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New tests for a singularity of ideal MHD
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Analysis using new calculations with 3 times the resolu-
tion of the earlier linked magnetic flux tubes confirms the
transition from singular to saturated growth rate reported by
Grauer and Marliani [2] for the incompressible cases is con-
firmed. However, all of the secondary tests point to a transi-
tion back to stronger growth rate at a different location at late
times. Similar problems in ideal hydrodynamics are discussed,
pointing out that initial negative results eventually led to bet-
ter initial conditions that did show evidence for a singularity
of Euler. Whether singular or near-singular growth in ideal
MHD is eventually shown, this study could have bearing on
fast magnetic reconnection, high energy particle production
and coronal heating.

The issue currently leading to conflicting conclusions
about ideal 3D, incompressible MHD is similar [1,2] to
what led to conflicting results on whether there is a sin-
gularity of the 3D incompressible Euler. With numeri-
cal simulations, it was first concluded that uniform mesh
calculations with symmetric initial conditions such as 3D
Taylor-Green were not yet singular [3]. Next, a prelimi-
nary spectral calculation [4] found weak evidence in favor
a singularity in a series of Navier-Stokes simulations at
increasing Reynolds numbers, but larger adaptive mesh
or refined mesh calculations did not support this result
[5,6]. Eventually, numerical evidence in favor of a sin-
gularity of Euler was obtained using several independent
tests applied to highly resolved, refined mesh calculations
of the evolution of two anti-parallel vortex tubes [7]. To
date, these calculations have met every analytic test for
whether there could be a singularity of Euler.

Several other calculations have also claimed numerical
evidence for a singularity of Euler [8–10]. While in all of
these cases the evidence is plausible, with the perturbed
cylindrical shear flow [10] using the BKM ‖ω‖∞ test [11],
for none has the entire battery of tests used for the anti-
parallel case been applied. We have recently repeated
one of the orthogonal cases [8] and have applied the BKM
test successfully. In all cases using the BKM test, |ω‖∞ ≈
A/(Tc − t) with A ≈ 19.

To be able to make a convincing case for the existence
of a singularity in higher dimensional partial differential
equations, great care must be taken with initial condi-
tions, demonstrating numerical convergence, and com-
parisons to all known analytic or empirical tests. On the
other hand, if no singularity is suspected, some quan-
tity that clearly saturates should be demonstrated, such
as the strain causing vorticity growth [5]. It is an even
more delicate matter to claim that someone else’s calcu-

lations or conclusions are incorrect. If it is a matter of
suspecting there is inadequate resolution, one must at-
tempt to reproduce the suspicious calculations as nearly
as possible and show where inadequate resolution begins
to corrupt the calculations and how improved resolution
changes the results.

An example of how a detailed search for numerical
errors should be conducted can be found in the exten-
sive conference proceeding [12] that appeared prior to
the publication of the major results supporting the ex-
istence of a singularity of Euler for anti-parallel vortex
tubes [7]. The primary difference with earlier work was
in the initial conditions. It was found that compact pro-
files [13] were an improvement, but only if used in con-
junction with a high wavenumber filter. Otherwise, the
initial unfiltered energy spectrum of the bent anti-parallel
vortex tubes went as k−2. Oscillations in the spectrum
at high wavenumber in unfiltered initial conditions for
linked magnetic flux tubes are shown in Figure 1, show-
ing that the initial MHD spectrum is steep enough that
eventually these oscillations are not important.

FIG. 1. Filtered and unfiltered initial and final spectrum .
The unfiltered spectrum is initialized on a 3843 mesh.

The purpose of this letter is to address the claim that
a new adaptive mesh refinement (AMR) calculation by
Grauer and Marliani [2] supercedes our uniform mesh cal-
culations [1] and that eventually there is a transition to
exponential growth. Note that this claim was made with-
out any evidence for whether their numerical method was
converged. In all of our earlier calculations, once the cal-
culations become underresolved, we also saw transitions
to exponential growth.

Not knowing exactly the initial condition used by the
new AMR calculations [2], where and how much grid re-

1

http://arXiv.org/abs/physics/0001016v1


finement was used, and the short notice we have been
given to reply has proven a challenge. Fortunately, we
were in the process of new 6483 calculations in a smaller
domain of 4.33, yielding effectively 3 times the local res-
olution of our earlier work [1] in a (2π)3 domain on a
3843 mesh. The case with an initial flux tube diameter
of d = 0.65, so that the tubes slightly overlap, appears to
be closer to their initial condition and so will be the focus
of this letter. The importance of our other initial condi-
tion, with d = 0.5, and no initial overlap of the tubes, is
that it is less influenced by an initial current sheet that
forms near the origin and is claimed to be the source of
the saturation of the nonlinear terms. This was used for
the compressible calculations.

FIG. 2. Replot of ‖J‖∞, ‖ω‖∞, and PΩJ for the new in-
compressible calculations on 4.33 domain with initial condi-
tion d = 0.65 in semi-log coordinates. All plots are from the
6483 calculation except one 3843 plot of 1/‖J‖. Exponential
and inverse linear fits are shown for t = 1.75 to 1.98. Each
works equally well for ‖J‖∞, inverse linear is better for ‖ω‖∞,
and exponential is better for PΩJ . Multiplying ‖J‖∞, ‖ω‖∞,
and PΩJ by (Tc − t) in the inset emphasizes that ‖J‖∞ and
‖ω‖∞ might be showing consistent singular behavior. The
large growth of PΩJ is discussed.

Using semi-log coordinates, Figure 2 plots the growth
of ‖ω‖∞ and ‖J‖∞ for our new high resolution incom-
pressible calculation and Figure 3 plots ‖J‖∞ for a new
compressible calculation. By taking the last time all rel-
evant quantities on the 3843 and 6483 grids were con-
verged, ‖J‖ being the worst, then by assuming that the
smallest scales are decreasing linearly towards a possible
singular time, an estimate of the last time the 6483 cal-
culation was valid was made. To test exponential versus
inverse linear growth, fits were taken between T = 1.72
and 1.87, then extrapolated to large T . The large figure

shows that either an exponential or a singular 1/(Tc − t)
form could fit the data, while the inset shows that taking
an estimated singular time of Tc = 2.15 and multiplying
by (Tc−T ) that at least ‖J‖∞ and ‖ω‖∞ have consistent
singular behavior over this time span. The strong growth
of PΩJ =

∫
dV (ωieijωj −ωidijJj − 2εijkJidjℓeℓk), which

is the production of
∫

dV (ω2 + J2), is discussed below.
The 3843 curve for 1/‖J‖ demonstrates that lack of res-
olution tends to exaggerate exponential growth. For the
compressible calculations it can be seen that there also
is an exponential regime that changes into a regime with
1/‖J‖∞ ∼ (Tc − t).

FIG. 3. Semi-logarithmic plot of ‖J‖∞ for a compressible
2403 calculation in a domain of size 4 (dotted line: filtered,
and solid line: unfiltered initial conditions) together with fits
to exponential growth and blow-up behavior, respectively.
The latter are better fits at later times.

Using the new incompressible calculations and apply-
ing the entire battery of tests, based upon Figure 2 we
would agree that for the incompressible case there is a
transition as reported [2] and signs of saturation at this
stage are shown below. Whether the transition is to ex-
ponential for all times as claimed [2], or whether there is
a still later transition to different singular behavior, will
be the focus of this letter. We will look more closely at
the structure of the current sheet we all agree exists [1,2]
for signs of saturation.

The case against a singularity in early calculations of
Euler [5,14,15] was the appearance of vortex sheets, and
through analogies with the current in 2D ideal MHD, a
suggestion that this leads to a depletion of nonlinearity.
The fluid flow most relevant to the linked flux rings is
3D Taylor-Green, due to the initial symmetries [3]. For
both TG and linked flux tubes, two sets of anti-parallel
vortex pairs form that are skewed with respect to each
other and are colliding. In TG, just after the anti-parallel
vortex tubes form there is a period of slightly singular
development. This is suppressed once the pairs collide
with each other, and then vortex sheets dominate for a
period. The vortex sheets are very thin, but go across
the domain, so fine localized resolution might not be an
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advantage at this stage. At late phases in TG, the ends
of the colliding pairs begin to interact with each other,
so that at 4 corners locally orthogonal vortices begin to
form. Due to resolution limitations, an Euler calculation
of Taylor-Green has not been continued long enough to
determine whether, during this phase, singular behavior
might develop. We would draw a similar conclusion for
all of MHD cases studied to date [2,16,17], that there
might not be enough local resolution to draw any final
conclusions even if AMR is applied.

While Taylor-Green has not been continued far enough
to rule out singularities, the final arrangement of vortex
structures led first to studies of interacting orthogonal
vortices [8], and then anti-parallel vortices (see references
in [7]). Both of these initial conditions now appear to de-
velop singular behavior. An important piece of evidence
for a singularity of Euler was that near the point of a
possible singularity, the structure could not be described
simply as a vortex sheet. Therefore, there is a precedent
to earlier work suggesting sheets, suppression of nonlin-
earity, and no singularities to later work showing fully
three-dimensional structure and singular behavior.

The initial singular growth of ‖J‖∞ and ‖ω‖∞ for
the linked flux rings, then the transition to a saturated
growth rate, might be due to the same skewed, anti-
parallel vortex pair interaction as in Taylor-Green. Even
if this is all that is happening, the strong initial vortic-
ity production and shorter dynamical timescale (order of
a few Alfvén times) than earlier magnetic reconnection
simulations with anti-parallel flux tubes [17] is a signif-
icant success of these simulations. It might be that the
vortices that have been generated are strong enough to
develop their own Euler singularity. However, the in-
teresting physics is how the magnetic field and current
interact with the vorticity. Do they suppress the ten-
dency of the vorticity to become singular, or augment
that tendency?

FIG. 4. Positions of ‖J‖∞ and ‖ω‖∞ for d = 0.65 in a 4.33

domain.

One sign for saturation of the linked flux ring inter-

action would be if the strongest current remains at the
origin in this sheet. Figure 4 plots the positions of ‖J‖∞
and ‖ω‖∞ from the origin as a function of time. Dur-
ing the period where exponential growth is claimed [2],
‖J‖∞ is at the origin, which would support the claims of
saturation. However, this situation does not persist.

By analogy to the movement of the L∞ norms of the
components of the stress tensor ui,j in Euler, we expect
that the positions of ‖J‖∞ and ‖ω‖∞ should approach
each other and an extrapolated singular point in ideal
MHD. Figure 4 supports the prediction that the positions
of ‖J‖∞ and ‖ω‖∞ should approach each other but so far
not in a convincingly linear fashion. This is addressed
next. We have similar trends for the positions of ‖J‖∞
and ‖ω‖∞ in the compressible calculations.

FIG. 5. For t = 1.97 on the inner 1623 grid points, the cur-
rent sheet is shown with arrows of

−→
J overlaid in dark. The

current through the (x/y = z) plane containing ‖J‖∞ is in
lower right. Contours of |J |4 are shown to emphasize where
‖J‖∞ is located. Dark lines are

−→
B and light lines are −→ω

that originated in the vicinity of ‖J‖∞. The vortex lines are
predominantly those in the double vortex rings that were orig-
inally generated by the Lorenz force, then became responsible
for spreading out the current sheet. Where the

−→
B lines cross

in the upper left and lower right corners are around the lo-
cations of ‖J‖∞, which due to symmetries are different views
of the same structure. Near ‖J‖∞,

−→
B nearly overlies and is

parallel to −→ω and both
−→
B and −→ω are nearly orthogonal to

their partners across the current sheet, where
−→
B and −→ω are

anti-parallel. Taken from the d = 0.65 calculation in a 4.33

domain on a 6483 mesh.

Figure 5 gives an overall view of the current, vorticity
and magnetic field around the inner current sheet. The
vortex pattern has developed out of the four initial vor-
tices, two sets of orthogonal, anti-parallel pairs that are
responsible for the initial compression and stretching of
the current sheet. By this late time, the ends of the those
vortices have begun to interact as new sets of orthogonal
vortex pairs. The lower right inset in Figure 5 is a 2D
x/(y = z) slice through this domain that goes through
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‖J‖∞ at t = 1.97 to show that while ‖J‖∞ is large at the
origin (0, 0, 0), ‖J‖∞ is larger where it is being squeezed
between the new orthogonal vortices. Along one of the
new vortices

−→
B is parallel to and overlying −→ω and on the

orthogonal partner they are anti-parallel and overlying.
The location of ‖ω‖∞ is not in the vortex lines shown,

but is on the outer edges of the current sheet. Therefore,
the exact position of ‖ω‖∞ in Figure 4 is an artifact of
the initial development and does not accurately reflect
the position of −→ω most directly involved in amplifying
‖J‖∞, which is probably why the positions of ‖J‖∞ and
‖ω‖∞ are not approaching each other faster. The con-
tinuing effects of the initial current sheet is probably also
behind the strong exponential growth of PΩJ in Figure 2,
stronger even than the the possible singular growth of
‖J‖∞ and ‖ω‖∞ in the inset. More detailed analysis in
progress should show that near the position of ‖J‖∞, the
growth of PΩJ and the position of ‖ω‖∞ are more con-
sistent with our expectations for singular growth and has
already shown that some of the components of PΩJ have
consistent singular growth.

As noted, for Euler all available calculations find
|ω‖∞ ≈ A/(Tc − t) with A ≈ 19. A represents how
much smaller the strain along ‖ω‖∞ is than ‖ω‖∞. Here,
A ≈ 4, indicating stronger growth in ‖ω‖∞ for ideal
MHD than Euler. Another Euler result was that the
asymptotic energy spectrum as the possible singularity
was approached was k−3, whereas purely sheet-like struc-
tures in vorticity should yield k−4 spectrum. k−3 indi-
cates a more complicated 3D structure than sheets. In
Figure 1 the late time spectra are again k−3.

The next the initial condition we will investigate will be
magnetic flux and vortex tubes that nearly overlay each
other and are orthogonal to their partners. Our new cal-
culations of orthogonal vortex tubes for Euler show that
they start becoming singular as filaments are pulled off
of the original tubes and these filaments become anti-
parallel, suggesting that the fundamental singular inter-
action in Euler is between anti-parallel vortices. Whether
the next step for ideal MHD is to become anti-parallel
or something else can only be determined by new cal-
culations. AMR might be useful, but great care must
be taken with the placement of the inner domains and a
large mesh will still be necessary. The complicated struc-
tures in the domain in Figure 5 are not fully contained
in this innermost 1623 mesh points and the innermost
domain should go out to the order of 3003 points. There
are examples of how to use AMR when there are strong
shears on the boundaries of sharp structures [18]. This
uncertainty of where to place the mesh is why we believe
in using uniform mesh calculations as an unbiased first
look at the problem.

These final results are hardly robust and their useful-
ness is primarily to suggest a new more localized initial
condition and to show that none of the calculations to
date is the full story. For J and ω to show singular be-
havior as long as they have has been surprising. Recall
that for Euler, velocity, vorticity and strain are all man-

ifestations of the same vector field, but for ideal MHD
there are two independent vector fields even though the
only analytic result in 3D is a condition on the combi-
nation,

∫
dV [‖ω‖∞(t) + ‖J‖∞(t)] dt → ∞ [19]. Even-

tually, one piece of evidence for singular growth must
be a demonstration of strong coupling between the cur-
rent and vorticity so that they are acting as one vector
field. It could be that our strong growth is due to the
strongly helical initial conditions and there are no singu-
larities. This would still be physically interesting since
helical conditions could be set up by footpoint motion in
the corona.

Could the magnetic and electric fields blow up too?
There are signs this might be developing around the fi-
nal position of ‖J‖∞, in which case there might exist a
mechanism for the direct acceleration of high energy par-
ticles. This has been considered on larger scale [20], but
to our knowledge a mechanism for small-scale production
of super-Dreicer electric fields has not been proposed be-
fore. A singular rise in electric fields could explain the
sharp rise times in X-ray production in solar coronal mea-
surements [21], which could be a consequence of particle
acceleration coming from reconnection. This would also
have implications for the heating of the solar corona by
nanoflares [22] and the production of cosmic rays.

This work has been supported in part by an EPSRC
visiting grant GR/M46136. NCAR is support by the
National Science Foundation.
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