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4Observatory, Tähtitorninmäki (PO Box 14), FI-00014, University of Helsinki, Finland
email: petri.kapyla@helsinki.fi

Abstract. We summarise recent results form direct numerical simulations of both non-rotating
helically forced and rotating convection driven MHD equations in spherical wedge-shape do-
mains. In the former, using perfect-conductor boundary conditions along the latitudinal bound-
aries we observe oscillations, polarity reversals and equatorward migration of the large-scale
magnetic fields. In the latter we obtain angular velocity with cylindrical contours and large-
scale magnetic field which shows oscillations, polarity reversals but poleward migration. The
occurrence of these behviours in direct numerical simulations is clearly of interest. However
the present models as they stand are not directly applicable to the solar dynamo problem.
Nevertheless, they provide general insights into the operation of turbulent dynamos.
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1. Introduction
One of the major challenges in astrophysics is to understand the generation of large-

scale magnetic fields and their range of variations in a variety of settings, including the
Sun, stars and galaxies. An important shared feature of such variations is that they often
have characteristic time scales that are much shorter than the corresponding microscopic
diffusion times. This would require the presence of relatively rapid mechanisms both for
generation and dissipation of large-scale magnetic fields. An important candidate for the
generation of such fields is a turbulent magnetohydrodynamic dynamo.

Here we shall concentrate on three such variations, namely oscillations, migration–
especially equatorward migration as observed for example in the Sun–and the approxi-
mately periodic reversal of field polarity.

A great deal of effort has gone into the study of these types of behaviour in dynamo
models over the last few decades. These studies have employed both the mean-field (MF)
approach (see e.g. Krause & Rädler 1980; Moffatt 1978; Ossendrijver 2003) as well as
direct numerical simulations (DNS) (see e.g. Brandenburg & Subramanian 2005, and ref-
erences therein). In the simplest MF approach the effects of turbulence are parametrised
in terms of the turbulent magnetic diffusion and an α effect.

MF models can be classified according to the relative magnitudes of α effect and differ-
ential rotation |∇Ω|, where Ω is the angular velocity in the convection zone. In general the
α effect contributes to the generation of both poloidal and toroidal field components (the
α2Ω dynamo). Often the αΩ approximation (appropriate when the differential rotation
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is relatively large) and α2 models (which are appropriate when the differential rotation is
negligible) are used. It is well known that αΩ models possess oscillating spatiotemporal
(wave–like) solutions (Parker 1955; Krause & Rädler 1980). These oscillations propagate
equatorward when the product α∂Ω

∂r is negative in the northern hemisphere (Parker 1955;
Yoshimura 1975) (see also Choudhuri 1998, for a recent account).

Mean field models have been phenomenologically successful in accounting for a number
of features seen in the Sun and stars (see e.g. Ossendrijver 2003; Charbonneau 2005). For
example, nonlinear α2Ω MF models which include the back reaction of Lorentz force on
the azimuthal flow have been shown to be capable of producing many important features
of the spatiotemporal variations observed in the Sun, including the torsional oscillations
that penetrate the convection zone, as indicated by recent helioseismological inversions
(see e.g. Covas et al. 2000a,b, 2004). Similar MF models have also been successfully
used in order to account for a number of observed features in late-type rapidly rotating
stars (Covas et al. 2005). So far, however, these successes have relied on rather ad hoc
assumptions. For example to obtain the correct equatorward migration in the case of the
Sun, the sign of α needs to be taken to be negative in the northern hemisphere. This
follows from Parker’s result (Parker 1955) linking the direction of migration with the
sign of α∂Ω/∂r, and conflicts with contemporary results for the sign of α in the bulk of
the convection zone in each hemisphere (Yoshimura 1975).

Other ways of producing the correct sense of migration in the Sun includes the incor-
poration of a meridional circulation (see e.g. Choudhuri et al. 1995) by assuming that
the Ω effect operates at the bottom of the convection zone in order to generate a toroidal
field, which in turn gives rise to a poloidal field by an α effect operating near the surface,
and these are coupled by a meridional circulation which is assumed to have a poleward
direction near the solar surface and an equatorward direction at the base of the convec-
tion zone. This circulation, which has not been directly observed in helioseismological
inversions except near the surface, would need to be strong enough to make the equa-
torward migration possible. It is fair to say that despite their successes, all MF models
require a number of ad hoc assumptions and choice of values of solar/stellar parameters
that are only known very approximately at present (see e.g. Jouve et al. 2008; Chatterjee
et al. 2004) for a list of such models.

The above shortcomings (as well as other fundamental questions such as the debate
regarding the ‘catastrophic quenching’ of nonlinear dynamos) and the need to test vari-
ous assumptions made in MF models, have in parallel motivated the study of turbulent
dynamos using direct numerical simulations. Despite much effort and a number of im-
portant successes, however, direct numerical simulations of the full MHD equations in
spherical shells have so far had limited success in generating large-scale magnetic fields
on dynamical time scales (Gilman 1983; Glatzmaier 1985; Brown et al. 2009).

In the following we summarise some of our recent results, concerning oscillations, mi-
grations of large-scale magnetic fields and polarity reversals, obtained using DNS in
(i) helically forced MHD (Mitra et al. 2009) and (ii) convection-driven dynamos in a
rotating frame (Käpylä et al. 2009).

2. Oscillation and migration of large-scale fields in DNS
In contrast to the MF studies, direct numerical simulations of turbulent MHD equa-

tions have seldom shown large-scale oscillations and migration. Two noteworthy excep-
tions are Brandenburg et al. (2001) and Gilman (1983). The former is a DNS with forced
turbulence in Cartesian domains with imposed shear which gave rise to dynamo waves on
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time scales determined by the turbulent magnetic diffusivity (as opposed to the molecu-
lar diffusivity, which would imply that the oscillations were on dissipative time scales).
The latter is a convection simulation in a spherical wedge-shaped domain, which showed
poleward migration of magnetic activity–as opposed to equatorward migration seen in
the Sun–and cylindrical contours of mean angular velocity–as opposed to cone-shaped
contours in most of the solar convection zone. In the following we briefly review two
recent migratory oscillating solutions obtained by DNS of the MHD equations (see Mitra
et al. 2009; Käpylä et al. 2009, for details). In these studies we perform simulations in
a spherical wedge domain as a compromise between requirements of high resolution and
globality. We choose our domain to be distributed symmetrically about the equator.

2.1. Forced DNS of the MHD equations
We first describe the results of direct numerical simulations of the MHD equations with
external forcing in a spherical wedge-shaped domain. The external force is random and
white-in-time and injects negative helicity in the northern hemisphere and positive in
the southern. We do not explicitly include convection, stratification and rotation, which
are known to be present in solar and stellar convection zones, but the helical forcing
used here does implicitly model these features (Krause & Rädler 1980). We use perfect-
conductor boundary conditions (i.e. set the normal component of the magnetic field to
be zero on the boundaries) on all boundaries except the boundary with constant azimuth
where we impose periodic boundary conditions. The large-scale magnetic field is defined
by averaging over the azimuthal and radial directions. Figure 1a depicts a ‘butterfly
diagram’, showing oscillation, polarity reversals and equatorward migration of large-scale
magnetic field.

Further investigations have shown that these results are well reproduced by a MF
model of an α2 dynamo where the sign of α is positive in the northern hemisphere and
negative in the southern (see Mitra et al. 2009, for details). The characteristic time
scales of oscillations are well approximated by Tcyc = 1/ηTk2

θ with ηT = (1/3)urms/kf ,
kf = Wrms/Urms, W = ∇ × U, kθ = 2π/Lθ , Lθ = R�Δθ where Δθ is the range of
colatitude (θ) in our wedge-shaped domain and R� = 1 in our simulations. Furthermore
our MF studies have shown that the ratio between the maximum amplitude of the large-
scale magnetic field and the equipartition magnetic field (Beq) decreases as a function of
the magnetic Reynolds number, ReM = urms/ηkf as Re−0.4

M . This is related to the well
known phenomenon of catastrophic quenching. This catastrophic quenching is expected
to be alleviated by an exchange of magnetic helicity across the equator. Such a helicity
flux, which is thought to be mediated by diffusion, has not yet been verified in DNS.
Brandenburg et al. (2009) recently incorporated such a flux in a MF model and have
shown that at high enough magnetic Reynolds numbers the diffusive flux is able to
alleviate the quenching. We refer the reader to Mitra et al. (2009) for details of the
model, methods of simulations and elaboration of the results reported above.

Finally we note that oscillations in one or two dimensional models of α2 dynamos,
where the sign of α changes within the domain are well known literature (Baryshnikova
& Shukurov 1987; Rädler & Bräeuer 1987; Stefani & Gerbeth 2005; Rüdiger & Hollerbach
2004), but migrational properties have not been investigated earlier.

2.2. Rotating, convective DNS in spherical wedge-shaped domain
Next we summarise results obtained using simulations of convective dynamos in spheri-
cal wedge-shaped domains, that include rotation explicitly. We consider a computational
setup where the initial stratification in the region below r = 0.7R� is convectively sta-
ble, whereas the region above is unstable. The convection is driven self-consistently by
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a heat flux imposed at the lower boundary. The radii of the bottom of the domain,
bottom of the convectively unstable layer, and the top of the domain are given by
(r1 , r2 , r3) = (0.6, 0.7, 1)R�. We impose stress-free boundary conditions for the veloc-
ity and ‘open’ vertical field boundary condition (i.e. set the tangential component of
magnetic field to zero at the boundary) at r = R�. Starting from an uniformly rotat-
ing initial state, rotational shear is generated, and we again obtain large-scale magnetic
fields which show oscillations, polarity reversals and migration, but the migration in this
case is poleward, see Fig. 1b. This behaviour can be reproduced by an αΩ dynamo. An
accurate measurement of α is difficult in the present case because the test-field method
has yet to be applied to this problem. However we use the approximation α ∝ −ω · u,
where ω = W −−W, u = U −−U, W = ∇×U and an overbar denotes averaging over
the azimuthal direction. A contour plot of the product αdΩ/dr is given in Fig. 1c. This
shows that in clear agreement with the result of Parker (1955), that the sign of αdΩ/dr
determines the direction of migration. The details of the model, methods of simulation
and elaboration of the results given in this Section can be found in (Käpylä et al. 2009).

Figure 1. (a) Butterfly diagram for the toroidal field from the simulations of helically forced
MHD equations in spherical wedge-shaped domain. (b) Butterfly diagram of the toroidal field
from the simulations of rotating, convective MHD equations in spherical wedge-shaped domain.
(c) A contour plot of a the product αG in the meridional plane from our convective simulations.

3. Discussion
Motivated by the observations of solar magnetic fields, we have considered oscillations,

polarity reversals and migration of large-scale magnetic fields using direct numerical
simulations We have summarised our recent results obtained using DNS of both non-
rotating helically forced and rotating convection driven MHD equations in spherical
wedge-shaped domains.
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In both cases we find large-scale magnetic fields are generated. In the non-rotating
helically forced models, using perfect-conductor boundary conditions along the latitudi-
nal boundaries, we find the field shows oscillations, polarity reversals and equatorward
migration. In the case where convection and rotation are present we also find oscillations
and polarity reversals, but the migration is in this case poleward.

Using analogous mean field models we have found that these results are well described
by α2 and αΩ mean field models respectively.

Clearly the occurrence of these features in direct numerical simulations is of interest.
Nevertheless, the present models as they stand are not directly applicable to the so-
lar dynamo problem, even though they provide insight into the operations of turbulent
dynamos.
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