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Magnetic helicity is nearly conserved and its evolution equation provides a dynam-
ical feedback on the alpha effect that is distinct from the conventional algebraic
alpha quenching. The seriousness of this dynamical alpha quenching is particu-
larly evident in the case of closed or periodic boxes. The explicit connection with
catastrophic alpha quenching is reviewed and the alleviating effects of magnetic
and current helicity fluxes are discussed.

1 Introduction

Let us begin by defining dynamos and helicity. Dynamos are a class of velocity fields
that allow a weak seed magnetic field to be amplified until some saturation process
sets in. Mathematically, this is described by exponentially growing solutions of the
induction equation. Simulations have shown that any sufficiently complex flow field
can act as a dynamo if the resistivity is below a certain threshold. It is in principle
not even necessary that the flow is three-dimensional, only the magnetic field must
be three-dimensional because otherwise one of several antidynamo theorems apply
(Cowling, 1934; Zeldovich, 1957).

Helicity, on the other hand, quantifies the swirl in a vector field. There is kinetic
helicity, which describes the degree to which vortex lines follow a screw-like pattern,
and it is positive for right-handed screws. Examples of helical flows are the highs
and lows on the weather map. For both highs and lows the kinetic helicity has the
same sign and is negative (positive) in the northern (southern) hemisphere. For
example, in an atmospheric low, air flows inward, i.e. toward the core of the vortex,
and down to the bottom of the atmosphere, but the Coriolis force makes it spin
anti-clockwise, causing left-handed spiraling motions and hence negative helicity.

A connection between helicity and dynamos has been established already quite
some time ago when Steenbeck et al. (1966) calculated the now famous α effect
in mean field dynamo theory and explained its connection with kinetic helicity. In
this paper we are not so much concerned with kinetic helicity, but mostly with
the magnetic and current helicities. Quantifying the swirl of magnetic field lines
has diagnostic significance, because magnetic helicity is a topological invariant of
the ideal (non-resistive) equations. Especially in the solar community the diagnostic
properties of magnetic helicity have been exploited extensively over the past decade.
However, the use of magnetic helicity as a prognostic quantity for understanding the
governing nonlinearity of α effect dynamos has only recently been noted in connec-
tion with the magnetic helicity constraint (Brandenburg, 2001, hereafter referred
to as B01).
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We should emphasize from the beginning that dynamos do not have to have
helicity. The small-scale dynamo of Kazantsev (1968) is an example of a dynamo
that works even without helicity. Nonhelical dynamos are generally harder to excite
than helical dynamos, but both can generate fields of appreciable strength if the
magnetic Reynolds number is large. The stretch-twist-fold dynamo also operates
with twist (as the name suggests!), but the orientation of twist can be random, so
the net helicity can be zero. Simulations have shown that even with zero helicity
density everywhere, dynamos can work (Hughes et al., 1996).

It is also possible to generate magnetic fields of large scale once there is strong
shear, even if there is no helicity (Vishniac and Brandenburg, 1997). This case is
very much a topic of current research. One of the possibilities is is the so-called
shear-current effect (Rogachevskii and Kleeorin, 2003, 2004), but such dynamos
still produce helical large-scale magnetic fields. There is also the possibility of an
intrinsically nonlinear dynamo operating with magnetic helicity flux alone (Vishniac
and Cho, 2001). Thus, it is not necessarily clear that large-scale dynamos have to
work with kinetic helicity and the corresponding α effect. However, there is as yet
no convincing example of a dynamo without the involvement of kinetic helicity that
generates large-scale magnetic fields with a degree of coherence that is similar to
that observed in stars and in galaxies, e.g. cyclically migrating magnetic fields in the
sun and grand magnetic spirals in some nearby galaxies. Such fields can potentially
be generated by dynamos with an α effect, as has been shown in many papers over
the past 40 years; see Chaps. 2, 4, and 6.

There is however a major problem with α effect dynamos; see Brandenburg
(2003); Brandenburg and Subramanian (2005) for recent reviews on the issue. The
degree of severity depends on the nature of the problem. It is most severe in the
case of a homogeneous α effect in a periodic box, which is also when the problem
shows up most pronouncedly. Cattaneo and Hughes (1996) fo und that the α effect
is quenched to resistively small values once the mean field becomes a fraction of
the equipartition field strength. In response to such difficulties three different ap-
proaches have been pursued. The most practical one is to simply ignore the problem
and the proceed as if we can still use the α effect with a quenching that only sets
in at equipartition field strengths. This can partially be justified by the apparent
success in applying this theory; see the recent reviews by Beck et al. (1996); Kul-
srud (1999), and Widrow (2002). The second approach is to resort to direct three
dimensional simulations of the turbulence in such astrophysical bodies. In the solar
community this approach has been pioneered by Gilman (1983) and Glatzmaier
(1985), and more recently by Brun et al. (2004). The third approach is a combi-
nation of the first two, i.e. to use direct simulations of problems where mean-field
theory should give a definitive answer. This is also the approach taken in the present
work. The hope is ultimately to find guidance toward a revised mean-field theory
and to test it quantitatively. A lot of progress has already been made which led to
the suggestion that only a dynamical (i.e. explicitly time dependent) theory of α
quenching is compatible with the simulation results. In the present paper we review
some of the simulations that have led to this revised understanding of mean-field
theory.

The dynamical quenching theory is now quite successful in reproducing the
results from simulations in a closed or periodic box with and without shear. In
these cases super-equipartition fields are possible, but only after a resistively long
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time scale. In the case of an open box without shear the dynamical quenching theory
is also successful in reproducing the results of simulations, but here the root mean-
field strength decreases with increasing magnetic Reynolds number, suggesting that
such a dynamo is unimportant for astrophysical applications. Open boxes with shear
appear now quite promising, but the theory is still incomplete and, not surprisingly,
there are discrepancies between simulations and theory. In fact, it is quite possible
that it is not even the α effect that is important for large-scale field regeneration.
Alternatives include the shear-current effect of Rogachevskii and Kleeorin (2003,
2004) and the Vishniac and Cho (2001) magnetic and current helicity fluxes. In
both cases strong helicity fluxes are predicted by the theory and such fluxes are
certainly also confirmed observationally for the sun (Berger and Ruzmaikin, 2000;
DeVore, 2000; Chae, 2000; Low, 2001). For the galaxy the issue of magnetic helicity
is still very much in its infancy, but some first attempts in this direction are already
being discussed (Shukurov, 2005).

2 Dynamos in a Periodic Box

To avoid the impression that all dynamos have to have helicity, we begin by
commenting explicitly on dynamos that do not have net kinetic helicity, i.e.
|〈ω · u〉|/(kf〈u2〉) � 1, where kf is the wavenumber of the forcing (correspond-
ing to the energy carrying scale). Unless the flow also possesses some large-scale
shear flow (discussed separately in Sect. 4.5 below), such dynamos are referred to as
small-scale dynamos. The statement made in the introduction that any sufficiently
complex flow field can act as a dynamo is really only based on experience, and the
statement may need to be qualified for small-scale dynamos. Indeed, whether or
not turbulent small-scale dynamos work in stars where the magnetic Prandtl num-
bers are small (PrM ≈ 10−4) is unclear (Schekochihin et al., 2004; Boldyrev and
Cattaneo, 2004). Simulations suggest that the critical magnetic Reynolds numbers
increase with decreasing magnetic Prandtl number like Rm,crit ≈ 35PrM (Haugen
et al., 2004).

Throughout the rest of this review, we want to focus attention on large scale
dynamos. This is where magnetic helicity plays an important role. Before we explain
why in a periodic box nonlinear dynamos operate only on a resistively slow time
scale, it may be useful to illustrate the problem with some numerical facts.

In the simulations of B01 the flow was forced at an intermediate wavenum-
ber, k ≈ kf = 5, while the smallest wavenumber in the computational domain
corresponds to k = k1 = 1. The kinetic energy spectrum peaks at k ≈ kf , which
is therefore also the wavenumber of the energy carrying scale. The turbulence is
nearly fully helical with 〈ω ·u〉/(kf〈u2〉) ≈ 0.7...0.9. The initial field is random, but
as time goes on it develops a large-scale component at wavenumber k ≈ k1 = 1;
see Fig. 1. In Fig. 2 we show the evolution of the magnetic energy of the mean
field from the same simulation.1 Here the mean field is defined as two-dimensional
averages over planes perpendicular to the direction in which the mean field varies.
There are of course three such directions, but there is usually only one direction for
which there is a significant mean field.

1 Here the time unit is [t] = (csk1)
−1, where cs is the isothermal speed of sound,

and the magnetic field is measured in units of [B] =
√

µ0ρ0cs.
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Fig. 1. Cross-sections of Bx(0, y, z) for Run 3 of B01 at different times showing the
gradual build-up of the large-scale magnetic field after t = 300. The diffusive time
scale for this run is (ηk2

1)
−1 = 500. Dark (light) corresponds to negative (positive)

values. Each image is scaled with respect to its min and max values. The final state
corresponds to the second eigenfunction given in (33), but with some smaller scale
turbulence superimposed [Adapted from Brandenburg and Subramanian (2005)]

While the saturation field strength increases with increasing magnetic Reynolds
number, the time scale on which this nonlinear dynamo saturates increases too. To
avoid misunderstandings, it is important to emphasize that this result applies only
when we are in the nonlinear regime and when the flows are helical.

In turbulence one is used to situations where the microscopic values of viscosity
ν and magnetic diffusivity η do not matter in the sense that, for almost all practical
purposes, they are superseded by turbulent effective values, νt and ηt, respectively.
This is because in turbulence there is spectral energy all the way down to the
viscous/resistive length scale, (ητ)1/2, where τ is the turnover time.2 Thus, even
when ν is very small, the rate of viscous dissipation, 〈2νρS2〉, is in general finite (S
is the trace-less rate of strain tensor). Likewise, even when η is very small, the rate
of Joule dissipation, ηµ0〈J2〉, is in general finite (µ0 is the magnetic permeability).
This is because the current density diverges with decreasing η like |J | ∼ η−1/2,
so the energy dissipation stays finite and asymptoticly independent of how small
η is. The trouble is that the value of magnetic helicity dissipation is proportional

2 The turnover time at the wavenumber k is (ukk)−1. Using Kolmogorov scal-

ing, uk ∼ k−1/3, one finds the familiar formula kη = kfR
3/4
m , where kf is the

wavenumber of the energy carrying eddies.
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Fig. 2. Evolution of 〈B2〉 for Runs 1–3 and 5, 6 (dashed lines). The magnetic
Reynolds numbers are Rm ≡ urms/ηkf = 2.4, 6, 18, 100, and 16, respectively;
see B01. The solid lines denote the solution of the associated mean-field dynamo
problem where both α and and turbulent diffusivity ηt are quenched in a magnetic
Reynolds number dependent fashion [Adapted from B01]

to η〈J · B〉 (see below), and in the limit η → 0 we have η〈J · B〉 → η1/2 → 0, so
resistive magnetic helicity dissipation becomes impossible in the limit of large Rm.
In the following section we derive and discuss the evolution equation for magnetic
helicity.

3 Magnetic Helicity Evolution

3.1 The Two-scale Property of Helical Turbulence

Usually in mean-field dynamo theory one talks about the two-scale assumption
made in order to derive the mean-field equations (e.g. Moffatt, 1978; Krause and
Rädler, 1980). This has to do with the fact that higher order derivatives in the mean
field equation can only be neglected when the mean field is sufficiently smooth.
Here, instead, we use the two-scale properties of helical turbulence as demonstrated
in the previous section. These properties emerge automatically when the size of the
whole body is at least several times larger than the scale of the turbulent eddies.
As Fig. 1 shows explicitly, a large-scale field (wavenumber k1) emerges in addition
to the forcing scale (wavenumber kf � k1).

In this section we discuss the magnetic helicity equation and use it together
with the two-scale property of helical turbulence to derive the so-called magnetic
helicity constraint that allows the result of Fig. 2 to be understood quantitatively.
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3.2 Definition of Helicity

The helicity of any solenoidal vector field f , i.e. with ∇ · f = 0, is defined as the
volume integral of f dotted with its inverse curl, i.e. curl −1f ≡ g. As pointed out
by Moffatt (1969), the helicity quantifies the topological linkage between tubes in
which f is non-vanishing. In the following the linkage aspect of helicity will not be
utilized, but rather the mathematical evolution equation that the helicity obeys (see
the next section). However, the calculation of g is problematic because it involves
a gauge ambiguity in that the curl of g′ = g + ∇φ also gives the same f = curl g′.

In the special case of periodic boundary conditions or for n̂ · f = 0 on the
boundaries, where n̂ is the normal vector on the boundary, the helicity is actually
gauge-invariant, because∫

f · g′ dV =

∫
f · g dV +

∫
f · ∇φ dV

=

∫
f · g dV −

∫
φ∇ · f dV =

∫
f · g dV , (1)

where we have used ∇ · f . Since the magnetic field is divergence free, the magnetic
helicity,

∫
B · curl −1B dV is gauge invariant. For other boundary conditions this

is unfortunately not the case.
For vector fields whose inverse curl is a physically meaningful quantity, such

as the vorticity ω, whose inverse curl is the velocity u, the gauge question never
arises. In this and similar cases the helicity density, ω · u in this case, is physically
meaningful. Other examples are the cross helicity,

∫
B ·curl −1ω dV , which describes

the linkage between magnetic flux tubes and vortex tubes, and the current helicity,∫
J · curl −1J dV , which quantifies the linkage of current tubes. In these two cases

it is natural to use curl −1 = B and curl −1ω = u. For the magnetic field one
can define the magnetic vector potential, curl −1B = A, but A is not a physically
meaningful quantity and hence the magnetic helicity,

H =

∫
V

A · B dV ≡ 〈A · B〉V (2)

is gauge-dependent, unless the boundaries of the volume V are periodic or perfectly
conducting. Here and below, angular brackets denote volume averages. Occasionally,
however, we simply refer to 〈A · B〉 as the magnetic helicity, but this is strictly
speaking only the magnetic helicity per unit volume.

In the following section we derive the evolution equation for 〈A · B〉 and focus
first on the case where the boundary conditions are indeed periodic, so 〈A · B〉 is
gauge-invariant.

3.3 Derivation of the Magnetic Helicity Equation

The homogeneous Maxwell equations are

∂B

∂t
= −∇ × E, ∇ · B = 0 . (3)

Expressing this in terms of the magnetic vector potential, A, where B = ∇ × A,
we have
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∂A

∂t
= −E − ∇φ , (4)

where φ is the scalar potential. Dotting (3) and (4) with A and B, respectively,
and adding them, we have

∂

∂t
(A · B) = −2E · B − ∇ · (E × A + φB) . (5)

Here, A · B is the magnetic helicity density, but since it is not gauge invariant
(see below) it is not a physically meaningful quantity. After integrating (5) over
a periodic volume, the divergence term does not contribute. Furthermore, using
Ohm’s law, E = −U ×B + ηµ0J , where J = ∇ ×B/µ0 is the current density, we
have

d

dt
〈A · B〉 = −2ηµ0〈J · B〉 , (6)

i.e. the magnetic helicity, 〈A · B〉, changes only at a rate that is proportional
to η〈J · B〉. (Here and elsewhere, angular brackets denote volume averaging.) As
discussed in the previous section, this rate converges to zero in the large Rm limit.
Here, angular brackets denote volume averages, i.e. 〈A · B〉 = 1

V

∫
V

A · B dV .
We recall that for periodic boundary conditions, 〈A · B〉 is invariant under

the transformation A → A′ = A + ∇Λ, which does not change the value of
B′ = ∇ × A′ = ∇ × A = B. Here, Λ is a gauge potential. Thus, for periodic
boundary conditions, 〈A ·B〉 is a physically meaningful quantity. The same is also
true for perfectly conducting boundaries (see Brandenburg and Dobler, 2002, for
corresponding simulations). For open boundaries, however,

∫
V

A·B dV is not gauge
invariant, but one can derive a gauge-invariant relative magnetic helicity (Berger
and Field, 1984).

3.4 The Magnetic Helicity Constraint

A very simple argument can be made to explain the saturation level and the re-
sistively slow saturation behavior observed in Fig. 2. The only assumption is that
the turbulence is helical, i.e. 〈ω · u〉 �= 0, where ω is the vorticity, and that this
introduces current helicity 〈j · b〉, at the same scale and of the same sign as the
kinetic helicity. Here we have split the field into large and small-scale fields, i.e.
B = B + b and hence also J = J + j and A = A + a.

The first remarkable thing to note is that, even though we are dealing with
helical dynamos, there is no net current helicity in the steady state, i.e.

〈J · B〉 = 0 ; (7)

see (6). However, using the decomposition into large and small-scale fields, we can
write

〈J · B〉 = 〈J · B〉 + 〈j · b〉 = 0 , (8)

so we have
〈J · B〉 = −〈j · b〉 (9)

in the steady state. We now introduce the approximations3

3 Here and elsewhere we use units where µ0 = 1 or, following R. Blandford (private
communication), we use units in which pi is one quarter.
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〈J · B〉 ≈ km〈B2〉 and 〈j · b〉 ≈ −kf〈b2〉 (10)

where km and kf are the typical wavenumbers of the mean and fluctuating fields,
respectively. These approximations are only valid for fully helical turbulence, but
can easily be generalized to the case of fractional helicity; see Sect. 4.1 and Black-
man and Brandenburg (2002, hereafter BB02). We have furthermore assumed that
the sign of the kinetic helicity is negative, as is the case in the northern hemisphere
of the sun, for example. (The case of positive kinetic helicity is straightforward;
see below.) The wavenumber kf of the fluctuating field is for all practical purposes
equal to the wavenumber of the forcing function. (In more general situations, such
as convection or shear flow turbulence, kf would be the wavenumber of the energy
carrying eddies.) We also note that for large values of the magnetic Reynolds num-

ber, Rm, the kf factor in (10) gets attenuated by an R
1/4
m factor (BB02). On the

other hand, the wavenumber of the mean field is in practice the wavenumber of the
box, i.e. km = k1. Inserting now (10) into (9) yields

〈B2〉 =
kf

km
〈b2〉 , (11)

i.e. the energy of the mean field can exceed the energy of the fluctuating field –
in contrast to earlier expectations (e.g. (Vainshtein and Cattaneo, 1992; Kulsrud
and Anderson, 1992; Gruzinov and Diamond, 1994). Indeed, in the two-dimensional
case there is an exact result due to Zeldovich (1957),

〈B2〉 = R−1
m 〈b2〉 (2-dimensional case) . (12)

This result has also be derived in three dimensions using first order smoothing
(Krause and Rädler, 1980), but it is important to realize that this result can break
down in the nonlinear case in three dimensions, where (11) is in good agreement with
the simulations results. However, the assumption of periodic or closed boundaries
is an essential one. We return to the more general case in Sects 4.4–4.5.

The time dependence near the saturated state can be approximated by using

〈J · B〉 ≈ k2
m〈A · B〉 and 〈j · b〉 ≈ k2

f 〈a · b〉 . (13)

These equations are still valid in the case of fractional helicity (BB02). Only the
two-scale assumption is required. Near saturation,

|〈A · B〉| =
(

kf

km

)2

〈a · b〉 , (14)

i.e. |〈A · B〉| � |〈a · b〉| and so we can neglect 〈a · b〉, and the magnetic helicity
equation (6) becomes therefore an approximate evolution equation for the magnetic
helicity of the mean field,

∂

∂t
〈A · B〉 = −2ηµ0〈J · B〉 − 2ηµ0〈j · b〉 , (15)

or, by using (10),

k−1
m

∂

∂t
〈B2〉 = −2ηkm〈B2〉 + 2ηkf〈b2〉 . (16)
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Note the plus sign in front of the 〈b2〉 term resulting from (10). The plus sign leads

to growth while the minus sign in front of the 〈B2〉 term leads to saturation (but
both terms are proportional to the microscopic value of η; see below). Once the
small-scale field has saturated, which will happen after a few dynamical time scales
such that 〈b2〉 ≈ B2

eq ≡ µ0〈ρu2〉, the large-scale field will continue to evolve slowly
according to

〈B2〉 =
kf

km
〈b2〉

[
1 − e−2ηk2

m(t−tsat)
]

, (17)

where tsat is the time at which 〈b2〉 has reached approximate saturation. In practice,
tsat can be determined such that (17) describes the simulation data best. We refer
to (17) as the magnetic helicity constraint. The agreement between this and the
actual simulations (Fig. 3) is quite striking.

The significance of this remarkable and simple equation and the almost per-
fect agreement with simulations is that the constraint can be extrapolated to large
values of Rm where it would provide a benchmark, against which all analytic dy-
namo theories, when subjected to the same periodic boundary conditions, should
be compared to. In particular the late saturation behavior should be equally slow.
We return to this in Sect. 5.

Fig. 3. Late saturation phase of fully helical turbulent dynamos for three differ-
ent values of the magnetic Reynolds number: Rm ≡ urms/ηkf = 2.4, 6, and 18 for
Runs 1, 2, and 3 respectively; see B01. The mean magnetic field, B, is normalized
with respect to the equipartition value, Beq =

√
µ0ρ0urms, and time is normalized

with respect to the kinematic growth rate, λ. The dotted lines represent the fit
formula (17) which tracks the simulation results rather well [Adapted from Bran-
denburg et al. (2003)]
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An important question is whether anything can be learned about stars and
galaxies. Before this can be addressed, we need to understand the differences be-
tween dynamos in real astrophysical bodies and dynamos in periodic domains.

4 What Do Stars and Galaxies Do Differently?

We begin with a discussion of fractional helicity, shear and other effects that cause
the magnetic helicity to be reduced. We then address the possibility of helicity
fluxes through boundaries, which can alleviate the helicity constraint (Blackman
and Field, 2000).

4.1 Fractional Helicity

When the turbulence is no longer fully helical, (10) is no longer valid and needs to
be generalized to

〈J · B〉 = εmkm〈B2〉 and 〈j · b〉 = −εfkf〈b2〉 , (18)

where εm < 1 and εf < 1 are coefficients denoting the degree to which the mean
and fluctuating fields are helical. Equation (13) is still approximately valid in the
fractionally helical case.

Maron and Blackman (2002) found that there is a certain threshold of εf below
which the large-scale dynamo effect stops working. Qualitatively, this could be
understood by noting that the large scale magnetic field comes from the helical
part of the flow, so the velocity field can be though of as having a helical and a
nonhelical component, i.e.

U = Uhel + Unohel . (19)

However, the dynamo effect has to compete with turbulent diffusion which comes
from both the helical and the nonhelical parts of the flow. Thus, when |Unohel|
becomes too large compared with |Uhel| the large-scale dynamo effect will stop
working.

Although we have not yet discussed mean-field theory we may note that the
value of the threshold can be understood quantitatively (Brandenburg et al., 2002),
hereafter BDS02) and one finds that large-scale dynamo action is only possible
when

εf >
km

kf
(for large-scale dynamos) . (20)

In many three-dimensional turbulence simulations or in astrophysical bodies, this
threshold criterion may not be satisfied, and so mean-field dynamo of the type
described above (α2 dynamo) may not be excited. If there is shear, however, this
criterion will be modified to

εf > εm
km

kf
, (21)

where εf is the degree to which the large-scale field is helical. In dynamos with strong
shear, |εf | may be very small, making mean-field dynamo action in fractionally
helical flows more likely. This will be discussed in the next section.
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4.2 Dynamos with Shear

In the presence of shear, the streamwise component of the field can be amplified by
winding up the poloidal (cross-stream) field. Again, the resulting saturation field
strength can be estimated based on magnetic helicity conservation arguments.

Note first of all that for closed or periodic domains, (8) is still valid and therefore
〈J · B〉 = −〈j · b〉 in the steady state.4 However, while 〈j · b〉 still depends on the
helicity of the small-scale field, the corresponding value of 〈J ·B〉 no longer provides

such a stringent bound on 〈B2〉 as before. This is because shear can amplify the
toroidal field independently of any magnetic helicity considerations. The component

of B
2

that is amplified by shear is nonhelical and so we have

εm = |〈J · B〉|
/(

km〈B2〉
)
� 1 (22)

(or at least |εm| � 1 when the helicity of the forcing is negative and εm therefore
negative). The value of εm is proportional to the ratio of poloidal to toroidal field

εm ≈ ±2〈B2
pol〉1/2/〈B2

tor〉1/2 , (23)

where the numerical pre-factor can be different for different examples.5 With these
preparations the magnetic helicity constraint can be generalized to

2Brms
pol Brms

tor ≈ kf

km
〈b2〉

[
1 − e−2ηk2

m(t−tsat)
]

. (24)

This form of the constraint was proposed and confirmed using three-dimensional
simulations of forced helical turbulence with large-scale shear (Brandenburg et al.,
2001, hereafter BBS01); see also Fig. 4.

The main conclusion to be drawn from this is that the magnetic helicity con-
straint is still valid in the presence of shear, i.e. the timescale of saturation is
still controlled by the microscopic magnetic diffusivity. The only difference is that
stronger field strengths are now possible.

Another interesting aspect is that dynamos with shear allow for oscillatory
solutions of the magnetic field. This is expected from mean-field dynamo theory
(Steenbeck and Krause, 1969a,b), but it is also borne out by simulations (BBS01).
The main result is that the resulting cycle frequency seems to scale with the mi-
croscopic magnetic diffusivity, not the turbulent magnetic diffusivity. This confirms
again that in a closed domain the magnetic helicity constraint plays a crucial role
in controlling the timescale of nonlinear dynamos.

4.3 Hall Effect Dynamos

In recent years the importance of the Hall effect has been emphasized by a number
of groups, especially in applications to protostellar accretion discs (Balbus and

4 This is because in the E ·B term in the magnetic helicity equation the induction
term, U × B, drops out after dotting with B. (For this reason, also ambipolar
diffusion and the Hall effect do not change magnetic helicity conservation.)

5 Take as an example B(z) = (Bpol, Btor, 0)T = (ε cos k1z, sin k1z, 0)T for ε � 1,

so 〈B2〉 ≈ 1/2 and 〈J · B〉 ≈ εk1 and therefore εm = 2ε.
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Fig. 4. Growth of poloidal and toroidal magnetic fields on a logarithmic scale
(upper panel), and product of poloidal and toroidal magnetic fields on a linear
scale. For the fit we have used k2

1 = 2, Beq = 0.035, and ε0 = 1.3 [Adapted from
BBS01]

Terquem, 2001). The hall effect can lead to strong nonlinear steepening of field
gradients (Vainshtein et al., 2000), and is therefore important for fast reconnection
(e.g. Rogers et al., 2001), which in turn is relevant for neutron stars (Hollerbach
and Rüdiger, 2004). Nevertheless, since magnetic helicity generation (and removal)
is proportional to the dot product of electric and magnetic fields, and since the Hall
current is proportional to J × B, the Hall term does not affect magnetic helicity
conservation. Therefore the resistively limited saturation behavior should not be
affected by the Hall term. Nevertheless, some degree of extra field amplification
of the large-scale field has been reported (Mininni et al., 2003), and it will be
interesting to identify exactly the processes that led to this amplification.

4.4 Magnetic Helicity Exchange Across the Equator
or with Depth

The presence of an equator provides a source of magnetic helicity exchange between
domains of negative helicity in the northern hemisphere (upper disc plane in an
accretion disc) and positive helicity in the southern hemisphere (lower disc plane).
A similar situation can also arise in convection zones where the helicity is expected
to change with depth (Yoshimura, 1975).

So far, simulations have not yet shown that the losses of small-scale magnetic
fields are actually stronger than those of large-scale fields. In Fig. 5 we show the
saturation behavior of a system that is periodic, but the helicity of the forcing is
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Fig. 5. Evolution of the magnetic energy for a run with homogeneous forcing func-
tion (solid line) and a forcing function whose helicity varies sinusoidally throughout
the domain (dotted line) simulating the effects of equators at the two nodes of the
sinusoidal helicity profile [Adapted from Brandenburg et al. (2001)]

modulated in the z-direction such that the sign of the kinetic helicity changes in the
middle. One can therefore view this system as two subsystems with a boundary in
between. This boundary would correspond to the equator in a star or the midplane
in a disc. It can also model the change of sign of helicity at some depth in a
convection zone.

As far as the magnetic helicity constraint is concerned, the divergence term of
current helicity flux is likely to be important when there is a boundary between
two domains with different helicities. Naively, one might expect there to be current
helicity fluxes that are proportional to the current helicity gradient, analogous to
Fick’s diffusion law. These current helicity fluxes should be treated separately for
large and small-scale components of the field, so we introduce approximations to
the current helicity fluxes from the mean and fluctuating fields as

Fm ≈ −ηm∇Cm, F f ≈ −ηf∇Cf . (25)

The rate of magnetic helicity loss is here proportional to some turbulent diffusivity
coefficient, ηm or ηf for the losses from mean or fluctuating parts, respectively.
We assume that the small and large-scale fields are maximally helical (or have
known helicity fractions εm and εf) and have opposite signs of magnetic helicity
at small and large scales. The details can be found in BDS02 and Blackman and
Brandenburg (2003). The strength of this approach is that it is quite independent
of mean-field theory.

We proceed analogously to the derivation of (17) where we used the magnetic
helicity equation (6) for a closed domain to estimate the time derivative of the
magnetic helicity of the mean field by neglecting the time derivative of the fluc-
tuating field. This is a good approximation after the fluctuating field has reached
saturation, i.e. t > tsat. Thus, we have

k−1
m

∂

∂t
B

2
= −2ηmkmB

2
+ 2ηfkfb

2 , (26)
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where ηm = ηf = η corresponds to the case of a closed domain. Note also that we
have here ignored the volume integration, so we are dealing with horizontal averages
that depend still on height and on time.

After the time when the small-scale magnetic field saturates, i.e. when t > tsat,
we have 〈b2〉 ≈ constant. After that time, (26) can be solved to give

〈B2〉 = 〈b2〉 ηfkf

ηmkm

[
1 − e−2ηmk2

m(t−tsat)
]

, for t > tsat . (27)

This equation demonstrates three remarkable properties (Brandenburg et al., 2003;
Brandenburg and Subramanian, 2005):

– Large-scale helicity losses are needed (ηm > η) to shorten the typical time scale.
This is required to prevent resistively long cycle periods.

– However, the saturation amplitude is proportional to ηf/ηm, so the large-scale
field becomes weaker as ηm is increased. Thus,

– also small-scale losses are needed to prevent the saturation amplitude from
becoming too small.

Future work can hopefully verify that these conditions are indeed obeyed by a
working large-scale dynamo. Simulations without shear have been unsuccessful to
demonstrate that small-scale losses are important (Brandenburg and Dobler, 2001),
but new simulations with shear now begin to show significant small-scale losses of
current helicity, an enhanced α effect (Brandenburg and Sandin, 2004), and strong
large-scale dynamo action (see below).

4.5 Open Surfaces and Shear

The presence of an outer surface is in many respects similar to the presence of
an equator. In both cases one expects magnetic and current helicity fluxes via the
divergence term. A particularly instructive system is helical turbulence in an infi-
nitely extended horizontal slab with stress-free boundary conditions and a vertical
field condition, i.e.

ux,z = uy,z = uz = Bx = By = 0 . (28)

Such simulations have been performed by Brandenburg and Dobler (2001) who
found that a mean magnetic field is generated, similar to the case with periodic

boundary conditions, but that the energy of the mean magnetic field, 〈B2〉, de-
creases with magnetic Reynolds number. Nevertheless, the energy of the total mag-
netic field, 〈B2〉, does not decrease with increasing magnetic Reynolds number.

Although they found that 〈B2〉 decreases only like R
−1/2
m , new simulations confirm

that a proper scaling regime has not yet been reached and that the current data
may well be compatible with an R−1

m dependence; see Fig. 6.
Clearly, an asymptotic decrease of the mean magnetic field must mean that

the small-scale dynamo does not work with such boundary conditions. Thus, the
anticipated advantages of open boundary conditions are not borne out by this type
of simulations.

At this point we can mention some new simulations in a cartesian domain where
differential rotation has been modeled as a region of the convection zone without
explicitly allowing for convection; see Fig. 7. Instead, an external forcing term has
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Fig. 6. Dependence of the energy of the mean magnetic field on the magnetic
Reynolds number for a run with open boundary conditions and no shear

Fig. 7. Left : A sketch of the solar angular velocity at low latitudes with spoke-like
contours in the bulk of the convection zone merging gradually into uniform rotation
in the radiative interior. The low latitude region, modeled in this paper, is indicated
by thick lines. Right : Differential rotation in our cartesian model, with the equator
being at the bottom, the surface to the right, the bottom of the convection zone
to the left and mid-latitudes at the top [Adapted from Brandenburg and Sandin
(2004)]

been applied that also drives the differential rotation. (Studies of the α effect have
already been published; see Sect. 5.6 for details of the simulations and Sect. 5 for a
discussion of the direct correspondence between the helicity constraint and the so-
called catastrophic α quenching.) Here we briefly report on recent explicit dynamo
simulations that have been carried out in this geometry.

The size of the computational domain is 1
2
π × 2π × 1

2
π and the numerical

resolution is 128× 512× 128 meshpoints. The magnetic Reynolds number based on
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Fig. 8. Visualization of the toroidal magnetic field during three different times
during the growth and saturation for the run without kinetic helicity

the forcing wavenumber and the turbulent flow is around 80 and shear flow velocity
exceeds the rms turbulent velocity by a factor of about 5. We have carried out
experiments with no helicity in the forcing (labeled by α = 0), as well as positive
and negative helicity in the forcing (labeled by α < 0 and α > 0, respectively);
see Fig. 8 for a visualization of the run without kinetic helicity. We emphasize that
no explicit α effect has been invoked. The labeling just reflects the fact that, in
isotropic turbulence, negative kinetic helicity (as in the northern hemisphere of a
star or the upper disc plane in galaxies) leads to a positive α effect, and vice versa.

We characterize the relative strength of the mean field by the ratio q =

〈B2〉/〈B2〉, where overbars denote an average in the toroidal (y) direction; see
Fig. 9. There are two surprising results emerging from this work. First, in the pres-
ence of shear rather strong mean fields can be generated, where up to 70% of the
energy can be in the mean field; see Fig. 9. Second, even without any kinetic helicity
in the flow there is strong large-scale field generation. Obviously, this cannot be an

Fig. 9. Saturation behavior of the ratio q = 〈B2〉/〈B2〉 for runs with different
kinetic helicity of the flow. Solid line: zero helicity, dotted line: positive helicity
(opposite to the sun) dashed line: negative helicity (as in the sun)
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αΩ dynamo in the usual sense. One possibility is the δ × J effect, which emerged
originally in the presence of the Coriolis force; see Rädler (1969) and Krause and
Rädler (1980). In the present case with no Coriolis force, however, a δ ×J effect is
possible even in the presence of shear alone, because the vorticity associated with
the shear contributes directly to δ ∝ W = ∇ × U (Rogachevskii and Kleeorin,
2003).

There is evidence that the strong dynamo action seen in the simulations is only
possible due to the combined presence of open boundaries and shear. This however
has so far only been checked explicitly for the α effect that is present when the
forcing is helical; see Sect. 5.6. In the case of the solar surface such losses are actually
observed to occur in the form of coronal mass ejections and in active regions. In
the sun, coronal mass ejections are quite vigorous events that are known to shed
large amounts of helical magnetic fields (Berger and Ruzmaikin, 2000; DeVore,
2000; Chae, 2000; Low, 2001). This kind of physics is not at all represented by
adopting vacuum or pseudo-vacuum (vertical field) boundary conditions, as was
done in Brandenburg and Subramanian (2005).

5 Connection with the α Effect

5.1 Preliminary Considerations

The α effect formalism provides so far the only workable mathematical framework
for describing the large-scale dynamo action seen in simulations of helically forced
turbulence. (In this section we retain the µ0 factor.) The governing equation for
the mean magnetic field is

∂B

∂t
= ∇ ×

(
U × B + E − ηµ0J

)
, (29)

where E = u × b is the electromotive force resulting from the u × b nonlinearity
in the averaged Ohm’s law. Without mean flow, U = 0, and an electromotive force
given by a homogeneous isotropic α effect and turbulent diffusion ηt, i.e.

E = αB − ηtµ0J , (30)

we have
∂B

∂t
= α∇ × B + (η + ηt)∇2B , (31)

which has solutions of the form B = B̂eik ·x+λt with the dispersion relation

λ± = −ηTk2 ± |αk| , (32)

and three possible eigenfunctions (appropriate for the periodic box)

B(x) =

(
cos kmz
sin kmz

0

)
,

(
0

cos kmx
sin kmx

)
, or

(
sin kmy

0
cos kmy

)
, (33)

where km = k1 = 1. Obviously, when the coefficients α and ηT ≡ η + ηt remain
constant, and there is an exponentially growing solution (for |α| > ηTk1), the
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solution must eventually grow beyond any bound. At the latest when the magnetic
field reaches equipartition with the kinetic energy, α and ηt must begin to depend
on the magnetic field itself. However, the present case is sufficiently simple so that

we can continue to assume that B
2
, as well as α and ηt, are uniform in space and

depend only on time.
Comparison with simulations has enabled us to eliminate a large number of

various quenching models where α = α(B). The only quenching model that seems
reasonably well compatible with simulations of α2-like dynamo action in a periodic
box without shear is

α =
α0

1 + RmB
2
/B2

eq

, ηt =
ηt0

1 + RmB
2
/B2

eq

(empirical) , (34)

see Fig. 3. However, this type of quenching is not fully compatible with magnetic
helicity conservation, as has been shown by Field and Blackman (2002). This will
be discussed in the next section.

5.2 Dynamical α Quenching

The basic idea is that magnetic helicity conservation must be obeyed, but the
presence of an α effect leads to magnetic helicity of the mean field which has to
be balanced by magnetic helicity of the fluctuating field. This magnetic helicity
of the fluctuating (small-scale) field must be of opposite sign to that of the mean
(large-scale) field.

We begin with the uncurled mean-field induction equation, written in the form

∂A

∂t
= E − ηµ0J , (35)

dot it with B, add the result to A · ∂B/∂t, average over the periodic box, and
obtain

∂

∂t
〈A · B〉 = 2〈E · B〉 − 2ηµ0〈J · B〉 . (36)

To satisfy the helicity equation for the full field, 〈A · B〉 = 〈A · B〉 + 〈a · b〉, we
must have

∂

∂t
〈a · b〉 = −2〈E · B〉 − 2ηµ0〈j · b〉 . (37)

Note the minus sign in front of the 2〈E · B〉 term, indicating once again that the
α effect produces magnetic helicity of opposite sign at the mean and fluctuating
fields. The sum of the two equations yields (6).

The significance of (37) is that it contains the 〈j · b〉 term which contributes to
the α effect, as was first shown by Pouquet et al. (1976). Specifically, they found
(see also Blackman and Field, 2002)

α = αK + αM, with αK = − 1
3
τ〈ω · u〉, αM = + 1

3
τ〈j · b〉 , (38)

where τ is the correlation time of the turbulence, ω = ∇ × u is the vorticity, and
〈ω · u〉 is the kinematic helicity.

Using 〈j ·b〉 ≈ k2
f 〈a ·b〉, see (13), we can rewrite (37) in a form that can directly

be used in mean-field calculations:
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dα

dt
= −2ηtk

2
f

(
α〈B2〉 − ηt〈J · B〉

B2
eq

+
α − αK

Rm

)
, (39)

Here we have used ηt = 1
3
τu2

rms to eliminate τ in favor of ηt and B2
eq = µ0ρ0u

2
rms

to eliminate u2
rms in favor of B2

eq.
So, α is no longer just an algebraic function of B, but it is related to B via

a dynamical, explicitly time-dependent equation. In the context of dynamos in
periodic domains, where magnetic helicity conservation is particularly important,
the time dependence of α can hardly be ignored, unless one wants to describe the
final stationary state, which can be at the end of a very slow saturation phase.
However, in order to make contact with earlier work, it is useful to consider the
stationary limit of (39), i.e. set ∂α/∂t.

5.3 Steady Limit and its Limitations

In the steady limit the term in brackets in (39) can be set to zero, so this equation
reduces to

Rm
α〈B2〉 − ηt〈J · B〉

B2
eq

+ α = αK (for dα/dt = 0) . (40)

Solving this equation for α yields (Kleeorin et al., 1982; Gruzinov and Diamond,
1994)

α =
αK + ηtRm〈J · B〉/B2

eq

1 + Rm〈B2〉/B2
eq

(for dα/dt = 0) . (41)

And, sure enough, for the numerical experiments with an imposed large scale field
over the scale of the box (Cattaneo and Hughes, 1996), where B is spatially uniform
and therefore J = 0, one recovers the ‘catastrophic’ quenching formula,

α =
αK

1 + Rm〈B2〉/B2
eq

(for J = 0) , (42)

which implies that α becomes quenched when 〈B2〉/B2
eq = R−1

m ≈ 10−8 for the sun,
and for even smaller fields in the case of galaxies.

On the other hand, if the mean field is not imposed, but maintained by dynamo
action, B cannot be spatially uniform and then J is finite. In the case of a Beltrami

field (33), 〈J · B〉/〈B2〉 ≡ k̃m is some effective wavenumber of the large-scale field
[k̃m = εmkm; see (22)]. Since Rm enters both the numerator and the denominator,
α tends to ηtkm, i.e.

α → ηtk̃m (for J �= 0 and J ‖ B) . (43)

Compared with the kinematic estimate, αK ≈ ηtkf , α is only quenched by the
modified scale separation ratio. More importantly, α is quenched to a value that is
just slightly above the critical value for the onset of dynamo action, αcrit = ηTk̃m.
How is it then possible that the fit formula (34) for α and ηt produced reasonable
agreement with the simulations? The reason is that in the simple case of an α2

dynamo the solutions are degenerate in the sense that J and B are parallel to each

other. Therefore, the term 〈J · B〉B is the same as 〈B2〉J , which means that in
the mean EMF the term αB, where α is given by (41), has a component that can
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be expressed as being parallel to J . In other words, the roles of turbulent diffusion
(proportional to J) and α effect (proportional to B) cannot be disentangled. This is
the force-free degeneracy of α2 dynamos in a periodic box (BB02). This degeneracy
is also the reason why for α2 dynamos the late saturation behavior can also be
described by an algebraic (non-dynamical, but catastrophic) quenching formula

proportional to 1/(1 + Rm〈B2〉) for both α and ηt, as was done in B01. To see
this, substitute the steady state quenching expression for α, from (41), into the
expression for E . We find

E = αB − (η + ηt)J =
αK + Rmηt〈J · B〉/B2

eq

1 + Rm〈B2〉/B2
eq

B − ηtJ

=
αKB

1 + Rm〈B2〉/B2
eq

− ηtJ

1 + Rm〈B2〉/B2
eq

, (44)

which shows that in the force-free case the adiabatic approximation, together with
constant (unquenched) turbulent magnetic diffusivity, becomes equal to the pair
of expressions where both α and ηt are catastrophically quenched. This force-free
degeneracy is lifted in cases with shear or when the large-scale field is no longer
fully helical (e.g. in a nonperiodic domain, and in particular in the presence of open
boundaries).

5.4 The Keinigs Relation and its Relevance

Applying (37) to the steady state using E = αB − ηtµ0J (and retaining µ0 factor),
we get

α = −ηµ0
〈j · b〉
〈B2〉

+ ηtkm (for periodic domain) , (45)

where we have defined an effective wavenumber of the large-scale field, km = µ0〈J ·
B〉/〈B2〉; see (9). This relation applies only to a closed or periodic box, because
otherwise there would be boundary terms. Moreover, if the mean field is defined as
a volume average, i.e. B = 〈B〉 ≡ B0, then µ0J = ∇×B0 = 0, so km = 0 and one
has simply

α = −ηµ0
〈j · b〉
〈B2〉

(for imposed field) . (46)

This equation is due to Keinigs (1983). For the more general case with km �= 0
this equation has been discussed in more detail by Brandenburg and Subramanian
(2005) and Brandenburg and Matthaeus (2004).

Let us now discuss the significance of this relation relative to (41). Both equa-
tions apply only in the strictly steady state, of course. Since we have assumed
stationarity, we can replace 〈j · b〉 by −〈J · B〉; see (9). Thus, (45) reduces to

α = ηTkm (47)

where ηT = η + ηt is the total (turbulent and microscopic) magnetic diffusivity.
This relation is just the condition for a marginally excited dynamo; see (32), so it
does not produce any independent estimate for the value of α. In particular, it does
not provide a means of independently testing (41). The two can however be used
to calculate the mean-field energy in the saturated state and we find (BB02)
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〈B2〉
B2

eq
=

α − ηTkm

ηtkm
(periodic domain) . (48)

By replacing km by an effective value k̃m, this equation can be generalized to apply
also to the case with shear (for details see BB02).

5.5 Blackman’s Multi-scale Model:
Application to Helical Turbulence with Imposed Field

The restriction to a two scale model may in some cases turn out to be insufficient
to capture the variety of scales involved in astrophysical bodies. This is already
important in the kinematic stage when the small-scale dynamo obeys the Kazantsev
(1968) scaling with a k3/2 spectrum that peaks at the resistive scale. As the dynamo
saturates, the peak moves to the forcing scale. This lead Blackman (2003) to develop
a four scale model where he includes, in addition to the wavenumbers of the mean
field km (≡ k1) and the wavenumber of the energy carrying scale of the velocity
fluctuations kf (≡ k2), also the viscous wavenumber kν (≡ k3) and the resistive
wavenumber kη (≡ k4). The set of helicity equations for the four different scales is(

∂t + 2ηk2
1

)
H1 = 2〈E1 · B1〉 + 2〈E2 · B1〉 , (49)(

∂t + 2ηk2
2

)
H2 = −2〈E1 · B1〉 + 2〈E2 · B2〉 , (50)(

∂t + 2ηk2
3

)
H3 = −2〈E2 · B1〉 − 2〈E2 · B2〉 , (51)(

∂t + 2ηk2
4

)
H4 = 0 , (52)

where E1 is the usual electromotive force based on kinetic helicity at the forcing
scale, k2, with feedback proportional to H2, and E2 has no kinetic helicity input
but only reacts to the automatically generated magnetic helicity H3 produced at
the viscous scale k3. These equations are constructed such that

∂

∂t

4∑
i=1

Hi = −2η

4∑
i=1

k2
i Hi , (53)

which is consistent with the magnetic helicity equation (6) for the total field. An
important outcome of this model is that in the limit of large Rm the magnetic peak
travels from k3 to k2 on a dynamical timescale, i.e. a timescale that is independent
of Rm.

Brandenburg and Matthaeus (2004) have applied the general idea to the case
of a model with an applied field. Here the new scale is the scale of the applied
field, but since this scale is infinite, this field is fixed and not itself subject to an
evolution equation. Nevertheless, the electromotive force from this field acts as a
sink on the next smaller scale with wavenumber k1, which is the largest wavenumber
in the domain of the simulation. They thus arrive at the following set of evolution
equations, [ (

∂t + 2ηk2
0

)
H0 = ... + 2〈E0 · B0〉,

]
(54)

(
∂t + 2ηk2

1

)
H1 = −2〈E0 · B0〉 + 2〈E1 · B1〉 , (55)(

∂t + 2ηk2
2

)
H2 = −2〈E1 · B1〉 . (56)
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The square brackets around the first equation indicate that this equation is not
explicitly included. From the second equation (55) one can see that there is a
competition between two opposing effects: the α effect operating on the imposed
field B0 and the α effect operating on the B1 field on the scale of the box. When the
imposed field exceeds a certain field strength, B0 > B∗, the former will dominate,
reversing the sign of the magnetic helicity at wavenumber k1. This is actually seen in
the simulations of helically forced turbulence with an imposed field B0; see Fig. 10.
We return to this at the end of this section.

Fig. 10. Evolution of the total magnetic helicity, H = H1 + Hf , as a function of t
for different values of B0, as obtained from the three-dimensional simulation. Note
the change of sign at B0 ≈ B∗ ≈ 0.07 [Adapted from Brandenburg and Matthaeus
(2004)]

The work of Brandenburg and Matthaeus (2004) was motivated by earlier work
of Montgomery et al. (2002) and Milano et al. (2003) who showed that, if the
imposed magnetic field is weak or absent, there is a strong nonlocal transfer of
magnetic helicity and magnetic energy from the forcing scale to larger scales. This
leads eventually to the accumulation of magnetic energy at the scale of the box
(Meneguzzi et al., 1981; Balsara and Pouquet, 1999, B01). As the strength of the im-
posed field (wavenumber k = 0) is increased, the accumulation of magnetic energy
at the scale of the box (k = 1) becomes more and more suppressed (Montgomery
et al., 2002).

In order to solve the model equations, we have to make some assumptions about
the electromotive force operating at k0 and k1. The large-scale magnetic helicity
production from the α effect operating on the imposed field is E0 ·B0 = α1B

2
0. On

the other hand, E1 at wavenumber k1 is given by

E1 = αfB1 − ηtµ0J1 . (57)

To calculate 〈E1 · B1〉 in (55) and (56) we dot (57) with B1, volume average, and
note that µ0〈J1 ·B1〉 = k2

1H1 and 〈B2
1〉 = k1|H1|. The latter relation assumes that
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the field at wavenumber k1 is fully helical, but that it can have either sign. Thus,
we have

〈E1 · B1〉 = αfk1|H1| − ηtk
2
1H1 . (58)

The α effects on the two scales are proportional to the residual magnetic helicity
of Pouquet et al. (1976); see (38). In terms of H1 and H2 ≡ Hf we write

α1 = αK + 1
3
τk2

1H1 , (59)

α2 = αK + 1
3
τk2

2H2 , (60)

for the α effect with feedback from H1 and H2, respectively.
For finite values of B0, the final value of H1 is particularly sensitive to the

value of αK and turns out to be too large compared with the simulations. This
disagreement with simulations is readily removed by taking into account that αK =
− 1

3
τ〈ω · u〉 should itself be quenched when B0 becomes comparable to Beq. Thus,

we write
αK = αK0/(1 + B2

0/B2
eq) , (61)

which is a good approximation to more elaborate expressions (Rüdiger and Kitchati-
nov, 1993). We emphasize that this equation only applies to αK and is therefore
distinct from (34), (39), or (41).

Under the assumption that the turbulence is fully helical, the critical value B∗
of the imposed field can be estimated by balancing the two terms on the right hand
side of (56) and by approximating, α ≈ ηtkf and 〈j · b〉 ≈ kfB

2
eq. This yields

B2
∗/B2

eq ≈ η/ηt ≡ R−1
m , (62)

where the last equality is to be understood as a definition of the magnetic Reynolds
number, see also BB02. For B0 > B∗ the sign of the magnetic helicity is the same
both at k = 1 and at k = kf , while for B0 < B∗ the signs are opposite.

In Fig. 11 we show the result of a numerical integration of (55) and (56). Both
the three-dimensional simulation and the two-scale model show a similar value of
B0 ≈ 0.06...0.07, above which H1 changes sign. This confirms the validity of our
estimate of the critical value B∗ obtained from (62). Secondly, the time evolution
is slow when B0 < B∗ and faster when B0 > B∗. In the simulation, however, the
field attains its final level for B0 > B∗ almost instantaneously, which is not the case
in the model. The significance of this discrepancy remains unclear. Nevertheless,
the level of agreement between the simulations and 3-scale model is surprising,
suggesting that the approach can indeed be quite useful.

5.6 Alpha Effect with Open Boundaries and Shear

In a recent paper, Brandenburg and Sandin (2004) have carried out a range of
simulations for different values of the magnetic Reynolds number, Rm = urms/(ηkf),
for both open and closed boundary conditions using the geometry depicted on the
right hand panel of Fig. 7. In order to measure α, a uniform magnetic field, B0 =
const, is imposed, and the magnetic field is now written as B = B0 +∇×A. They
have determined α by measuring the turbulent electromotive force, and hence α =
〈E〉·B0/B2

0 . Similar investigations have been done before both for forced turbulence
(Cattaneo and Hughes, 1996, B01) and for convective turbulence (Brandenburg et
al., 1990; Ossendrijver et al., 2001).
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Fig. 11. Evolution of magnetic helicity as a function of t for different values of B0,
as obtained from the two-scale model [Adapted from Brandenburg and Matthaeus
(2004)]

As expected, α is negative when the helicity of the forcing is positive, and α
changes sign when the helicity of the forcing changes sign. The magnitudes of α
are however different in the two cases: |α| is larger when the helicity of the forcing
is negative. In the sun, this corresponds to the sign of helicity in the northern
hemisphere in the upper parts of the convection zone. This is here the relevant case,
because the differential rotation pattern of the present model also corresponds to
the northern hemisphere.

There is a striking difference between the cases with open and closed boundaries
which becomes particularly clear when comparing the averaged values of α for
different magnetic Reynolds numbers; see Fig. 12. With closed boundaries α tends
to zero like R−1

m , while with open boundaries α shows no such decline. There is
also a clear difference between the cases with and without shear together with open
boundaries in both cases. In the absence of shear (dashed line in Fig. 12) α declines
with increasing Rm, even though for small values of Rm it is larger than with shear.
The difference between open and closed boundaries will now be discussed in terms
of a current helicity flux through the two open open boundaries of the domain.

5.7 Current Helicity Flux

It is suggestive to interpret the above results in terms of the dynamical α quenching
model. However, (39) has to be generalized to take the divergence of the flux into
account. In order to avoid problems with the gauge, it is advantageous to work
directly with j · b instead of a · b. Using the evolution equation, ∂b/∂t = −∇ × e,
for the fluctuating magnetic field, where e = E − E is the small-scale electric field
and E = ηµ0J − E the mean electric field, one can derive the equation

∂

∂t
j · b = −2 e · c − ∇ · FSS

C , (63)
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Fig. 12. Dependence of |〈α〉|/urms on Rm for open and closed boundaries. The
case with open boundaries and negative helicity is shown as a dashed line. Note that
for Rm ≈ 30 the α effect is about 30 times smaller when the boundaries are closed.
The dotted line gives the result with open boundaries but no shear. The vertical
lines indicate the range obtained by calculating α using only the first and second
half of the time interval [Adapted from Brandenburg and Subramanian (2005)]

where
FSS

C = 2e × j + (∇ × e) × b/µ0 , (64)

is the current helicity flux from the small-scale field, and c = ∇ × j the curl of
the small-scale current density, j = J − J . In the isotropic case, e · c ≈ k2

f e · b,
where kf is the typical wavenumber of the fluctuations, here assumed to be the
forcing wavenumber. Ignoring the effect of the mean flow on E [as is usually done;
but see Krause and Rädler (1980) and the recent on the shear current effect by
Rogachevskii and Kleeorin (2003, 2004); see Sect. 4.5], we obtain

e · b ≈ −(u × B0) · b + ηµ0j · b = E · B + ηµ0j · b , (65)

where we have used u × b = E and B0 = B. Using standard expressions for the
turbulent magnetic diffusivity, ηt = 1

3
τu2

rms, and the equipartition field strength,
Beq =

√
µ0ρ urms, we eliminate τ via

1
3
τ = µ0ρ0ηt/B2

eq . (66)

This leads to an explicitly time dependent formula for α,

∂α

∂t
= −2ηtk

2
f

(
E · B + 1

2
k−2
f ∇ · µ0FSS

C

B2
eq

+
α − αK

Rm

)
. (67)

This equation is similar to that of Kleeorin et al. (2000, 2002, 2003) who considered
the flux of magnetic helicity instead of current helicity.

Making use of the adiabatic approximation, i.e. putting the rhs of (67) to zero,
one arrives at the algebraic steady state quenching formula (∂α/∂t = 0)

α =
αK + Rm

(
ηtµ0J · B − 1

2
k−2
f ∇ · µ0FSS

C

)
/B2

eq

1 + RmB
2
/B2

eq

. (68)
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In the absence of a mean current, e.g. if the mean field is defined as an average over
the whole box, then B ≡ B0 = const, and J = 0, so (68) reduces to

α =
αK − 1

2
k−2
f Rm∇ · µ0FSS

C /B2
eq

1 + RmB2
0/B2

eq

. (69)

This expression applies to the present case, because we consider only the statistically
steady state and we also define the mean field as a volume average.

For closed boundaries, 〈∇ · FSS
C 〉 = 0, and so (69) clearly reduces to a

catastrophic quenching formula, i.e. α vanishes in the limit of large magnetic
Reynolds numbers as

α(closed) =
αK

1 + RmB2
0/B2

eq

→ R−1
m (for Rm → ∞) . (70)

The R−1
m dependence is confirmed by the simulations (compare with the dash-dotted

line in Fig. 12). On the other hand, for open boundaries the limit Rm → ∞ gives

α(open) → −(∇ · µ0FSS
C )/(2k2

f B2
0) (for Rm → ∞) , (71)

which shows that losses of negative helicity, as observed in the northern hemisphere
of the sun, would enhance a positive α effect (Kleeorin et al., 2000). In the simula-
tions, the current helicity flux is found to be independent of the magnetic Reynolds
number. This explains why the α effect no longer shows the catastrophic R−1

m de-
pendence (see Fig. 12). In principle it is even conceivable that with αK = 0 a current
helicity flux can be generated, for example by shear, and that this flux divergence
could drive a dynamo, as was suggested by Vishniac and Cho (2001). It is clear,
however, that for finite values of Rm this would be a non-kinematic effect requiring
the presence of an already finite field (at least of the order of Beq/R

1/2
m ). This is

because of the 1 + RmB2
0/B2

eq term in the denominator of (69). At the moment
we cannot say whether this is perhaps the effect leading to the nonhelically forced
turbulent dynamo discussed in Sect. 4.5, or whether it is perhaps the δ × J or
shear-current effect that was also mentioned in that section.

6 What about η Quenching?

As we have seen above, in a closed domain the value of α in the saturated state
cannot conclusively be determined without also determining at the same time the
turbulent magnetic diffusivity. There are different ways of determining ηt. The
values are not necessarily all in agreement with each other, because one does not
know whether the mean-field equation, where ηt enters, is correct and applicable.
We report here a few different examples where ηt has been determined.

6.1 Direct Measurements in a Working Dynamo

We first consider the case of a helical turbulent dynamo without shear (B01) and
compare it with a simple mean-field α2 dynamo. Assuming that α is uniform, we
can use (31) and, assuming furthermore that α < 0 (which is the case when the
helicity of the forcing is positive, as in B01), the solution is
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B = (bx cos k1z, by sin k1z, 0)T . (72)

The time-dependent equations can then be written as

dbx

dt
= |α|by − ηTk2

1bx , (73)

dby

dt
= |α|bx − ηTk2

1by . (74)

In an isotropic, homogeneous α2 dynamo, the eigenfunction obeys bx = by.
We now assume that, at some particular time, we put bx = 0, for example. This

means that bx(t) will first grow linearly in time at a rate that is proportional to α
like bx ≈ |α|k1by. At the same time as bx grows, by will first decrease at a rate that
is proportional to ηT. This allows an independent estimate of bx and by by solving
the matrix equation

(
k1by −k2

1bx

k1bx −k2
1by

)(
|α|
ηT

)
=

(
dbx/dt
dby/dt

)
. (75)

The result for α is found to be roughly consistent with that of Cattaneo and Hughes
(1996), and the result for ηT is reproduced in Fig. 13, and can be described by the
fit formula

ηt =
ηt0

1 + g̃|B|/Beq

(76)

with g̃ ≈ 16. This expression needs to be compared with that obtained from other
approaches.

The fact that the results obtained for α by using this approach are consistent
with that for a uniform field is quite surprising and unexpected. This agreement
probably indicates that in this type of simulation α is independent of scale – at least
in the scale range corresponding to wavenumbers k = k1 (= 1) and k = 0. In general,
this may not be true. Indeed, in the case of accretion discs some numerical evidence
for scale dependence of α and ηt has been found (Brandenburg and Sokoloff, 2002).

Fig. 13. Result for ηT for different values of Rm. The lines represent the fits
described in the text. In the plot of ηT the asterisks denote |α|−λ for the Rm,forc =
120 run, which agrees reasonably well with ηT [Adapted from B01]
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Table 1. Summary of the main properties of the three-dimensional simulations
with shear. Here, η/(csk1) is the magnetic diffusivity in units of the sounds speed
and the wavenumber of the domain, and ωcyc = 2π/Tcyc is the cycle frequency. In
Run (iii) there is no clear cycle visible [Adapted from BDS02]

Run (i) (ii) (iii)

η/(csk1) 10−3 5 × 10−4 2 × 10−4

ν/η 5 10 25

Rm = 〈u2〉1/2/(ηk1) 30 80 200

CΩ = 〈U 2〉1/2/(ηk1) 1000 2000 4000
〈b2〉/B2

eq 4 6 20

〈B2〉/B2
eq 20 30 60

εm = µ0〈J · B〉/〈B2〉 0.11 0.06 0.014
ωcyc/(ηk2

1) 8. . . 9 6. . . 12 ≥ 10?

6.2 Measurements in an αΩ Dynamo

In the case of an αΩ dynamo the cycle frequency ωcyc depends directly on the
nonlinearly suppressed value of ηT

ωcyc = ηTk2
1 (ηT is quenched) , (77)

see BB02 (their Sect. 4.2). The estimates of BBS01 indicated that the dynamo
numbers based on shear, CΩ = S/(ηTk2

1), is between 40 and 80, whilst the total
dynamo number (D = CαCΩ) is between 10 and 20 (see BBS01), and hence Cα =
α/(ηTk1) ≈ 0.25. Thus, shear dominates strongly over the α effect (CΩ/Cα is
between 150 and 300), which is typical for αΩ-type behavior (i.e. oscillations) rather
than α2-type behavior which would start when CΩ/Cα is below about 10 (e.g.
Roberts and Stix, 1972).

The results shown in Table 1 suggest that the period in this oscillatory dynamo
is controlled by the microscopic magnetic diffusivity, because ωcyc/(ηk2

1) is approx-
imately independent of Rm. Using (77), this means that ηT(quenched)/η = O(10)
for Rm between 30 and 200. This result would favor a model where ηT is still
quenched in an Rm-dependent fashion. In the next section we show that the appar-
ent Rm-dependent ηt quenching can easily also be produced when the field possesses
a helical component.

Looking at the scaling of the cycle frequency with resistivity may be quite
misleading in the present case, because the large-scale magnetic field exceeds the
kinetic energy by a large factor (20–30). This would always lead to the usual (non-
catastrophic) quenching of α and ηt. Furthermore, such strong magnetic fields will
affect the mean shear flow. Most important is perhaps the fact that in the simulation
of BBS01 the shear flow varies sinusoidally in the cross stream direction, so the mean
field depends on the two coordinate directions perpendicular to the streamwise
direction. For this reason BB02 solved the mean-field and dynamical quenching
equations in a 2-dimensional model. It turned out to be important to allow for
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Table 2. Results from the simulations of BBS01 and BDS02, compared with those
of 2-dimensional mean-field models. Model results that are in fair agreement with
the simulations are highlighted in bold face. Here, Q is the ratio of toroidal to
poloidal rms field

Model Rm Cα CΩ g̃
S

ηk2
1

〈b2〉
B2

eq

〈B2〉
B2

eq

Q−1 εm
ωcyc

S

λ

S

BBS01 80 1–2 – – 2000 6 30 0.014 0.06 0.008 0.015
R1 20 1.0 100 0 2000 0.20 15 0.031 0.065 0.016 0.044

AG2 100 0.5 20 3 2000 0.10 22 0.011 0.024 0.006 0.021

BDS02 30 1–2 – – 1000 4 20 0.018 0.11 0.014 0.006
s3 30 0.35 33 1 1000 0.07 6 0.029 0.061 0.014 0.016

S1 30 0.35 33 3 1000 0.07 19 0.009 0.019 0.005 0.016

non-catastrophic quenching of ηt using (76) where the value of g̃ has been varied
between 0 and 3. The asymptotic 1/B behavior (as opposed to 1/B2, for example)
was motivated both by simulations (B01) and analytic results (Kitchatinov et al.,
1994; Rogachevskii and Kleeorin, 2001).

In order to see whether the models can be made to match the direct simulations,
several input parameters were varied. It should be kept in mind, however, that
not all input parameters are well known. This has to do with the uncertainty in
the correspondence between the magnetic Reynolds number in the model (which
measures ηt0/η) and the simulations [where it is defined as urms/(ηkf)]. Likewise,
the dynamo number Cα = α/(ηTk1) is not well determined. Nevertheless, many of
the output parameters are reasonably well reproduced; see Table 2.

6.3 Decay Experiments

Finally, we consider the decay of a magnetic field. This provides a fairly straight-
forward method of determining ηT from the decay rate λ of a sinusoidal field with
wavenumber k1, so λ = ηTk2

1 . The result reported by Yousef et al. (2003) suggests
that

νt ≈ ηt = (0.8 . . . 0.9) × urms/kf (for B
2 � B2

eq) . (78)

Once the mean flow profile has decreased below a certain level (< 0.1urms), it
cannot decay further and continues to fluctuate around 0.08urms, corresponding to
the level of the rms velocity of the (forced!) turbulence at k = k1 (see the dashed
line in Fig. 14).

The quenching of the magnetic diffusivity, ηt = ηt(B), can be obtained from one
and the same run by simply determining the decay rate, λB(B), at different times,
corresponding to different values of B = |B|. To describe departures from purely
exponential decay one can adopt a B-dependent ηt expression of the form (76). It
turns out that the value of g̃ is not universal and depends on the field geometry.
This is easily demonstrated by comparing the decay of helical and nonhelical initial
fields; see Fig. 15.

In the next section we show that the slower decay of B, and hence the implied
stronger quenching of ηt, can also be described by a self-induced magnetic α effect
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Fig. 14. Decay of large-scale helical velocity and magnetic fields (dashed and
solid lines, respectively). The graph of U (t) has been shifted so that both U (t)
and B(t) share the same tangent (dash-dotted line), whose slope corresponds to
νt = ηt = 0.86urms/kf . The decay of a nonhelical magnetic field is shown for
comparison (dotted line) [Adapted from Yousef et al. (2003)]

which acts such as to decrease the decay rate. In the case of a helical initial field,
we have J × B = 0, i.e. the large-scale field is force-free and interacts only weakly
with the turbulence.

Fig. 15. Dependence of the turbulent diffusion coefficient on the magnitude of the
mean field. Rm ≈ 20. Left : The initial field is helical and corresponds to data points
on the right hand side of the plot. The data are best fitted by g̃ = 8 = 0.4Rm. Right :
the same for the nonhelical case. The data are best fitted by a = 1, independent of
Rm [Adapted from Yousef et al. (2003)]

Thus, the indications here are that for non-helical fields, ηt is not catastrophi-
cally quenched. A resistively slow decay rate occurs however when the magnetic field
is helical, but this is not to be explained by a catastrophically quenched ηt, but by
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the magnetic α effect, αM, that tries to keep the magnetic field as large as possible,
just as enforced by the magnetic helicity constraint. The phenomenon, described in
this way, may be more easily described in terms of helicity conservation, because
the system has magnetic helicity that can only decay slowly on a resistive time
scale, hence lowering the apparent turbulent diffusivity down to the microscopic
value η. This will be explained in more detail in the next section.

6.4 Taylor Relaxation or Selective Decay

In the case of a helical field with B
2
/B2

eq
>∼ R−1

m the slow decay of B is related to
the conservation of magnetic helicity. As already discussed by BB02, this behavior
is related to the phenomenon of selective decay (e.g. Montgomery et al., 1978) and
can be described by the dynamical quenching model. This model applies even to
the case where the turbulence is nonhelical and where there is no α effect in the
usual sense. However, the magnetic contribution to α is still non-vanishing, because
it is driven by the helicity of the large-scale field.

To demonstrate this quantitatively, Yousef et al. (2003) have adopted the one-
mode approximation (k = k1) with B = B̂ exp(ik1z), the mean-field induction
equation

dB̂

dt
= ik1 × Ê − ηk2

1B̂ , (79)

together with the dynamical α-quenching formula (39),

dα

dt
= −2ηk2

f

(
α + R̃m

Re(Ê∗ · B̂)

B2
eq

)
, (80)

where
Ê = αB̂ − ηtik1 × B̂ (81)

is the electromotive force, and R̃m is defined as the ratio ηt0/η, which is expected
to be close to the value of Rm.

In Fig. 16 we show the evolution of B/Beq for helical and nonhelical initial
conditions, B̂ ∝ (1, i, 0) and B̂ ∝ (1, 0, 0), respectively. In the case of a nonhelical
field, the decay rate is not quenched at all, but in the helical case quenching sets in

for B
2
/B2

eq
>∼ R−1

m . In the helical case, the onset of quenching at B
2
/B2

eq ≈ R−1
m is

well reproduced by the simulations. In the nonhelical case, however, some weaker

form of quenching sets in when B
2
/B2

eq ≈ 1 (see the right hand panel of Fig. 15).
We refer to this as standard quenching (e.g. (Kitchatinov et al., 1994) which is
known to be always present; see (76). BB02 found that, for a range of different
values of Rm, g̃ = 3 resulted in a good description of the simulations of cyclic
αΩ-type dynamos (BDS02).

Yousef et al. (2003) also showed that the turbulent magnetic Prandtl number
is indeed independent of the microscopic magnetic Prandtl number. The resulting
values of the flow Reynolds number, Re = urms/(νkf), varied between 20 and 150,
giving Pm in the range between 0.1 and 1. Within plot accuracy the three values of
λB turn out to be identical in the interval where the decay is exponential.
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Fig. 16. Dynamical quenching model with helical and nonhelical initial fields.
The quenching parameters are g̃ = 0 (solid line) and 3 (dotted line). The graph for
the nonhelical cases has been shifted in t so that one sees that the decay rates are
asymptotically equal at late times. The value of ηT used to normalize the abscissa
is based on the unquenched value [Adapted from Yousef et al. (2003)]

7 Conclusions

In the present review we have tried to highlight some of the recent discoveries that
have led to remarkable advances in the theory of mean-field dynamos. Of particular
importance are the detailed confirmations of various aspects of mean-field theory
using helically forced turbulence simulations. The case of homogeneous turbulence
with closed or periodic boundary conditions is now fairly well understood. In all
other cases, however, the flux of current helicity becomes important. The closure
theory of these fluxes is still a matter of ongoing research (Kleeorin et al., 2000,
2002, 2003), Vishniac and Cho (2001), Subramanian and Brandenburg (2004), and
Brandenburg and Subramanian (2005). The helicity flux of Vishniac and Cho (2001)
has been independently confirmed (Subramanian and Brandenburg, 2004). A more
detailed investigation of current helicity fluxes appears to be quite important when
one tries to get qualitative and quantitative agreement between simulations and
theory.

The presence of current helicity fluxes is particularly important when there is
also shear. This was already recognized by Vishniac and Cho (2001) who applied
their calculations to the case of accretion discs where shear is particularly strong.
In the near future it should be possible to investigate the emergence of current
helicity flux in more detail. This would be particularly interesting in view of the
many observations of coronal mass ejections that are known to be associated with
significant losses of magnetic helicity and hence also of current helicity (DeVore,
2000; Démoulin et al., 2002; Gibson et al., 2002).

In order to be able to model coronal mass ejections it should be particularly
important to relax the restrictions imposed by the vertical field conditions employed
in the simulations of Brandenburg and Sandin (2004). A plausible way of doing this
would be to include a simplified version of a corona with enhanced temperature and
hence decreased density, making this region a low-beta plasma.
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In the context of accretion discs the importance of adding a corona is well
recognized (Miller and Stone, 2000), although its influence on large-scale dynamo
action is still quite open. Regarding hydromagnetic turbulence in galaxies, most
simulations to date do not address the question of dynamo action (Korpi et al.,
1999; de Avillez and Mac Low, 2002).

This is simply because here the turbulence is driven by supernova explosions
which leads to strong shocks. These in turn require large numerical diffusion, so
the effective magnetic Reynolds number is probably fairly small and dynamo ac-
tion may only be marginally possible. In nonhelically driven turbulence has been
applied to the galactic medium to argue that it is dominated by small-scale fields
(Schekochihin et al., 2002), but the relative importance of small-scale fields remains
still an open question (Haugen et al., 2003). Galaxies are however rotating and ver-
tically stratified, so the flows should be helical, but in order to say anything about
magnetic helicity evolution, much larger magnetic Reynolds numbers are necessary.
At the level of mean-field theory the importance of magnetic helicity fluxes is well
recognized. The explicitly time-dependent dynamical α quenching equation with
magnetic helicity fluxes has been included in mean-field simulations (Kleeorin et
al., 2000, 2002, 2003), but the form of the adopted fluxes is to be clarified in view of
the differences with the results of Vishniac and Cho (2001) and Subramanian and
Brandenburg (2004). Nevertheless, given that the form of the dynamical quench-
ing equations is likely to be still incomplete, it remains to be demonstrated, using
simulations, that magnetic or current helicity fluxes do really allow the dynamo to
saturate on a dynamical time scale.
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Roberts, P. H., Stix, M.: 1972, A&A 18, 453
Rogachevskii, I., Kleeorin, N.: 2001, Phys. Rev. E 64, 056307 247
Rogachevskii, I., Kleeorin, N.: 2003, Phys. Rev. E 68, 036301 220, 221, 235, 243
Rogachevskii, I., Kleeorin, N.: 2004, Phys. Rev. E 70, 046310 220, 221, 243
Rogers, N. N., Denton, R. E., Drake, J. E. et al.: 2001, Phys. Rev. Lett. 87, 195004 230
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Steenbeck, M., Krause, F., Rädler, K.-H.: 1966, Z. Naturforsch. 21a, 369 219
Subramanian, K., Brandenburg, A.: 2004, Phys. Rev. Lett. 93, 205001 250, 251
Vainshtein, S. I., Cattaneo, F.: 1992, ApJ 393, 165 226
Vainshtein, S. I., Chitre, S. M., Olinto, A.: 2000, Phys. Rev. E 61, 44224430 230
Vishniac, E. T., Brandenburg, A.: 1997, ApJ 475, 263 220
Vishniac, E. T., Cho, J.: 2001, ApJ 550, 752 220, 221, 244, 250, 251
Widrow, L. M.: 2002, Rev. Mod. Phys. 74, 775 220
Yoshimura, H.: 1975, ApJS 29, 467 230
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