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Abstract. We discuss selected aspects regarding the magnetic field evolution of solar-type stars.
Most of the stars with activity cycles are in the range where the normalized chromospheric Cal-
cium emission increases linearly with the inverse Rossby number. For Rossby numbers below
about a quarter of the solar value, the activity saturates and no cycles have been found. For
Rossby numbers above the solar value, again no activity cycles have been found, but now the
activity goes up again for a major fraction of the stars. Rapidly rotating stars show nonaxisym-
metric large-scale magnetic fields, but there is disagreement between models and observations
regarding the actual value of the Rossby number where this happens. We also discuss the
prospects of detecting the sign of magnetic helicity using various linear polarization techniques
both at the stellar surface using the parity-odd contribution to linear polarization and above
the surface using Faraday rotation.

Keywords. (magnetohydrodynamics:) MHD, turbulence, techniques: polarimetric, Sun: mag-
netic fields, stars: magnetic fields

1. Introduction

The purpose of this paper is to discuss recent results relevant for understanding the
connection between observations and simulations of magnetic fields in solar-like stars.
We focus on observational measures of stellar activity, the occurrence of activity cycles
in other stars, and new ways of interpreting stellar surface magnetic fields in terms of
linear polarization measurements. We also address the possibility of a radial sign reversal
of the star’s magnetic helicity some distance above the stellar surface.
The Sun’s magnetic field exhibits remarkable regularity in space and time, as is demon-

strated by Maunder’s butterfly diagram (Maunder 1904). Although comparable diagrams
are only now beginning to become possible for other stars (see, e.g., Alvarado-Gómez et al.
2018), there is clear evidence that cyclic chromospheric variability is ubiquitous. This be-
came clear after Wilson (1963, 1978) selected a set of stars that were then monitored for
the next three decades at Mount Wilson (Baliunas et al. 1995).
Much of our knowledge on stellar magnetic activity comes from understanding the

Sun’s magnetic field. The occurrence of a fairly regular 11-year activity cycle is of course
one of its main characteristics. A cycle as clear as that of the Sun has not been observed
for any of the other stars monitored so far. The perhaps best observed cycle is that of
HD 81809, but that star is a binary and the cyclic component is not a main sequence
star, but a subgiant; see Egeland (2018) for a detailed discussion of this interpretation.
The lack of equally clear cycles makes one wonder whether the Sun is perhaps a special
case. Other evidence in favor of such thinking is the fact that in a diagram of cycle period
versus rotation period, the Sun lies right between two different branches, the high and
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low activity branches (Böhm-Vitense 2007). There are a few other aspects suggesting
that the Sun is special. Some of them are discussed below.
In the earlier work of Brandenburg et al. (1998), which also showed two distinct activity

branches, the Sun appeared closer to the inactive branch and not really between two
branches. One reason why the Sun was closer to the inactive branch was the fact that
they used the 10 year cycle period obtained by Baliunas et al. (1995) for the time interval
for which their solar 〈R′

HK〉 data were determined from nightly moonlight observations.
Using instead the 11 year cycle period determined for the full record since the time of
Schwabe (1844) and before (since the time of the Maunder minimum, as was established
by Eddy 1976) yields a position of the Sun that is now further away from the inactive
branch (Brandenburg et al. 2017), although it is still not really between the two branches.
Regarding the clear cyclicity, it should also be kept in mind that the Sun is relatively
old compared with many of the stars for which cycles have been obtained. It is therefore
possible that there is some sort of selection effect for why only the Sun has such a well
defined cycle.
We begin by discussing first the relation between rotation period and stellar activity.

Also this relation suggests that the Sun’s location in that diagram is between two dif-
ferent modes of behavior, which is when the activity attains a minimum as a function
of rotation periods. Both for faster and for slower rotation, the activity increases rela-
tive to that of the Sun, at least approximately; see the work Brandenburg & Giampapa
(2018), who offered an interpretation in terms of the stellar differential rotation changing
from solar-like to antisolar-like differential rotation right at the Sun’s rotation rate. So,
again, the Sun appears to take a special position among the many other stars. We finish
by discussing new ideas for determining solar and stellar magnetic helicity from linear
polarization measurements. This technique, however, has so far only been applied to the
Sun.

2. Activity versus rotation

Stellar variability is usually characterized by the chromospheric Ca ii H+K line emis-
sion, normalized by the bolometric flux and corrected for photospheric contributions to
give R′

HK. This quantity is believed to be a good measure of the mean magnetic field
normalized by the equipartition field strength, which is defined based on the kinetic en-
ergy as Beq =

√
4πρurms, where urms is the rms value of the turbulent velocity and ρ

is the local gas density. Schrijver et al. (1989) estimated that R′

HK is related to the rms
magnetic field strength, Brms, through

R′

HK ∝ (Brms/Beq)
0.5, (2.1)

where Brms is expressed in terms of a filling factor f and the typical field strength in spots
Bspot, which can be estimated by the photospheric pressure pphot as Bspot =

√

8πpphot.
Saar & Linsky (1985) thus proposed

Brms = f Bspot. (2.2)

As stars become more active, f increases up to the point when the entire stellar surface
is covered with spots, leading to saturation as f cannot increase beyond unity (f 6 1 by
definition).
Stellar rotation with angular velocity Ω affects the dynamo process through the Coriolis

force, 2Ω × u, and its strength is characterized by the Coriolis number, Co = 2Ωτ ,
where τ is some measure of the turnover time. One often quotes the Rossby number,
Ro = Prot/τ , where Prot = 2π/Ω is the rotation period. The two parameters are then
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related to each other through Ro = 4π/Co, although Brandenburg et al. (1998) defined
the Rossby number simply as Co−1. There are also other reasons why a statement about
the Rossby number should be taken with care.
To know the actual values of Ro or Co, one has to agree on a good definition for τ . From

an observational point of view, all that matters is that τ is a monotonically decreasing
function of stellar mass, or, in practice, a monotonically increasing function of the color
B − V . But even then there can be significant uncertainties. In the relevant color range
of B−V between 0.6 and 0.75, the turnover times of Barnes & Kim (2010) are about 2.4
times longer than those of Noyes et al. (1984a). In the work of Brandenburg & Giampapa
(2018), for example, the turnover times of Noyes et al. (1984a) were adopted. For defini-
tiveness, we refer to those times as τNoy. The original calculation of τNoy was based upon
stellar mixing length models of Gilman (1980), where τNoy = ℓ/urms was based on the
local mixing length ℓ and the rms velocity urms about one scale height above the bottom
of the convection zone.
It has been known for some time that R′

HK scales with Co (Noyes et al. 1984a; Vilhu
1984) and is therefore inversely proportional to Ro, until saturation is reached for rapid
rotation. As alluded to above, saturation is often interpreted in terms of the filling fac-
tor of the magnetic field on the stellar surface approaching unity. However, none of the
stars with cycles are anywhere near saturation, so they obey 〈R′

HK〉 ∝ Co, but there
is some leveling off for non-cyclic stars with log(τNoy/Prot) > 0.3. This is shown in
Figure 1, where we have combined data from the three stars of Table 1 (see the or-
ange labels A–C for HD 17925, 131156A, and 131156B, respectively) with data from
Brandenburg et al. (2017), red characters for K dwarfs and blue ones for G and F
dwarfs, and Brandenburg & Giampapa (2018), green symbols, for the stars of the open

Figure 1. Activity versus Rossby number, showing saturation for log(τNoy/Prot) > 0.3 (see
Table 1) and enhanced activity for many stars in the range log(τNoy/Prot) < −0.3 (see also
Table 2).
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Table 1. Parameters of three active stars in the saturation range. The data are taken
from Noyes et al. (1984a) and the gyrochronological age is computed from the formula of
Mamajek & Hillenbrand (2008); see also Equation (2.3).

Label HD B–V τ [d] Prot [d] log〈R′

HK〉 Age [Gyr]

A 17925 0.87 21.3 6.6 −4.28 0.2
B 131156A 0.76 17.8 6.2 −4.38 0.3
C 131156B 1.17 24.3 11.5 −4.42 0.5

Table 2. Stars in the range of enhanced activity. HD 187013 and HD 224930 do indeed show
enhanced activity. For HD 187013, B−V is outside the range of applicability of Equation (2.3).

Label HD B–V τ [d] Prot [d] log〈R′

HK〉 Age [Gyr]

1 141004 0.60 9.1 25.8 −5.00 5.6
2 161239 0.65 12.0 29.2 −5.16 5.5
3 187013 0.47 3.1 8.0 −4.79 old
4 224930 0.67 13.1 33.0 −4.88 6.4

cluster M 67 with rotation periods estimated from gyrochronology based on an esti-
mated age of 4Gyr; see Brandenburg & Giampapa (2018) for details. The orange num-
bers 1–4 for small values of log(τ/Prot) are for other field stars discussed already in
Brandenburg & Giampapa (2018); see also Table 2. For those stars, we have computed
their ages from Equations (12)–(14) of Mamajek & Hillenbrand (2008) as

t =
{

Prot/[0.407 (B − V − 0.495)0.325]
}1.767

, (2.3)

provided B − V > 0.495; see also Brandenburg et al. (2017).
Some of the stars of M67 show increasing activity with decreasing τNoy/Prot or de-

creasing rotation rate, which suggests that the activity rises again as they slow down
further. This has been interpreted by Brandenburg & Giampapa (2018) as possible ev-
idence for anti-solar differential rotation, which is theoretically expected for very slow
rotation (Gilman 1977). The absolute differential rotation in the regime of antisolar dif-
ferential rotation is known to be stronger than that in the regime of solar-like differential
rotation (Gastine et al. 2014; Käpylä et al. 2014), and also leads to larger magnetic ac-
tivity for stars with smaller τNoy/Prot (Karak et al. 2015), thus explaining their enhanced
activity.
However, when comparing with simulations, the situation is still somewhat puzzling.

In fact, numerical simulations of convectively driven dynamo action show that there is
another transition, where the large-scale magnetic field becomes predominately nonax-
isymmetric with an m = 1 azimuthal modulation (Viviani et al. 2018). Present models
show that these two transitions happen more or less at the same value of Co, but obser-
vations shows that the two transitions happen at different values: anti-solar differential
rotation for Ro >∼ 2.0 (Brandenburg & Giampapa 2018) and nonaxisymmetric large-
scale field for Ro <∼ 0.5...1.0; see Table 5 of Viviani et al. (2018), who refer to data of
Lehtinen et al. (2016). In fact, recent work of Lehtinen et al. (2020) suggests that the
transition from nonaxisymmetric to axisymmetric magnetic fields might be accompanied
a change in the slope of the chromospheric activity versus Rossby number diagram, which
becomes particularly clear when they combine data of main sequence stars with those of
subgiants and giants. The lack of corresponding features in data from numerical simula-



Magnetic field evolution in solar-type stars 5

Table 3. Selected stars with well defined cycles using data from Brandenburg et al. (2017).

Label HD B–V τ [d] Prot [d] log〈R′

HK〉 Age [Gyr] Pcyc [yr] comp

a (blue) Sun 0.66 12.6 25.4 −4.90 4.6 11.0 6.6
c (blue) 10476 0.84 20.6 35.2 −4.91 4.9 9.6 9.3
f (blue) 26965 0.82 20.1 43.0 −4.87 7.2 10.1 10.9
m (blue) 160346 0.96 22.7 36.4 −4.79 4.4 7.0 8.5

tions is an important shortcoming of current simulations. It could be that some sort of
“renormalization” is required when comparing numerical simulations with observational
data. Indeed, simulations are long known to yield cyclic behavior only for rotation rates
that exceed the solar value by about a factor of three (Brown et al. 2011).
Not all stars necessarily slow down with age. Their Sun-like activity cycles may just

disappear, but they would still spin rapidly (Metcalfe & van Saders 2017). If their mag-
netic field topology develops predominantly small scales, as has now been demonstrated
by Metcalfe et al. (2019), magnetic breaking would become progressively inefficient. This
idea emerged when discrepancies between helioseismic ages and gyrochronological ages
became apparent (van Saders et al. 2016). Brandenburg & Giampapa (2018) speculated
that this could still be reconciled with the possibility of antisolar differential rotation
if there is a bifurcation into two possible scenarios: stars that make the transition to
antisolar differential rotation as a result of a sufficiently chaotic evolution, and others
that just change their field topology and remain rapidly spinning. Demonstrating this
with actual models would clearly be a next important step.

3. Cycle frequency versus activity

A systematic dependence of cycle frequency ωcyc (= 2π/Pcyc) on rotation rate Ω was
first found by Noyes et al. (1984b) based on the early analyses of the sample of Wilson
(1963, 1978) measured at Mount Wilson. They found ωcyc ∝ Ω1.25. It is important to
emphasize that the exponent is larger than unity, which has long been a theoretical
difficulty to explain. An early theoretical analysis by Kleeorin et al. (1983) based on the
fastest growing linear eigenmode yielded promising results with ωcyc ∝ Ω4/3, but very
different solutions were obtained for nonlinear saturated dynamos (Tobias 1998). This
was also emphasized by Brandenburg et al. (1998), who proposed that spatial nonlocality
could be strong enough so that only solutions with the lowest wavenumber would exist.
This seems to be the best explanation even today.
As already mentioned in the introduction, there are only very few stars that show well

defined cycles that are nearly as clean as that of the Sun. We have listed the properties
of these stars in Table 3, where we also list the cycle periods, Pcyc, as well as those
computed from the formula of Brandenburg et al. (2017) that assumes that the stars lie
exactly on the long-period branch. The stars cover the full range in log(τNoy/Prot) from
−0.3 to 0.2; see Figure 1. The ages of those stars are in the range from 4.4 to 4.9Gyr,
except for HD 26965, which is 7.2Gyr. This shows that all stars with well defined cycles
are old stars.
Furthermore, the analysis of many cycle data by Baliunas et al. (1995) suggested the

existence of multiple cycles. Their reality remains debated even today (Boro Saikia et al.
2016; Olspert et al. 2018). The work of Brandenburg et al. (1998) and Brandenburg et al.
(2017) suggested two nearly parallel branches of values of ωcyc/Ω versus 〈R′

HK〉. The
lower branch has cycle periods that are about six times longer than those on the regular
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(upper) branch, where also the Sun was thought to be located, if we adopted the 10 yr
period; see the discussion above. The two branches were originally called active and
inactive branches, because they were also well separated with respect to the vertical line
lg〈R′

HK〉 = −4.65. Brandenburg et al. (2017) suggested, however, that (i) the branches
are now well overlapping and that (ii) stars younger than 3Gyr might exhibit both
shorter and longer cycles simultaneously. It should be remembered that these stars tend
to be rapid rotators, whose large-scale magnetic field is expected to be nonaxisymmetric
(Viviani et al. 2018). Such a magnetic field is similar to that of a dipole lying in the
equatorial plane and with opposite polarities at longitudes that are 180◦ away from each
other.
Nonaxisymmetric magnetic fields have long been predicted based on mean-field models

with an anisotropic α effect, and a tensor αij whose diagonal components do not all have
the same value. Since the early work of Rüdiger (1978), it was known that at rapid
rotation, αij attains an additional piece proportional to ΩiΩj , so the tensor approaches
the form

αij → α0

(

δij − ΩiΩj/Ω
2
)

, (3.1)

showing that the component of α in the Ω direction vanishes. In other words, if the
Ω direction corresponds to the z direction in Cartesian coordinates, αij is proportional
to diag (αxx, αyy, 0). In general, there can also be off-diagonal components, but those
are not important for the present discussion. The main point is that with αzz = 0,
the dynamo-generated magnetic field is, in Cartesian geometry, always horizontal. In a
sphere, it then corresponds to a dipole lying in the equatorial plane; see Fig. 3(a) of
Moss & Brandenburg (1995).
A simple example of such a field is that generated by the Roberts flow I (the first of

four flows I–IV studied by Roberts 1972). This flow takes the form

u = ∇× ψẑ + kfψẑ, (3.2)

which is a prototype example for modeling magnetic fields generated by an α effect.
Here, the α tensor is indeed of the form of Equation (3.1) with αij = diag (α0, α0, 0)
and some coefficient α0. It is also a model of the magnetic field generated in the Karlsruhe
dynamo experiment, which, in turn, is an idealized model of the geodynamo (Rädler et al.
2002; Rädler & Brandenburg 2003). The Coriolis number of the geodynamo is extremely
large—much larger than that of any of the observed stars. It therefore tends to exaggerate
the effects of rotation.
Observationally, nonaxisymmetric magnetic fields have been inferred from light curve

modeling and Doppler imaging (see, e.g., Kochukhov et al. 2017). However, we also know
that stars with nonaxisymmetric magnetic field can exhibit what is known as flip-flop
phenomenon (Jetsu et al. 1994). This means that the two opposite polarities alternate
in strengths in a cyclic fashion.
It is generally expected that such variations correspond to a mixed parity solution of

the type originally investigated by Rädler et al. (1990). Subsequent work of Moss et al.
(1995) found it difficult to obtain such solutions with their more realistic simulations.
Qualitative discussions have also been offered by Elstner & Korhonen (2005).
Another related question concerns the cycle period observed for stars on the active

or long-period branch discussed above. Guerrero et al. (2019a) suggest that some sort
of magnetic shear instability might be responsible for cycle periods comparable to those
of the Sun. In this connection, there is also the question whether the Tayler instability
might play a role; see Guerrero et al. (2019b). An important question concerns the surface
appearance of magnetic fields from the two branches of short and long cycle periods,
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especially for young and rapidly rotating stars. Are they really nonaxisymmetric and
how can we understand the observed occurrence of multiple cycles, i.e., the occurrence
of multiple branches with the same stars on both of them? Modeling this convincingly
would be a major step forward in understanding the truth behind these two branches.

4. New twists to polarimetric measurements

Zeeman Doppler Imaging (ZDI) provides a powerful tool for characterizing the actual
magnetic field structure and its temporary changes. Both in solar and stellar physics,
one tends to display the results directly in terms of the full magnetic field vector. Those
results are in general subject to the 180◦ ambiguity, which is also sometimes referred
to as the π ambiguity. In the solar context, this π ambiguity might be an important
source of error in calculating the sign of the Sun’s magnetic helicity at large length
scales. It may therefore be advantageous to work directly with the Stokes parameters
(Brandenburg et al. 2019; Brandenburg 2019; Prabhu et al. 2020).
Magnetic helicity is a quantity that characterizes the handedness of the magnetic

field. Its sign would change if one looked at the star through a mirror. In this connec-
tion, it is important to realize that the Stokes Q and U parameters can directly be
expressed in terms of a quantity that characterizes the sense of handedness. This tech-
nique is routinely employed in cosmology, where one expresses Q and U in terms of
what is known as the parity even E and the parity odd B polarizations. To obtain E
and B, one expands Q and U not in terms of the ordinary spherical harmonics, but
in terms of spin-2 spherical harmonics, 2Yℓm(θ, φ); see Goldberg et al. (1967). One then
obtains E and B as the real and imaginary parts of the transformed quantity in the
form (Kamionkowski et al. 1997; Seljak & Zaldarriaga 1997; Zaldarriaga & Seljak 1997;
Durrer 2008; Kamionkowski & Kovetz 2016)

E + iB ≡ R =

Nℓ
∑

ℓ=2

ℓ
∑

m=−ℓ

R̃ℓmYℓm(θ, φ), (4.1)

where the R̃ℓm are given by

R̃ℓm =

∫

4π

(Q+ iU) 2Y
∗

ℓm(θ, φ) sin θ dθ dφ. (4.2)

In spectral space, we then define Ẽℓm = (R̃ℓm + R̃∗

ℓ,−m)/2 as the parity-even part and

B̃ℓm = (R̃ℓm − R̃∗

ℓ,−m)/2i as the parity-odd part, where the asterisk means complex
conjugation. This has recently been done for the Sun’s magnetic field using synoptic
vector magnetograms, which yield a global map. It turns out that E is indeed even
about the equator and B is odd about the equator. Therefore, Ẽℓm has contributions
mainly from even values of ℓ and B̃ℓm has mainly contributions from odd values of ℓ. As
a useful proxy, one can therefore employ the correlators

K+
ℓ = ẼℓB̃

∗

ℓ+1 and K−

ℓ = ẼℓB̃
∗

ℓ−1, (4.3)

respectively, for different values of ℓ. There have also been attempts to determine the
handedness of magnetic fields in the solar neighborhood of the interstellar medium
(Bracco et al. 2019).
To illustrate the decomposition further, we now discuss the corresponding Cartesian

decomposition. It reads (Durrer 2008)

R̃(kx, ky) = −(k̂x − ik̂y)
2P̃ (kx, ky), (4.4)
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Figure 2. Plots of eiπn/4(kx + iky)/k
3 for n = 0, 1, 2, and 3. Different values of the phase

sample E patterns (n = 0 and 2) and B patterns (n = 1 and 3) in a continuous fashion.

Figure 3. Plots of eiπn/4(kx − iky)/k
3 for n = 0, 1, 2, and 3. Unlike the case with (kx + iky),

shown in Figure 2, these patterns do not correspond to the usual E or B polarizations.

where

P̃ (kx, ky) =

∫

P (x, y)e−ik·xd2x (4.5)

is the Fourier transform of P = Q+ iU , and k = (kx, ky) x = (x, y) are two-dimensional
vectors. The return transform, here written for R, is given by

R(x, y) =

∫

R̃(kx, ky)e
ik·xd2x/(2π)2. (4.6)

To generate a two-dimensional vector field, it suffices to combine the vector b = (bx, by)
into a single complex field, B(x, y) = bx + iby. Next, to generate a periodic pattern, we
use the complex wavenumber K ≡ kx+iky and generate a pattern in Fourier space as the

simplest possible nontrivial analytic function, B̃(K) = K, along with some phase factor
eiφ with phase φ; see Figure 2. We also adopt its complex conjugate, K; see Figure 3. In
both cases we normalize by |K|3 to reduce the values further away from the origin.
We see that the different patterns of B̃(K) = eiφK correspond to qualitatively different

patterns. For n = 0 and 2, we obtain parity-even patterns (E polarizations with different
signs of E), whereas for n = 1 and 3, we obtain parity-odd patterns (B polarizations with
different signs of B). For eiφK∗, on the other hand, the patterns are quite different, and
they correspond to just the inverse of the former ones in the sense that if one multiplies
the B̃(K) of Figure 2 with those of Figure 3, one obtain just the phase of R = E + iB,
so its decomposition into real and imaginary parts returns as the E and B polarizations,
as expected from Equation (4.4).
Before closing, let us mention here one more aspect regarding polarized emission.

Normally, Faraday rotation leads to Faraday depolarization, that is, the cancellation
of polarized emission from the line-of-sight integration of the intrinsic polarized emis-
sion of different orientations. Thus, in galactic magnetic field measurements with radio
telescopes, Faraday rotation was long regarded as something “bad”. For a helical field,
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however, Faraday rotation can also bring some benefits in that it allows us to estimate
the sign of magnetic helicity and the approximate length scales of helical magnetic fields.
This property was exploited originally in the galactic context (Brandenburg & Stepanov
2014), but it can probably also be applied to coronal magnetic fields (Brandenburg et al.
2017).
Studying the helicity of coronal magnetic fields further will potentially be extremely

useful in order to assess the possibility of a sign reversal of magnetic helicity some distance
above the surface of the Sun and of other stars. Such a sign reversal was first noted in
the solar wind (Brandenburg et al. 2011), where, far away from the Sun, the typical
sign of magnetic helicity was found to be opposite to what it is at a solar surface.
This was then later also found in simulations of simple models of global dynamos with
a conducting exterior (Warnecke et al. 2011, 2012). Studying and understanding this
phenomenon further will be an important aspect of future studies.

5. Discussion

In this work, we have offered some speculation on how stars like the Sun may have
evolved from the times they were born to the time when they reached an age beyond
that of the present Sun. We expect that the Sun is shortly before changing its rota-
tion from solar-like to antisolar-like differential rotation where the equator rotates slower
than the poles; see also Karak et al. (2019) for recent mean-field modeling of such stars.
Stars with antisolar differential rotation are also potential candidates for displaying su-
perflares (Katsova et al. 2018). Unfortunately, there is currently no explicit observation
of this phenomenon, except for giants (Kővári et al. 2015, 2017). For main sequence
stars, this idea is solely based on numerical simulations. It must therefore be hoped that
future observations can give us more explicit evidence for this suggestion. Helioseismic
techniques might provide one such approach and has already been partially successful
(Benomar et al. 2018). Other techniques could involve the measurement of light curves,
as has been proposed by Reinhold & Arlt (2015).
We also discussed the need for a better understanding of the cyclic nature of slowly and

rapidly rotating stars. Observations are consistent with a magnetic dipole lying in the
equatorial plane, but there is also a long-term cyclic variation that could be compatible
with the two poles alternating in their relative strengths. But this is not yet borne out
by reasonably realistic simulation data.
A promising long-term record of simulation data has been assembled by (Käpylä et al.

2016). Those simulations display a huge variety of different behaviors, including poleward
and equatorward migratory patterns, as well as short and long cycle periods, all in one
and the same run. It would therefore be useful to produce similar data for stars with
different Rossby numbers in an attempt to better understand the various observation
signatures, including the various transitions and the proper position of the Sun in this
vast parameter space.
Finally, we turned attention to more direct inspection techniques using linear polar-

ization data. This is motivated by the possibility that standard inversion techniques to
obtain the magnetic field might be severely flawed by the fact that no safe π disambigua-
tion technique exists that tells us whether the magnetic field vector points for forward or
backward. This problem results from the fact that polarization “vectors” are not proper
vectors as they do not have neither head nor tail. In fact, just to obtain the sign of
magnetic helicity, it is, under some conditions, not even necessary to disambiguate the
polarization vector. The sign of handedness can in fact be obtained directly from the
linear polarization—without resorting to the magnetic field.
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An intermediate approach here is to first determine the magnetic field, but then to
make it ambiguous again by estimating Q+ iU from (bx + iby)

2. This sounds somewhat
odd, but it has the advantage that one does then not need to worry about wavelength
dependencies of the line spectra of Stokes Q and U . This has been discussed in detail in
the work of A. Prabhu (private communication).
A different approach to using Stokes Q and U directly is in connection with the de-

termination of magnetic helicity in solar and stellar coronae. This idea was originally
proposed for edge-on galaxies (Brandenburg & Stepanov 2014), but it can equally well if
he applied to the Sun and other stores. The work of Brandenburg et al. (2017) suggests,
however, that one may have a better chance of exploiting this technique by using millime-
ter wavelengths rather than infrared. In any case, it is necessary to measure polarized
intensity over a broad range of different wave lengths. This has now become possible
with the emergence of more refined detector technology. In the context of galactic po-
larization measurements, this technological advance is what led to the development of
Faraday tomography (Brentjens & de Bruyn 2005). This is based on only work of Burn
(1966), who recognized that the line-of-sight integral of linear polarization is the same as
a Fourier integral and can therefore be inverted, provided one covers a sufficiently broad
range of wavelengths. This was exactly the problem that was difficult to overcome in the
early days of radio astronomy, where observations could only be carried out in a small
number of frequency bands
A reliable measurement of magnetic helicity in the solar corona is greatly helped by

the possibility to use the moon as a perfect coronograph. The total eclipse during the
IAU symposium has not yet been utilized for that purpose, but this would hopefully
change in the near future.
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Discussion

Klaus Strassmeier: It is indeed true that we have found no good evidence for anti-
solar differential rotation in main sequence stars, but only in giants and subgiants. The
stars with anti-solar differential rotation were not solar-like stars when on the main
sequence, but may have been some sort of Ap stars without a sign of an outer convection
zone. Do we see differential rotation at all in Ap stars? Or, if seen in solar-like main
sequence stars, what process switches differential rotation from solar- to anti-solar?

Axel Brandenburg: The process causing this switching from solar-like to anti-solar
differential rotation is an emerging dominance of meridional circulation over the Reynolds
stress. Subgiants could also have meridional circulation in a thin outer convective layer
causing anti-solar differential rotation.

Christopher Karoff: What would happen to the topography of the magnetic field
as the stars change to anti-solar differential rotation?

Axel Brandenburg: According to the simulations, it should be the same, so the mag-
netic field would still be poleward migrating. This is because in the solar-like differential
rotation regime, it has been very difficult to reproduce solar-like equatorward migration.
Therefore, poleward migration has been obtained in both cases. In reality, however, this
might not be true, and so poleward migration might emerge only with the moment that
the star begins to display antisolar differential rotation.

Moira Jardine: One of the ways to confuse a periodogram is to have spots whose
lifetime is less than the rotation period of the star. Can you say something about any
trends in spot lifetime with accuracy?
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Axel Brandenburg: Sunspots are known to have a large range of lifetimes from half
a day to three months. Their decay times scale with their surface area, so for the Sun,
the larger and more dominant spots do have lifetimes longer than the rotation period.
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