations

(9.145)

(9.146)

where cs is the isothermal sound speed (assumed constant),  is the mass loss rate, and ξ(r) is
a prescribed function of position, normalized such that ∫ 4πr2ξ(r)dr=1, and non-vanishing
only near r=0. For a point mass the gravity potential Φ would be -GM/r, but this becomes
singular at the origin. Therefore we use the expression  instead,
where we choose n=5 in all cases, and 1/r0 gives the depth of the potential well. In Fig. 9.17
we show radial velocity and density profiles for different values of . Note that the velocity
profile is independent of the value of , but the density profile changes by a constant factor.
In the steady case the equations can be combined to

(9.147)

so the sonic point, |u|=cs, is at . In Fig. 9.17 we have chosen GM=2 and
cs=1 , so r*=1, which is consistent with the graph of u.
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302 Axel Brandenburg

9.6.2. The polytropic or adiabatic wind

In the following we make the assumption that the entropy is constant. In that case it is
particularly useful to solve for the potential enthalpy, H=h+Φ, which varies much less than
either h or Φ. Using H as dependent variable is particularly useful if one solves the equations
all the way to the origin, r=0, where Φ tends to become singular (or at least strongly negative
if a smoothed potential is used). In terms of H the governing equations are

(9.148)

(9.149)

where H=h+Φ is the potential enthalpy, h=p/ρ+e is the enthalpy, and 
 for a ideal gas, where cs is the adiabatic sound speed and h=cpT is the

enthalpy. These equations are also valid in the nonisothermal case (γ≠1). The isothermal
case may be recovered by putting γ=1 and replacing h by . In Fig. 9.18 we show
solutions for different values of  and γ=5/3. Again we put GM=2 and Cs0=1.

We note that, depending on the strength of the mass source, the polytropic wind problem
allows a variety of different velocity and Mach number profiles, whereas for the isothermal
wind problem there was only one solution possible, independent of the strength of the mass
source. The velocity profile was always the same and also the density was the same up to
some scaling factor that changes with . This is connected with the additional degree of
freedom introduced through the polytropic constant K=p/ργ . Since cs is no longer constant,
the position of the sonic point is no longer fixed and different solutions are possible.

In Fig. 9.19 we show solutions where  is kept constant, but the depth of the potential
well, GM/r0, is changed by varying the value of r0. Note that the deeper the potential well, the
higher the wind speed. The density far away from the source is then correspondingly smaller,
so as to maintain the same mass flux.

As we have seen in Section 9.3.6, a polytropic equation of state is unphysical. Therefore we
now consider the case where the energy equation is included. To be somewhat more general we
consider first the basic equations in conservative form with mass, momentum, and energy

Figure 9.17 Isothermal Parker wind solutions for different values of . Note that the u profile is
independent of the value of . GM=2, cs=1, r0=0.4.
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Computational aspects of astrophysical MHD and turbulence 303

sources included, i.e.

(9.150)

(9.151)

(9.152)

where  and  are the rates of mass, momentum, and energy injection into the system, τij

=2νρSij is the viscous stress tensor, and Sij is the (traceless) rate of strain tensor; see (9.12).
Rewriting the energy equation in non-conservative form we have

(9.153)

Figure 9.18 Polytropic Parker wind solutions for different values of . GM=2, cs0=1, r0=0.4.

Figure 9.19 Density ρ, velocity u, and Mach number Ma=u/cs for the polytropic Parker wind solutions
for different values of r0. GM=2, cs0=1, .
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304 Axel Brandenburg

which can also be rewritten in terms of entropy, so the final system of non-conservative
equations with source terms is

(9.154)

(9.155)

(9.156)

where T can be replaced by  (remember that cp=1), and  is given by (9.8).
In Fig. 9.20 we present solutions of (9.154)–(9.156) for different values of  and . The

main effect of varying the value of  is to change the value of the entropy in the wind.
Outside the acceleration region, however, the value of the entropy is fairly constant, so the
polytropic assumption appears to be reasonably good here.

While outflows of some very early-type stars are driven mostly by the  term (resulting
from the radiation pressure in lines), the winds of cool stars are driven mostly by the  term
(resulting from the hot coronae). Similar differences may also explain why some jets are
massive (e.g. stellar jets), whilst others are not (jets from active galactic nuclei, e.g. or those
anticipated in gamma-ray bursters).

9.6.3. Relevance to outflows and jets

The pressure-driven outflows discussed in the previous section may take the form of more
collimated outflows once a magnetic field is involved. This applies to the case of magnetized
accretion discs. These discs are generally magnetized both because of dynamo action within

Figure 9.20 Wind solutions for different values of  and . Note that the solution with  is
quantitatively very similar to the polytropic solution with the same value of . GM=2, cs0=1,
r0=0.4.
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Computational aspects of astrophysical MHD and turbulence 305

the disc and because of external fields that were dragged into the disc from outside due to the
accretion flow.

At least in some types of jets the outflows may be driven by hot coronae. Other possibilities
for driving outflows involve the magneto-centrifugal effect. It is well known that outflows
can be driven from a magnetized disc if the angle between the field and the disc is less than
60° (Blandford and Payne, 1982). Recent work in this field was directed to the question
whether this angle is the result of some self-regulating process (Ouyed et al., 1991; Ouyed
and Pudritz, 1997a, b, 1999) and whether it can be obtained automatically from a dynamo
operating within the disc (Campbell, 1999, 2000; Dobler et al., 1999; Rekowski et al.,
2000). This latter question is particularly interesting in view of the fact that jets in star-
forming regions are not really pointing in a similar direction (e.g. Hodapp and Ladd, 1995),
as one might expect from jet models that start off with a prescribed large scale field.

In Fig. 9.21 we present a particular model of Dobler et al. (1999) and Brandenburg (2000);
see Brandenburg et al. (2000) for a full account of this work. In these models the outflow is
driven by mass sources whose strength is proportional to the local density deficit relative to
that in the original equilibrium solution of the disc. Such a density deficit was initially
caused by slow gas motions that resulted from an instability of the initial equilibrium solution,
because a cool disc embedded in a hot corona is non-rotating outside the disc, and it is the
resulting vertical shear profile that causes the instability (cf. Urpin and Brandenburg, 1998).
At later times, of course, the outflow makes the corona corotating, but by that time the
outflow is driven by a persistent density deficit in the disc relative to the initial references
solution.

Figure 9.21 Poloidal velocity vectors and poloidal magnetic field lines superimposed on a gray-scale
image of the logarithmic density. Dark means high density. The thick dashed line denotes the
location where the poloidal flow speed equals the fast magnetosonic speed. The thin solid
line gives the location of the disc surface. The slight asymmetry in the field is a relic from the
mixed-parity initial condition. (Adapted from Brandenburg, 2000.)
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306 Axel Brandenburg

In this model the magnetic field was generated by an α-Ω dynamo operating within the
disc. However α is negative in the upper disc plane (see Brandenburg et al., 1995), and then
the most preferred field geometry is dipolar (Campbell, 1999; Rekowski et al., 2000). The
field parity is sensitive to details in the disc physics assumed in the particular model (aspect
ratio, disc thickness, the presence of outflows, and the conductivity in the disc and the
exterior). Nevertheless, both dipolar and quadrupolar fields are equally well able to contribute
to wind launching, at least in the outer parts of the disc where the angle between the field and
the disc plane is less than 60°, the critical angle for magneto-centrifugal wind launching
(Blandford and Payne, 1982). We note, however, that the more detailed analysis of Campbell
(1999) suggests that the critical angle can be significantly smaller.

In our models the outflow is only weakly collimated (if at all). This is probably connected
with the fact that here the fast magnetosonic surface is rather close to the disc surface, making
it difficult for the field to become strong enough to channel the magnetic field. Instead, the
field lines themselves are still being controlled too strongly by the outflow. However, outflows
with rather large opening angles are actually seen in some star-forming regions; see Greenhill
et al. (l998).

While most of the disc mass is ejected in a cone of half-opening angle around 25°, most of
the disc angular momentum is ejected at rather low latitudes, almost in the direction of the
disc plane away from the central object. The timescales for these various processes are
comparable. In Fig. 9.22 we show the azimuthally integrated mass flux, angular momentum
flux, and magnetic (Poynting) flux as a function of polar angle, and compare with a non-
magnetic run. We find that in the magnetic run the outflow is more strongly concentrated
towards the axis. Also, the amount of angular momentum loss (dash-dotted line) is larger
when the disc is magnetized. We emphasize in particular that in the magnetic run significant
amounts of magnetic field are eject from the system. In the following section we discuss the
significance of such magnetic flux ejection for magnetizing the interstellar medium into
which the outflow is streaming. This discussion is similar to a corresponding discussion for
the contamination of the intergalactic medium via outflows from active galactic nuclei
(Brandenburg, 2000).

Figure 9.22 Comparison of the angular dependence of azimuthally integrated fluxes for magnetic and
non-magnetic outflows. The solid line refers to mass flux, the dashed line to angular momentum
flux, and the dash-dotted line (in the second panel) corresponds to the Poynting flux. The
units of all quantities are thus 1/[t].
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Computational aspects of astrophysical MHD and turbulence 307

9.6.4. Magnetic contamination from outflows

It may at first appear somewhat unrealistic to expect significant magnetization of the inter-
stellar medium from outflows. However, the following calculation shows that the effect may
be quite significant. Assume that every star did undergo a phase of strong accretion with
associated outflows, so N=1011 for the whole galaxy. The duration of intense outflow activity
is 105 years, say, but it could even be 106 years. The magnetic luminosity is 
(Brandenburg et al., 2000), where cs≈10 km/s is the average sound speed of the interstellar
medium, and  (see Pelletier and Pudritz, 1992), where /year is a
conservative estimate for the disc accretion rate. Again this value may be larger. With the
above numbers the magnetic luminosity from all N=1011 sources is then NLmag=7×1039 erg/s
and the total energy output delivered from all stars at some early point in the life time is
therefore Emag=τNLmag=2×1052 erg. Diluting this over a volume of a galaxy of 300 kpc3

(radius 10 kpc, height 1 kpc) gives 2×10-15 erg/cm3. Multiplying this by 8π and taking the
square root gives 0.2 µG. Expressed more concisely in a formula we have for the rms magnetic
field strength

(9.157)

where the efficiency factor FPoy/Fkin(=0.05 in our model) may be lower in systems where the
disc dynamo is less strong.

The parameters for a corresponding estimate for outflows from young galactic discs (active
galactic nuclei) are as follows. Assuming N~104 galaxies per cluster, each with 

, and cs=1000 km/s for the sound speed in the intracluster gas, the
rate of magnetic energy injection for all galaxies together is Lmag=1044 erg/s. Distributing this
over the volume of the cluster of V~1 Mpc3, and integrating over a duration of δt=1 Gyr, this
corresponds to a mean magnetic energy density of , so

, which is indeed of the order of the field strength observed in galaxy
clusters. We note that our estimate has been rather optimistic in places (e.g.  could be
lower, or the relevant δt could be shorter), but it does show that outflows are bound to
produce significant magnetization of the intracluster gas and the interstellar medium (see
also Völk and Atoyan, 1999). In the latter case it will provide a good seed field for the galactic
dynamo. A dynamo is still necessary to shape the magnetic field and to prevent if from
decaying in the galactic turbulence. Similarly, many galaxy clusters undergo merging and
this too can enhance and reorganize the magnetic field. The necessity for a recent merger
event would also be consistent with the fact that not all halos are observed to have strong
magnetic fields. Recent simulations by Roettiger et al. (1999) suggest that after a merger the
field strength may increase by a factor of at least 20 (and this value increases with improving
observational resolution).

As an alternative consideration for causing the magnetization in clusters of galaxies,
primordial magnetic fields are sometimes discussed. There are numerous mechanisms that
could generate relatively strong fields at an early time, e.g. during inflation (age~10-36 s) or
during the electroweak phase transition (age~10-10 s). Such fields would now still be at a very
small scale if one considers only the cosmological expansion. However, depending on the
degree of magnetic helicity in this primordial field, the magnetic energy can be transferred to
larger scales that are now on the scale of galaxies. For a recent discussion of these results see
Brandenburg (2001a).
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308 Axel Brandenburg

9.7. Hydromagnetic turbulence and dynamos

As mentioned in the beginning, accurate high-order schemes are essential in all applications
to turbulent flows. Nevertheless, we should mention that one often attempts solutions of the
inviscid and nonresistive equations using low-order finite differences combined with
monotonicity schemes that result in some kind of effective diffusion. The piece-wise parabolic
method (PPM) of Colella and Woodward (1984) is an example. However, unlike the
Smagorinsky scheme (see Chan and Sofia, 1986, 1989; Steffen et al., 1989; Fox et al., 1991
for applications to convection simulations), PPM and similar methods cannot be proven to
converge to the original Navier-Stokes equation in the limit of infinite resolution. Nevertheless,
they are rather popular in astrophysical gas simulations. These schemes are rather robust and
have also been applied to high-resolution simulations of compressible turbulence (Porter et
al., 1992, 1994). While the results from those simulations are generally quite plausible, the
power spectrum shows a k-1 subrange at large wavenumbers, which is still not fully understood.
This was sometimes regarded as an artifact of PPM, and should therefore only occur at small
scales. However, as the resolution was increased further (up to 10243), the k-1 subrange just
became more extended.

A similar feature was found in cascade models of turbulence when the ordinary  diffusion
operator was replaced by  “hyperdiffusion” operator (Lohse and Müller-Groeling,
1995). Whatever the outcome of this puzzle is, it is clear that with schemes that cannot be
proven to converge to the actual Navier-Stokes equations in the limit of infinite resolution,
there would always remain some uncertainty and debate. On the other hand, especially in the
incompressible case the use of hyperviscosity does generally allow the exploration of larger
Reynolds numbers and broader inertial ranges.

MHD simulations with the highest resolution to date have been performed by Biskamp
and Müller (1999), who considered decaying turbulence with and without magnetic helicity.
They found that in the presence of magnetic helicity the magnetic energy decay is significantly
slower. In particular, they found the magnetic energy decays like t-1/2, as opposed to t-1 found
earlier by Mac Low et al. (1998) for compressible turbulence.

Before we start discussing dynamo action in turbulence simulations representative of
more astrophysical settings, such as accretion discs and the solar convection zone, let us first
illustrate the mechanism of the inverse cascade that is believed to be an important ingredient
of large scale magnetic field generation.

9.7.1. Isotropic MHD turbulence

Most developments in the theory of turbulence have been carried out under the assumptions
of homogeneity and isotropy. This is certainly true of the work on the inverse cascade (or
turbulent cascades in general), but it is also true of much of the work on the α-effect which—
like the inverse cascade—describes the generation of large scale fields. However, unlike the
inverse cascade process, the energy comes here directly from the velocity field at the scales
of the energy-carrying eddies and not from the velocity and magnetic field at successively
smaller scales, which are usually larger than the scale of the energy-carrying eddies.

It is not easy to see whether any of these effects is actually responsible for the large scale
field generation in astrophysical bodies or even the simulations. In simulations of accretion
disc turbulence there is certainly some evidence for the presence of an α-effect, but it is
extremely noisy (Brandenburg et al., 1995; Brandenburg and Donner, 1997; Ziegler and
Rüdiger, 2000). Evidence for the inverse magnetic cascade comes mostly from the magnetic
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Computational aspects of astrophysical MHD and turbulence 309

energy spectra (Balsara and Pouquet, 1999; Brandenburg, 2001b), which show a marked
peak at large scales, but this is convincing only in cases where the flow is driven at a
wavenumber that is clearly larger than the smallest wavenumber in the box. In practice, e.g.
in convectively driven turbulence, the flow is driven at all scales including the large scale
making it difficult to see a marked peak at the smallest wavenumber (see a corresponding
discussion in Meneguzzi and Pouquet, 1989).

From the seminal papers of Frisch et al. (1975) and Pouquet et al. (1976) it is clear that
amplification of large scale fields can also be explained by an inverse cascade of magnetic
helicity. In those papers the authors also showed that the inverse cascade is a consequence of
the fact that the magnetic helicity , is conserved by the nonresistive equations. (A is
the magnetic vector potential giving the magnetic field as .) The inverse magnetic
cascade effect too is rather difficult to isolate in simulations of astrophysical turbulence.
However, under somewhat more idealized conditions, e.g. when magnetic energy is injected
at high wavenumbers, one clearly sees how the magnetic energy increases at large scales; see
Fig. 9.23. Further details of this model have been published in the proceedings of the helicity
meeting in Boulder (Brandenburg, 1999).

In the model considered above the flow was forced magnetically. This may be motivated
by the recent realization that strong magnetic field generation in accretion discs can be
facilitated by magnetic instabilities, such as the Balbus-Hawley instability. Other examples
of magnetic instabilities include the magnetic buoyancy instability, which can lead to an α-
effect (e.g. Brandenburg and Schmitt, 1998; Thelen, 2000), and the reversed field pinch
which also leads to a dynamo effect (e.g. Ji et al., 1996). Before returning to the accretion disc
dynamo in Section 9.7.9 we should emphasize that strong large scale field generation is also
possible with purely hydrodynamic forcing. Simulations in this type were considered
recently by Brandenburg (2001b). There are many similarities compared with the case of

Figure 9.23 Spectral magnetic energy, EM (k, t), as a function of wavenumber k for different times: dotted
lines are for early times (t=2, 4, 10, 20), the solid and dashed lines are for t=40 and 60,
respectively, and the dotted-dashed lines are for later times (t=80, 100, 200,400). Here
magnetic energy is injected at wavenumber 10. Note the occurrence of a sharp secondary
peak of spectral magnetic energy at k=10. By the time the energy at k=1 has reached
equipartition the energies in k=2 and k=4 become suppressed.
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310 Axel Brandenburg

magnetic forcing. The evolution of magnetic energy spectra in the presence of hydrodynamic
forcing is shown in Fig. 9.24. Like in the case of magnetic forcing (Fig. 9.23) there are marked
peaks both at the forcing scale and at the largest scale of the box. Furthermore, the evolution
of spectral energy at the largest scales shows similar behavior: the magnetic energy with
wavenumber k=8 increases, reaches a maximum, and begins to decrease when the magnetic
energy at k=4 reaches a maximum. The same happens for the next larger scales (wavenumbers
k=4 and 2, until the scale of the box (with k=1) is reached.

The suppression of magnetic energy at intermediate scales, 2≤k≤8, is quite essential for
the development of a well-defined large scale field. In a recent letter Brandenburg and
Subramanian (2000) showed that this type of self-cleaning effect can also be simulated by
using ambipolar diffusion as nonlinearity and ignoring the Lorentz force altogether. Without
any nonlinearity, however, there would be no interaction between different scales and the
magnetic energy would increase at all scales, especially at small scales, which would soon
swamp the large scale field structure with small scale fields.

The model presented in Fig. 9.24 has large scale separation in the sense that there is a
large gap between the forcing wavenumber (k=kf=30) and the wavenumber of the box
(k=k1=1). One sees that during the growth phase there is a clear secondary maximum at k=7.
This is indeed expected for an α2 dynamo, whose maximum growth rate is at

, where ηT is the total (turbulent plus microscopic) magnetic diffusion
coefficient.

The disadvantage of a high forcing wavenumber is that for modest resolution (here we
used 1203 meshpoints) no inertial range can develop. This is different if once forces at kf=5,
keeping otherwise the same resolution. In Fig. 9.25 we show spectra for different cases with
kf=5 where we compare the results for different values of the magnetic Reynolds and magnetic
Prandtl number. In Fig. 9.26 we show cross-sections of one field component at different
times. In this model (Run 3 of Brandenburg, 2001b) the forcing is at kf=5, so there is now a
clear tendency for the build-up of an inertial range in 8≤k≤25.

Figure 9.24 Left: Magnetic energy spectra for a run with forcing at k=30. The times range from 0 (dotted
line) to 10, 30,…, 290 (solid lines). The thick solid line gives the final state at t=1000. Note
that at early times the spectra peaks at kmax≈7. The k-1 and k+3/2 slopes are given for orientation
as dash-dotted lines. Right: Evolution of spectral magnetic energy for selected wavenumbers
in a simulation with hydrodynamical forcing at k=30.
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Computational aspects of astrophysical MHD and turbulence 311

9.7.2. The inverse cascade in decaying turbulence

We now turn to the case of decaying turbulence, which is driven only by an initial kick to the
system. There are several circumstances in astrophysics where this could be relevant: early
universe, neutron stars, and mergers of galaxy clusters. In all those cases one is interested in
the development of large scale fields. In the context of the early universe the possibility of
energy conversion from small to large scale fields was pointed out by Brandenburg et al.
(1996) who found that fields generated at the horizon scale of 3 cm after the electroweak
phase transition would now have a scale on the order of kiloparsecs, even though the
cosmological expansion alone would only lead to scales on the order of 1 AU. These results
were only based on either two-dimensional simulations or three-dimensional cascade model
calculation (e.g. Biskamp, 1994). Therefore we now turn to fully three-dimensional
simulations.

In the absence of any forcing and with no kinetic energy initially an initial magnetic field
can only decay. However, if initially most of the magnetic energy is in the small scales, there
is the possibility that magnetic helicity and thereby also magnetic energy is transferred to
large scales. This is exactly what happens (Fig. 9.27), provided there is initially some net
helicity. The inset of Fig. 9.27 shows that in the absence of initial net helicity the field at
large scales remains unchanged, until diffusion kicks in and destroys the remaining field at
very late times.

If the magnetic field has the possibility to tap energy also from the large scale velocity the
situation is somewhat different again and there is the possibility that a large scale magnetic
field can also be driven without net helicity. In that case the large scale field can increase due
to dynamo action from the incoherent α–Ω-effect (Vishniac and Brandenburg, 1997). In
astrophysical settings there is usually large scale shear from which energy can be tapped.

Figure 9.25 Comparison of time averaged magnetic energy spectra for Runs 1–3 (t=600–1000) with a
non-averaged spectrum for Run 5 (large magnetic Prandtl number) taken at t=1600. To
compensate for different field strengths and to make the spectra overlap at large scales, two
of the three spectra have been multiplied by a scaling factor. There are clear signs of the
gradual development of an inertial subrange for wavenumbers larger than the forcing scale.
The k-5/3 slope is shown for orientation. The dissipative magnetic cutoff wavenumbers,

, are indicated by arrows at the top.
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312 Axel Brandenburg

Before we discuss simulations with imposed shear in more detail we first present a simple
argument that makes the link between the inverse cascade and helicity conservation.

9.7.3. The connection with magnetic helicity conservation

In the following we give a simple argument due to Frisch et al. (1975) that helps to understand
why the magnetic helicity conservation property leads to the occurrence of an inverse cascade.
We define in the following magnetic energy and helicity spectra, M(k) and H(k), respectively.
Now, because of Schwartz inequality, we have

(9.158)

we have a lower bound on the spectral magnetic energy at each wavenumber k=|k|. In terms
of shell integrated magnetic energy and helicity spectra this corresponds to

(9.159)

where the 1/2-factor comes simply from the 1/2-factor in the definition of the magnetic
energy. Assuming that two wavenumbers q and p interact such that they produce power at a
new wavenumber k, then

(9.160)

Figure 9.26 Gray-scale images of cross-sections of Bx(x, y, 0) for Run 3 of Brandenburg (2001b) at
different times showing the gradual build-up of the large scale magnetic field after t=300.
Dark (light) corresponds to negative (positive) values. Each image is scaled with respect to
its min and max values.
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Computational aspects of astrophysical MHD and turbulence 313

For simplicity we consider the case p=q, so

(9.161)

Assume also that initially the constraint was sharp (maximum helicity), then

(9.162)

Now, from the constrain again we have

(9.163)

so

(9.164)

that is the wavenumber of the target result must be larger or equal to the wavenumbers of the
initial field.

The argument given above is of course quite rough, because it ignores, e.g. the detailed
angular dependence of the wave vectors. This was taken into account properly already in the
early paper by Pouquet et al. (1976), but this approach was based on closure assumptions for
the higher moments, which is in principle open to criticism. Thus, numerical simulations,
like those presented above, are necessary for an independent confirmation that the inverse
cascade really works. In this connection one should mention that there are some parallels
with the inverse cascade of enstrophy in two-dimensional hydrodynamic (non-magnetic)
turbulence. In that case the enstrophy (i.e. the mean squared vorticity) is conserved because
of the absence of vortex stretching in two dimensions. The inverse hydrodynamic cascade
has some significance in meteorology and perhaps in low aspect ratio convection experiments,

Figure 9.27 Power spectra of magnetic energy (solid lines) and kinetic energy (dotted lines) in a decay
run with helicity. The left-hand panel is for a case where the flow is only driven by an initial
helical magnetic field. In the right-hand panel the field is weak and governed by strong
decaying fluid turbulence. The inset shows both velocity and magnetic spectra in the same
plot. The Prandtl number ν/η is equal to one in both cases, but the mesh Reynolds number,
which is kept constant at all times, is different in the two cases: 20 in the left-hand panel and
50 in the right-hand panel. The times are 0, 0.01, 0.1, etc., till t=102 in the left-hand panel and
t=103 in the right-hand panel.
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314 Axel Brandenburg

where one finds a peculiar energy and entropy spectrum that is referred to as Bolgiano
scaling; see Brandenburg (1992) and Suzuki and Toh (1995) for corresponding shell model
calculations and Toh and Iima (2000) for direct simulations.

9.7.4. Inverse cascade or ααααα-effect?

In Section 9.7.1 we made a distinction between inverse cascade and α-effect in the sense that,
although both lead to large scale field generation, in the inverse cascade there is a gradual
transfer of magnetic helicity and energy to ever larger scales, whereas the α-effect produces
large scale magnetic fields directly from small scale fields. Thus, the distinction is really one
between local and non-local inverse cascades.

In Fig. 9.28 we show the normalized spectral energy transfer function T(k, p, t) for k=1 and
2 as a function of p, and at different times t. The index k signifies the gain or losses of the field
at wavenumber k, and the index p indicates the wavenumber of the velocity from which the
energy comes from. This function shows that most of the energy of the large scale field at k=1
comes from velocity and magnetic field fluctuations at the forcing scale, which is here
k=kf=5. At early times this is also true of the energy of the magnetic field at k=2, but at late
times, t=1000, the gain from the forcing scale, k=5, has diminished, and instead there is now
a net loss of energy into the next larger scale, k=3, suggestive of a direct cascade operating at
k=2, and similarly at k=3.

Based on these results we may conclude that in the saturated state the magnetic energy at
k=1 is sustained by a non-local inverse cascade from the forcing scale directly to the largest
scale of the box. This is characteristic of the α-effect of mean-field electrodynamics, except
that here nonlinearity plays an essential role in isolating the large scale from the small scale
“magnetic trash”, as Parker used to say.

A closer look at Fig. 9.24, where k=kf=30, suggests that once the scale separation is large
enough the energy is at first transferred not to the scale of the box, but instead to a somewhat
smaller scale (here at wavenumber k=7). Following the corresponding discussion in
Brandenburg (2001b), this wavenumber is close to the wavenumber, , where
the α2 dynamo grows fastest.

Figure 9.28 Spectral energy transfer function T(k, p, t), normalized by  for three different times, for
k=1 and 2. Run 3 of Brandenburg (2001b).
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Computational aspects of astrophysical MHD and turbulence 315

In the following section we address the issue of magnetic helicity conservation which has
important consequences for the timescale after which the large scale field begins to develop.
This has also a bearing on the widely discussed controversy of the so-called “catastrophic α-
quenching” of Vainshtein and Cattaneo (1992).

9.7.5. Approximate helicity conservation

The magnetic helicity, , is conserved by the non-resistive MHD equations. For a
closed or periodic box  satisfies the equation

(9.165)

where  is the current helicity, and angular brackets denote volume averages. Note that
for a periodic box  is gauge invariant, i.e.  does not change after a gauge
transformation, . This is a direct consequence of the solenoidality of the
magnetic field, because  owing to .

In order to judge whether  is small or large we calculate the length scale

(9.166)

In Fig. 9.29 we see that the evolution of �H proceeds in three distinct phases: (i) a very
short period (t<1) where �H is very small and comparable to the numerical noise level, so
magnetic helicity almost perfectly conserved, (ii) an intermediate interval (2<t<200)
where �H is much larger, but still only roughly equal to the mesh size of the calculation,
and then (iii) a regime where �H is of order unity. The latter is only possible because of
the presence of helicity in the system, which leads to a large scale magnetic field
configuration that is nearly force-free.

Figure 9.29 Evolution of the (negative) magnetic helicity length scale in a double-logarithmic plot. Note
the presence of three distinct phases: very approximate helicity conservation near zero,
followed by a phase of larger magnetic helicity scale (three orders of magnitude), and finally
a phase where the magnetic helicity scale has reached the scale of the box.
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316 Axel Brandenburg

9.7.6. Resistively limited growth of the large scale field

The approximate conservation of magnetic helicity has an important consequence for the
generation of large scale fields: in order to build up a large scale field with magnetic helicity
one has to change the value of  from its initial value of zero to its certain final value.
This final value of  is such that the length scale �H is close to the maximum value
possible for a certain geometry. It also implies that when interpreting the results in terms of
mean-field electrodynamics (α-effect and turbulent diffusion), the α-effect must be quenched
early on, well before the field has reached its final value. Nevertheless, this strong quenching,
which was first anticipated by Vainshtein and Cattaneo (1992) and later confirmed numerically
by Cattaneo and Hughes (1996), does not prevent the field from reaching its final super-
equipartition field strength.

Before we come to the details we mention already now that the helicity constraint is
probably too severe to be acceptable for astrophysical conditions, so one must look for
possible escape routes. The most plausible way of relaxing the helicity constraint is in
allowing for open boundary conditions (Blackman and Field, 2000; Kleeorin et al., 2000),
but the situation can still be regarded as inconclusive. Given that much of the work on large
scale dynamos so far assumes periodic boundaries, we shall now consider this particular case
in more detail. In the periodic case the final field geometry can be, e.g. of the form 

, where k1=1 is the smallest possible wavenumber in the box, B0 is the
field amplitude, and . Alternatively, the field may vary in the x or y direction, and
there may be an arbitrary phase shift; examples of these possibilities have been reported in
Brandenburg (2001b). Anyway, for  the corresponding vector
potential is , where  is an arbitrary gauge which
does not affect the value of . In this example we have

(9.167)

where we have included the k1 factor, even though in the present case k1=1. (The minus sign
in (9.167) would turn into a plus if the forcing had negative helicity.) The mean current
density is given by , so the current helicity of the mean field
is given by

(9.168)

Before we can use (9.167) and (9.168) in (9.165) we need to relate the magnetic and current
helicities of the mean field to those of the actual field. We can generally split up the two
helicities into contributions from large and small scales, i.e.

(9.169)

(9.170)

As the large scale magnetic field begins to saturate, the magnetic helicity has to become
constant and so (9.165) dictates that  must go to zero in the steady state. Consequently,
the contribution from  must be as large as that of , and of opposite sign, so that the
two cancel. This, together with (9.168), allows us immediately to write down an expression
for the equilibrium strength of the mean field;

(9.171)
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Computational aspects of astrophysical MHD and turbulence 317

which is now valid for both signs of the helicity of the forcing. The residual helicity (Pouquet
et al., 1976),

(9.172)

is small in the nonlinear saturated state and nearly vanishing. [We mention that this is also
the case in the models of Brandenburg and Subramanian (2000).] Furthermore, for forced
turbulence with a well defined forcing wavenumber the kinetic helicity may be estimated as

. Together with (9.171) we have

(9.173)

where  and Beq is the equipartition field strength. Thus, the mean field can
exceed (!) the equipartition field by the factor (kf /k1)1/2. This estimate agrees well with the
results of the simulations; see Brandenburg (2001b).

Using (9.169) and (9.170) together with (9.167) and (9.168) we can rewrite (9.165) in the
form

(9.174)

where we have taken into account the contribution of the small scale current helicity which
is of similar magnitude as the large scale current helicity. For the magnetic helicity, on the
other hand, the small scale contribution is negligible, because

(9.175)

After the saturation at small and intermediate scales the small scale current helicity is
approximately constant and can be estimated as

(9.176)

The solution of (9.174) is given by

(9.177)

where  is a coefficient which, in the present model with a well-defined forcing wavenumber,
can be approximated by .

This is indeed also the limiting behavior found for α2-dynamos with simultaneous α and
η quenching of the form

(9.178)

where αB=ηB is assumed. Assuming that the magnetic energy density of the mean field, , is
approximately uniform (which is well satisfied in the simulations) we can obtain the solution

 of (9.301) in the form

(9.179)
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318 Axel Brandenburg

where

(9.180)

is the kinematic growth rate of the dynamo, Bini is the initial field strength, and Bfin is the final
field strength of the large scale field, which is related to αB and ηB via

(9.181)

The full derivation is given in Appendix E. The significance of this result is that it provides
an excellent fit to the numerical simulations; see Fig. 9.30 where we present the evolution of

 for the different runs of Brandenburg (2001b). Equation (9.179) can therefore be used to
extrapolate to astrophysical conditions. The time it takes to convert the small scale field
generated by the small scale dynamo to a large scale field, τeq, increases linear with the
magnetic Reynolds number, Rm. Apart from some coefficients of order unity the ratio of τeq to
the turnover time is therefore just Rm. For the sun this ratio would be 108–1010. However,
before interpreting this result further one really has to know whether or not the presence of
open boundary conditions could alleviate the issue of very long timescales for the mean
magnetic field. Furthermore, it is not clear whether the long timescales discussed above have
any bearing on the cycle period in the case of oscillatory solutions. The reason this is not so
clear is because for a cyclic dynamo the magnetic helicity in each hemisphere stays always
of the same sign and is only slightly modulated. It is likely that this modulation pattern is
advected precisely with the meridional circulation, in which case the helicity could be
nearly perfectly conserved in a lagrangian frame. This could provide an interesting clue for
why the solar dynamo is migrating. The relation between meridional circulation and dynamo
wave propagation has been advocated by Durney (1995) and Choudhuri et al. (1995), but
helicity conservation would strongly lock the two aspects.

It is clear that virtually all astrophysical bodies are open, allowing for constant loss of
magnetic helicity. In the case of the sun significant amounts of magnetic helicity are indeed

Figure 9.30 Evolution of  for Runs 1–3, 5, and 6, compared with the solution (9.179) of the dynamo
equations using (9.179).
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Computational aspects of astrophysical MHD and turbulence 319

observed at the solar surface (Berger and Ruzmaikin, 2000). Significant losses of magnetic
helicity are particularly obvious in the case of accretion discs which are almost always
accompanied by strong outflows that can sometimes be collimated into jets. Thus, dynamo
action from accretion disc turbulence would be a good candidate for clarifying the significance
of open boundaries on the nature of the dynamo. Another reason why accretion disc turbulence
is a fruitful topic for understanding dynamo action is because the shear is extremely strong.
In the following we discuss some recent progress that has been made in this field.

9.7.7. Joule dissipation from mean and fluctuating fields

In an MHD flow the mean magnetic Joule dissipation per unit volume is given by

(9.182)

Whilst in may astrophysical flows η may be very small, |J| can be large so that QJoule remains
finite even in the limit η→0. One example where this is very important is accretion discs,
where Joule dissipation (together with viscous dissipation) are important in heating the disc.
These viscous and resistive processes are indeed the only significant sources of energy
supply in discs, and yet the luminosities of discs that result from the conversion of magnetic
and kinetic energies into heat and radiation can be enormous. Much of the work on discs
involves mean-field modelling, so it would be interesting to see how the Joule dissipation,

, predicted from a mean-field model,

(9.183)

relates to the actual Joule dissipation. In Fig. 9.31 we show the evolution of actual and mean-
field Joule dissipation and compare with an estimate for the rate of total energy dissipation,

, where τ is the turnover time. Here we have taken into account that ηt is
“catastrophically” quenched using the formulae of Brandenburg (2001a) with the parameters
for Run 3.

There is no reason a priori that the magnetic energy dissipations from the mean-field
model should agree with the actual one. It turns out that the mean-field dissipation is a fourth
of the actual one, so it is definitely significant. It would therefore be interesting so see how
those two dissipations compare with each other in other models.

9.7.8. Possible pitfalls in connection with hyperresistivity

In many astrophysical applications hyperresistivity and hyperviscosity are sometimes used
in order to concentrate the effects of magnetic diffusion and viscosity to the smallest possible
scale. The purpose of this section is to highlight possible spurious artifacts associated with
this procedure. As we have seen above, large scale dynamos can depend on the microscopic
magnetic diffusivity and must therefore be affected when it is replaced by hyperresistivity.
The resulting modifications that are to be expected are easily understood: on the right hand
side of (9.165) the term  needs to be replaced by . This leads to a change of
the relative importance of small and large scale contributions, which therefore changes
(9.173) to

(9.184)
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320 Axel Brandenburg

Thus, the final field strength will be even larger than before: instead of a factor of 5
superequipartition (for kf=5) one now expects a factor of 125. Recent simulations by
Brandenburg and Sarson (2002) have indeed confirmed this tendency. The main conclusion
is that hyperresistivity can therefore be used to address certain issues regarding large magnetic
Reynolds numbers that are otherwise still inaccessible. On the other hand, the results are in
some ways distorted and need therefore be interpreted carefully.

9.7.9. Remarks on accretion disc turbulence

We have already mentioned the possibility of dynamo action in accretion discs. Accretion
discs have been postulated some 30 years ago in order to explain the incredibly high
luminosities of quasars. Only in the past few years has direct imaging of accretion discs
become possible, mostly due to the Hubble Space Telescope. Accretion discs form in virtually
all collapse processes, such as galaxy and star formation. In the latter case the central mass is
of the order of one solar mass, while in the former it is around 108 solar masses and is
concentrated in such a small volume that that it must be a black hole. If the surrounding
matter was nonrotating, it would fall radially towards the center. But this is unrealistic and
even the slightest rotation relative to the central object would become important eventually
as matter falls closer to the center.

If there was no effective diffusive process in discs, the angular momentum of the matter
would stay with the gas parcels, and since the gravity force is balanced by the corresponding
centrifugal force, the gas would never accrete. However, the angular velocity of the gas
follows a r-3/2 Kepler law, so the gas is differentially rotating and one may expect shear
instabilities to occur that would drive turbulence and hence turbulent dissipation.
Unfortunately, however, the story is not so simple. Discs are both linearly stable (Stewart,
1975) and probably also nonlinearly stable (Hawley et al., 1996). Nevertheless, in the presence
of a magnetic field there is a powerful linear instability (Balbus and Hawley, 1991), and
subsequent work has shown that this instability is indeed capable of driving the instability
and hence turbulence.

Figure 9.31 Joule dissipation for Run 3 (solid line), compared with the Joule dissipation estimated for a
corresponding mean-field model (dashed line). An estimate for the rate of total energy
dissipation, , is also given.
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Computational aspects of astrophysical MHD and turbulence 321

One of the key outcomes of such simulations is the rate of turbulent dissipation, which
determines the rate of angular momentum transport and correspondingly the rate at which
orbital kinetic and potential energy is liberated in the form of heat. This is normally expressed
in terms of a turbulent viscosity (e.g. Frank et al., 1992), but it may equally well be expressed
in terms of the horizontal components of the Reynolds and Maxwell stress tensors. The stress
may then be normalized by  to give a non-dimensional measure (called αSS) of the
ability of the turbulence to transport angular momentum outward (if αSS>0). This αSS is
indeed always positive, see Fig. 9.32, but it fluctuates significantly about a certain mean
value. These fluctuations are in fact correlated with the energy in the mean magnetic field,

, as is shown in the right hand panel of Fig. 9.32. This mean magnetic field shows regular
reversals combined with a migration away from the midplane, as can be seen in Fig. 9.33.

The evolution of the mean magnetic field found in the simulations is reminiscent of the
behavior known from mean-field α-Ω dynamos. Further details regarding this correspondence
(relation between the value of α and cycle period, field parity for different boundary conditions,
etc.) can be found in recent reviews of the subject (e.g. Brandenburg, 1998,2000).

9.7.10. Connection with the solar dynamo problem

The disc simulations have shown that a global large scale field can be obtained even in
cartesian geometry. The detailed behavior of this large scale field depends of course on the
boundary conditions adopted (Brandenburg, 1998), and will therefore be different in different
geometries. Nevertheless, the very fact that large scale dynamo action is possible already in
simple cartesian geometry is interesting.

In Fig. 9.34 we show the evolution of magnetic and kinetic energies as well as the magnitudes
of the large scale field for a simulation of a convectively driven dynamo in the presence of large
scale shear (Brandenburg et al., 2001). It turns out that the ratio of the magnetic energies in
large scale fields relative to the total field, , which is a measure of the filling factor of
the magnetic field, is around 15% when the field has reached saturation, i.e. when the field
growth has stopped. This is similar to the case of isotropic nonmirror-symmetric turbulence
considered in Section 9.7.1. On the average, however, the magnetic field is then directed

Figure 9.32 Dependence of αSS on time and the mean magnetic field strength for a local accretion disc
model (Run B of Brandenburg et al., 1996a). Here  is the thermal
equipartition field strength and Trot=2π/Ω the local rotation period. In the left hand panel the
dotted line represents the actual data and the solid line gives the fit obtained by correlating αSS

with the mean magnetic field (right-hand panel).
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322 Axel Brandenburg

into the negative y-direction (corresponding to the negative azimuthal direction in spherical
geometry), but there is a weak and more noisy cross-stream field component directed in the
positive x-direction (pointing north).

When the field has reached saturation, the mean field direction is approximately constant.
Although the magnitude of this mean field fluctuates somewhat, the sign is always the same.
Thus, this simulation shows no cycles, which are so characteristic of the solar dynamo.
However, since those features, including the field geometry depend strongly on boundary
condition and on the location of the boundary conditions, this disagreement is to be expected,
and one would really need to resort to global simulations in spherical geometry.

9.7.11. Dynamics of the overshoot layer

Late-type stars with outer convection zones have an interface between the convection zone
proper and the radiative interior. This leads to some additional dynamics that is important to
include, especially in connection with the dynamo problem. This interface is the layer where
magnetic flux can accumulate, i.e. not necessarily the layer where the dynamo operates;

Figure 9.33 Butterfly (space-time) diagram of the poloidal and toroidal magnetic field components averaged
over the two horizontal (x and y) directions for the local accretion disc model of (Brandenburg
et al., 1996a, Run B). Note that the poloidal field is much more noisy than the toroidal field,
and that there is a clear outward migration of magnetic field.
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Computational aspects of astrophysical MHD and turbulence 323

see the discussion in Brandenburg (1994). The accumulation is a consequence of turbulent
pumping down the turbulence intensity gradient and the effect was seen clearly in video
animations reported by Brandenburg and Tuominen (1991) and was analyzed in detail by
Nordlund et al. (1992). Tobias et al. (1998) have studied the effect in isolation starting with
an initial magnetic field distribution as opposed to a dynamo-generated field.

The flow dynamics changes drastically as one enters this overshoot layer. The stabilizing
buoyancy effect provides a restoring force on a downward moving element, which can give
rise to gravity waves that could be driven by individual plumes. This leads to a marked wavy
pattern that can extend deep into the lower overshoot layer, as seen in Fig. 9.35 where we
have plotted the vertical rms velocity as a function of depth and time. These waves extend a
major fraction into the stably stratified layer beneath the convection zone, but are damped
eventually. The typical period of such events is seen to be around 20 (in units of ),
where d is the depth of the unstable (convective) layer. This is comparable with the mean
Brunt-Väisälä frequency,

(9.185)

which is around 0.3 in the overshoot layer; see Fig. 9.36.

Figure 9.34 Evolution of several quantities for a convective dynamo model with shear: kinetic and
magnetic energies (dotted and solid lines; first panel), mean latitudinal and toroidal fields
(dotted and solid lines; second panel), mean magnetic field in a linear scale (third panel), and
the filling factor (fourth panel). Energies and mean magnetic fields are given in units of the
equipartition value, .
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324 Axel Brandenburg

Technically the presence of a lower overshoot layer provides a formidable challenge,
because there the dynamics is governed by the very slow thermal timescale. This can lead to
problems if the properties of the upper surface layers change which could affect the entropy
in deeper parts of the convection zone. This in turn will also affect the stratification in the rest
of the radiative interior. Since this can only happen on a thermal timescale (there is no
turbulence in these layers to speed things up) it takes very long before one arrives at a new
statistically stable state. This problem is of course also encountered when starting with

Figure 9.35 Space-time diagram of the vertical rms velocities for a nonmagnetic convection zone
model of Brandenburg et al. (2001). Note the propagation of isolated plumes in more or
less regular time intervals. Note also that the wavy pattern extends well into the convection
zone proper (0.5≤z≤1), and that the plumes appear to propagate at an approximately
constant speed towards the bottom. This speed is around 0.1, which is comparable to the
rms velocity in the runs.

Figure 9.36 Modulus of the Brunt-Väisälä frequency for a run with polytropic index m=-0.9 and a
nondimensional input flux . The various curves are for different values of the
radiative flux, but fixed nominal convective flux. Small values of  are typical for the
upper layers of the solar convection zone.
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initial conditions that are derived under too unrealistic assumptions. There are essentially
two different approaches to this: one either considers a toy model where dynamical and
thermal timescales are artificially brought closer together or one adopts an implicit code
which allows the use of somewhat longer timesteps. The former approach implies that one
adopts input fluxes that exceed those in real stars, but the good news is that turbulent
velocities and temperature fluctuations vary with changing flux in exactly the way that is
expected from mixing length theory; see Brandenburg et al. (2001) for details.

9.8. Conclusions

Many phenomena in astrophysics show direct manifestations of turbulence. As in the case of
accretion discs, without turbulence there would be no enhanced dissipation, no heating of
the disc, and hence no emission. Magnetic fields are of major importance as is evidenced
again by the example of accretion discs, where the turbulence is a direct consequence of the
presence of magnetic fields (Balbus-Hawley instability). Although magnetic fields in discs
could have primordial origin and could just have been compressed during their formation, it
is also clear that discs are actually a favorable candidate for producing strong large scale
magnetic fields, as shown by the local simulations discussed above.

Other bodies where strong dynamo action is possible are stars. Simulations of convection
have shown that strong small scale magnetic fields are possible (Meneguzzi and Pouquet,
1989; Nordlund et al., 1992; Brandenburg et al., 1996b; Cattaneo, 1999), but if there is
strong shear an intense large scale field can also emerge.

The use of non-conservative high-order schemes has proved useful in all those
applications. They are easy to implement and to modify, but they are also reasonably
accurate. In this chapter we have illustrated the behavior of such schemes using various test
problems. Using potential enthalpy and entropy as the main thermodynamic variables has a
number of advantages, especially in connection with strongly stratified flows near a central
object with a deep potential well, which is relevant to studying outflow phenomena.
Contrary to common belief, high-order schemes are not more vulnerable to Gibbs
phenomena near discontinuities. Instead, in simple advection tests high-order methods are
able to produce smoother solutions with less viscosity, which is important for accurate
modeling of turbulence.

In the last part of this chapter we have briefly mentioned some astrophysical
applications of simulations using high-order schemes where hydromagnetic turbulence
played an important role. In the next few years we may expect a dramatic increase in the
quality and predictive power of such simulations, as larger computers become available.
Already now a number of very promising simulations are emerging. There is important
work addressing the stability of astrophysical jets in three dimensions (Ouyed et al.,
2000). Also worthwhile mentioning are recent high resolution simulations by Hawley
(2000) of three-dimensional accretion tori in global geometry. What remains to be done in
this field is a proper connection between disc physics and the launching mechanism of
jets. This would require incorporating proper thermodynamics allowing for radiative
cooling and magnetic heating in particular. Global simulations would also be highly
desirable to address the global stellar dynamo problem. For example, it would be
interesting to see how the dynamo works in fully convective stars. This problem is in some
ways simpler than the solar dynamo problem, because one does not need to worry about
the lower overshoot layer where the relevant timescales are much longer than in the
convection zone proper.
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326 Axel Brandenburg

Appendix A. Centered, one-sided and semi-one-sided derivatives

In Section 9.3 we gave the centered finite difference formulae for schemes of different order.
Here we first describe the method for determining the finite difference formulae for second
order, but the generalization to higher order is straightforward. We also give the corresponding
expressions for one-sided and semi-one-sided finite difference formulae.

We want to write the derivative f’(x) at the point xi as

(9.186)

where , and fi +1=f(xi+δx). To determine the coefficients a-1, a0,
and a1 we expand f(x) up to second order

(9.187)

The first derivative is then

(9.188)

In particular, the value at x=0 is just f ’(0)=c1. Likewise, we have f ’’(0)=2c2. To determine all
coefficients we make use of our knowledge at the neighboring points around xi , i.e. we use
the function values f(xi-δx)≡fi-1, f(xi)≡fi , and f(xi+δx)≡fi+1, so we have

(9.189)

(9.190)

(9.191)

This can be written in matrix form

(9.192)

(where (-1)0=00=10=1), or

(9.193)

and so we obtain the coefficients as

(9.194)

To calculate f ’ we need the value of c1, see (9.188), and so the coefficients an needed to
express the derivative are a-1=(M-1)10, a0=(M-1)11, and a1=(M-1)12, i.e. all points of the inverted
matrix in the second row. The resulting formula for  is well known,

(9.195)

The corresponding result for the second derivative is

(9.196)

On the boundaries we have to calculate for derivative using only points inside the domain,
which is explained in the next subsection for second order accuracy, but again the
generalization to higher order is straightforward and only the results will be listed.
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A.1. One-sided 2nd-order derivatives

Again, we want to write the derivative f´(x) as

(9.197)

but now

(9.198)

Thus, one arrives at

(9.199)

Correspondingly, for the second derivative we have

(9.200)

A.2. 4th-order derivatives

First derivatives

(9.201)

(9.202)

(9.203)

Second derivatives

(9.204)

(9.205)

(9.206)

A.3. 6th-order derivatives

First derivatives

(9.207)

(9.208)

(9.209)

(9.210)
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328 Axel Brandenburg

Second derivatives

(9.211)

(9.212)

(9.213)

(9.214)

Appendix B. The 2 N -RK3 scheme

If N is the number of variables to be updated from one timestep to the next, the 2N-schemes
require only 2×N variables to be stored in memory at any time. This is better than for the
standard Runge-Kutta schemes. The general iteration formula is

(9.215)

For a 3-step scheme we have i=1,…, 3. In order to advance the variable u from u(n) at time t(n)

to u(n+1) at time t(n+1)=t(n) +h we set in (9.215)

(9.216)

with u1 and u2 being intermediate steps. In order to be able to calculate the first step, i=1, for
which no wi -1=w0 exists, we have to require a1=0. Thus, we are left with five unknowns,
α2, α3, ß1, ß2, and ß3. We write down (9.215) in explicit form for i=1,…, 3:

(9.217)

(9.218)

(9.219)

Written in explicit form, we have, for i=1,

(9.220)

The i=2 step yields

(9.221)

(9.222)

and the i=3 step gives

(9.223)
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(9.224)

The corresponding times can be calculated by putting F=1. This yields

(9.225)

(9.226)

(9.227)

The last expression can also be written in the form

(9.228)

Next we need to determine the conditions that the scheme is indeed of third order. This can
be done by considering the differential equation

(9.229)

for u=u(t), where u0 is the initial value of u. The exact solution of (9.229) is u0 et . Its Taylor
expansion for t=t0+h is

(9.230)

The solution based on (9.224) is

(9.231)

In order to compare with (9.230) we need the explicit expressions for u1 and u2, which are

(9.232)

(9.233)

Hence we can write

(9.234)

with

(9235)

(9.236)

(9.237)

In order for the scheme to be third order we have to require γ1=1, γ2=1/2, and γ3=1/6; see
(9.230). Thus, we have now three equations for five unknowns. We now have to come
up with two more equations to solve for the five unknowns.
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330 Axel Brandenburg

If we assume that the intermediate timesteps are evaluated in equidistant time intervals,
we have to require that the time increments in (9.225) and (9.226) are 1/3 and 2/3, respectively.
This yields

(9.238)

with two particular solutions2

(9.239)

These are in fact the simplest 2N-RK3 schemes that also lead to comparatively small residual
errors.

Alternatively, one can move the times closer to the end time of the timestep and evaluate
the right-hand side at times  and t2 -t0=h. This gives the particular solution

(9.240)

Again, there could be other solutions.
Another possibility is to require that the inhomogeneous equation

(9.241)

is solved exactly up to some n. The exact solutions for t=h are  for n=1 and 

for n=2.
The case n=0 was already considered in (9.225)–(9.227). For n=1 we have  

and  so (9.224) gives

(9.242)

or

(9.243)

Comparing with the exact solution this yields the additional equation

(9.244)

For n=2 we have  and . So (9.224) gives

(9.245)

or

(9.246)

Again, comparing with the exact solution one obtains

(9.247)
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This gives the solution

(9.248)

which implies that the right hand sides are evaluated at the times  and 
In tables 9.1 and 9.2 this scheme is referred to as “inhomogeneous.”

Yet another idea (W.Dobler, private communication) is to obtain the additional two
equations by requiring that the quadratic differential equation du/dt=u2 with u0=1 is solved
exactly. The solution is u=(1-t)-1, of which we only need the expansion up to h2, so we have
u3≈1+h+h2. Again, we use (9.224), but now with F=u2:

(9.249)

We need  and  only UP to the term linear in h. Using (9.232) and (9.233) we have

(9.250)

Inserting this in (9.249) yields

(9.251)

with

(9.252)

and

(9.253)

Thus, the two additional equations are

(9.254)

(9.255)

The numerical solution is

(9.256)

which implies that the right-hand sides are evaluated at the times t1-t0=0.308h and t2-t0=0.650h.
In tables 9.1 and 9.2 this scheme is referred to as “quadratic.”

Appendix C. Derivation of the jacobian for transformation on a sphere

Here we give the explicit derivation of (9.79) and (9.80). We first use the transformation in
the form

(9.257)

(9.258)
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To obtain the jacobian we differentiate with respect to x and, so we have

(9.259)

(9.260)

We now differentiate with respect to y:

(9.261)

(9.262)

The derivatives of r can be written as

(9.263)

(9.264)

In all cases we have

(9.265)

so

(9.266)

(9.267)

and so

(9.268)

(9.269)

so

(9.270)

and so

(9.271)
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and correspondingly

(9.272)

(9.273)

so

(9.274)

and so

(9.275)

Hence note that there is a discontinuity of the jacobian along the diagonals. Now for the y-
derivatives we have

(9.276)

(9.277)

so

(9.278)

and so

(9.279)

and correspondingly

(9.280)

(9.281)

so

(9.282)

and so

(9.283)
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So, in summary, we have

(9.284)

(9.285)

Appendix D. Derivation of the incremental jacobian for
second derivatives

Here we present the explicit derivation of (9.110). To calculate the second derivative of a
function f that is represented on a coordinate mesh , is given by

(9.286)

so

(9.287)

or

(9.288)

which is just (9.108), using (9.109) for the definition of Kkij of the 2nd-order jacobian.
To obtain the 2nd-order jacobian by successive tensor multiplication we differentiate

twice the evolution equation for x:

(9.289)

so

(9.290)

The expression on the left-hand side is just the derivative of a Kronecker delta, see (9.102),
so it is zero. Thus we have

(9.291)

or

(9.292)
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which can be written as

(9.293)

so

(9.294)

which is just (9.112).
We now need to derive the equation that relates the incremental 2nd-order jacobians to

the 2nd-order jacobian of the previous timestep. To this end we begin with the 2nd-order
jacobian at time 2δt, so

(9.295)

or

(9.296)

or

(9.297)

For the next step we have

(9.298)

so

(9.299)

This can be written as

(9.300)

which, for the general step from 0 to n, becomes (9.110).

Appendix E. Solution for ααααα and ηηηηηt 
quenched ααααα2-dynamo

Here we present the explicit derivation of (9.181). According to mean-field theory for non-
mirror symmetric isotropic homogeneous turbulence with no mean flow the mean magnetic
field is governed by the equation

(9.301)
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where bars denote the mean fields and ηT=η+ηt is the total (microscopic plus turbulent)
magnetic diffusion. Both α-effect and turbulent diffusion are assumed to be quenched in the
same way, so

(9.302)

In the following we assume αB=ηB and denote

(9.303)

We emphasize that only the turbulent magnetic diffusivity is quenched, not of course the
total one. It is only because of the presence of microscopic diffusion that saturation is
possible.

In the simulations  is to a good approximation spatially uniform. Defining the magnetic
energy as  we have

(9.304)

which is only a function of time.
Consider the particular example where the large scale field varies only in the z direction

(9.301) becomes

(9.305)

(9.306)

where dots and primes denote differentiation with respect to t and z, respectively. Since α<0,
the solution can be written in the form

(9.307)

(9.308)

where bx (t) and bz (t) are positive functions of time that satisfy

(9.309)

(9.310)

We now choose the special initial condition, bx=by≡b, so we have only one equation for the

variable b. Note also that in the quenching factor = . Thus, we have

(9.311)

Multiplying with b yields

(9.312)
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Using the definition  we have

(9.313)

where . Thus, we have

(9.314)

where we have defined ηT0=ηt0+η. We define the abbreviations  for the
kinematic growth rate of the dynamo and  for the turbulent decay rate if there were
no dynamo action, and arrive thus at the integral

(9.315)

We now also define the abbreviation

(9.316)

and have

(9.317)

which can be split into two integrals,

(9.318)

To solve these integrals we note that

(9.319)

(9.320)

So (9.318) becomes

(9.321)

where t0 is an integration constant. Exponentiation yields

(9.322)
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In terms of the original variables, , this becomes

(9.323)

The final field strength,

(9.324)

is obtained by requiring the denominator to vanish, which yields

(9.325)

Rewriting (9.323) in terms of Bfin we have

(9.326)

We can express t0 in terms of the initial field strength, , and if the initial field

strength is much weaker than the final field strength, i.e. , then we can rewrite
(9.326), in the form

(9.327)

Thus, for early times we have the familiar relation

(9.328)

whereas for late times near the final field strength we have

(9.329)

or

(9.330)

where tsat=λ-1 ln(Bfin/Bini) is the time it takes to reach saturation. If the Reynolds number is
large we have , and so

(9.331)

which is identical to the result obtained from helicity conservation.
Note that the solution (9.327) is governed by four parameters: Bini, Bfin, λ, and . The

latter is known from the input data to the simulation, Bini and λ can be determined from the
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Computational aspects of astrophysical MHD and turbulence 339

linear growth phase of the dynamo (characterized by properties of the small scale dynamo!)
and so Bfin is the only parameter that is determined by the nonlinearity of the dynamo and can
easily be determined from the simulations. Once Bfin is measured from numerical experiments
we know immediately the quenching parameters

(9.332)

and since we have 

(9.333)

which shows that αB and ηB are proportional to the magnetic Reynolds number.
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