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Abstract. Using the test-field method for nearly irrotational turbulence driven by spherical
expansion waves it is shown that the turbulent magnetic diffusivity increases with magnetic
Reynolds numbers. Its value levels off at several times the rms velocity of the turbulence multi-
plied by the typical radius of the expansion waves. This result is discussed in the context of the
galactic mean-field dynamo.

Keywords. turbulence, (magnetohydrodynamics:) MHD, galaxies: magnetic fields

The galactic dynamo is believed to be powered by supernova-driven turbulence. This
type of forcing does not directly produce vorticity; it can only be produced indirectly
through oblique shocks, i.e. through the baroclinic term. The aim of this work is to assess
whether vorticity is actually important for the dynamo.

The galactic magnetic field has a strong large-scale component which is generally
believed to be due to a mean-field dynamo of αΩ type that is governed by the equation

∂B

∂t
= ∇ × (U × B + E − ηµ0J), where E i = αijBj − ηijµ0Jj (0.1)

is the mean electromotive force, J = ∇ × B/µ0 is the mean current density, U is the
mean flow, and µ0 is the vacuum permeability. In order to assess its efficiency, one needs
to determine the tensors αij (the “α effect”) and ηij (turbulent magnetic diffusivity).
Note that αij is a pseudo tensor and non-vanishing diagonal components can only be
constructed from a combination of polar and axial vectors, and would therefore be van-
ishing in the absence of stratification and rotation. The ηij tensor, on the other hand,
does not require this, and it should be finite even in the completely homogeneous case.
This is the case considered in the present study, which is a necessary intermediate step.

For homogeneous flows ηij is an isotropic tensor, which we write as ηij = ηtδij , where
ηt is the turbulent magnetic diffusivity. A relevant concern in mean-field theory is that
turbulent transport coefficients such as ηt must stay finite even in the limit of large
values of the magnetic Reynolds number, defined here as Rm = urms/ηkf , where urms is
the rms velocity of the turbulence, and kf is the wavenumber corresponding to the scale
of the energy-carrying motions. Given the importance of a possible Rm dependence, it
is necessary to perform so-called direct simulations, where no subgrid scale modeling is
used. This implies that we must make compromises regarding the strength of the forcing
and consider only subsonic flows. Following earlier work of Mee & Brandenburg (2006)
we consider a flow driven by random expansion waves of radius R = 2/kf (not to be
confused with the magnetic Reynolds number Rm) and determine ηt using the test-field
method of Schrinner et al. (2005) in the implementation of Brandenburg (2005).

The evolution of internal energy and hence entropy is not relevant to our question
about turbulent transport coefficients. Therefore we consider an isothermal equation of
state where the pressure p is proportional to the density ρ with p = ρc2

s , with cs being
the isothermal speed of sound. We adopt a Gaussian potential forcing function f of the
form f (x, t) = ∇φ with φ(x, t) = N exp

{

[x − xf(t)]
2/R2

}

, where x = (x, y, z) is the
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Figure 1. Dependence of ηt on Pm = 1.

position vector, xf(t) is the random forcing position, R is the radius of the Gaussian, and
N is a normalization factor. We consider a time dependence of xf with a forcing time
δtforce ≈ (urmskf)

−1 that defines the interval during which xf remains constant. We use
the Pencil Code (http://pencil-code.googlecode.com) which is a non-conservative,
high-order, finite-difference code (sixth order in space and third order in time) for solving
the compressible hydrodynamic and hydromagnetic equations.

In Figure 1 we plot the dependence of ηt on Rm. Following earlier work of Sur et al. (2008)
we normalize ηt by ηt0 ≡ urms/3kf . Note that, for low values of Rm, ηt increases propor-
tional to Rn

m with n between 1/2 and 1. For larger value of Rm, ηt seems to levels off
at a value of about 20 times ηt0. Expressing this in terms of urms and the typical radius
R of the expansion waves, we find that ηt ≈ 4urmsR. Note also that ηt is always posi-
tive, in contrast to analytic predictions for irrotational turbulence using the first-order
smoothing approximation (Krause & Rädler 1980).

Based on these results we can conclude that nearly irrotational turbulence is at least as
efficient as vortical turbulence in diffusing mean magnetic field. Clearly, our study is still
at a preliminary stage. It is important to clarify a possible dependence of our results on
the microscopic magnetic Prandtl number and, in the nonlinear regime, on the magnetic
field strength. Next, we need to consider the case with rotation and stratification which
should then lead to an α effect, as well as turbulent pumping. This would provide an
opportunity to compare with early predictions by Ferrière (1992) for this type of flows.
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Krause, F., & Rädler, K.-H. 1980, Mean-field magnetohydrodynamics and dynamo theory (Perg-

amon Press, Oxford)
Mee, A. J., & Brandenburg, A. 2006, MNRAS, 370, 415
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