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Abstract Recent progress in astrophysical hydromagnetic turbulence is being reviewed.
The physical ideas behind the now widely accepted Goldreich–Sridhar model and its ex-
tension to compressible magnetohydrodynamic turbulence are introduced. Implications for
cosmic ray diffusion and acceleration is being discussed. Dynamo-generated magnetic fields
with and without helicity are contrasted against each other. Certain turbulent transport pro-
cesses are being modified and often suppressed by anisotropy and inhomogeneities of the
turbulence, while others are being produced by such properties, which can lead to new large-
scale instabilities of the turbulent medium. Applications of various such processes to astro-
physical systems are being considered.
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1 Introduction

Hydromagnetic or magnetohydrodynamic (MHD) turbulence plays an important role in
many astrophysical settings. In a recent review by Brandenburg and Nordlund (2011b), prop-
erties of turbulence were discussed for the solar wind, stellar convection zones, the interstel-
lar medium, accretion discs, galaxy clusters, and the early Universe. In an earlier review by
Brandenburg and Subramanian (2005), a detailed account of dynamo theory with empha-
sis on helical dynamos was given. In that review, and also in Brandenburg et al. (2012c),

A. Brandenburg (B)
Nordita, KTH Royal Institute of Technology, Stockholm University, Roslagstullsbacken 23, 10691
Stockholm, Sweden
e-mail: brandenb@nordita.org

A. Brandenburg
Department of Astronomy, Stockholm University, 10691 Stockholm, Sweden

A. Lazarian
Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter St., Madison, WI 53706,
USA
e-mail: lazarian@astro.wisc.edu

87 Reprinted from the journal

mailto:brandenb@nordita.org
mailto:lazarian@astro.wisc.edu


A. Brandenburg, A. Lazarian

the small-scale dynamo was discussed in detail. Applications to galactic dynamos were dis-
cussed by Beck et al. (1996). Aspects of magnetic reconnection and particle acceleration in
turbulent flows have recently been reviewed by Lazarian et al. (2012b). In the present review
we begin with turbulence in the interstellar medium, discuss how turbulence is affected by
magnetic fields and compressibility, address then applications to cosmic ray scattering and
turn then to dynamo-generated magnetic fields as well as to anisotropic and inhomogeneous
flows that are affected by stratification and rotation.

2 Turbulence in the Interstellar Medium

The ISM is turbulent on scales ranging from AUs to kpc (Armstrong et al. 1995; Elmegreen
and Scalo 2004), with an embedded magnetic field that influences almost all of its prop-
erties. MHD turbulence is accepted to be of key importance for fundamental astrophysical
processes, e.g. star formation, propagation and acceleration of cosmic rays. It is therefore not
surprising that attempts to obtain spectra of interstellar turbulence have been numerous since
the 1950s (Münch 1958). However, various directions of research achieved varying degrees
of success. For instance, studies of turbulence statistics of ionized media accompanied by
theoretical advancements in understanding scattering and scintillation of radio waves in ion-
ized media (Goodman and Narayan 1985) were rather successful (cf. Spangler and Gwinn
1990). This work provided information about the statistics of the electron density on scales
108–1015 cm (Armstrong et al. 1995). These measurements have been recently combined
with data from the Wisconsin Hα Mapper, which also measures electron density fluctuation,
but on larger scales. The resulting extended spectrum presented in Chepurnov and Lazarian
(2010) shows that the Kolmogorov −5/3 spectrum of electron density fluctuations extends
to several more decades to larger scales; see Fig. 1.

In spite of their success, these sort of measurements provide only density statistics, which
is a rather indirect measure of turbulence. Velocity statistics is a much more direct turbu-
lence measure. Although it is clear that Doppler broadened lines are affected by turbulence,
recovering the velocity statistics is extremely challenging without adequate theoretical in-
sight. Indeed, both the z component of velocity and density contribute to fluctuations of the
energy density ρs(X,Vz) in Position-Position-Velocity (PPV) space.

Traditionally, information on turbulence spectra is obtained using the measure of Doppler
shifts termed Velocity Centroids, ∼ ∫

VzρsdVz, where the integration is taking place over the
range of the velocities relevant to the object under study. In this situation it is easy to see
that the Velocity Centroids are also proportional to

∫
Vzρds, where ρ is the actual three-

dimensional density and the integration is performed along the line of sight (Lazarian and
Esquivel 2003).

Usually the Velocity Centroids are normalized by the intensity integrated over the line
of sight (Stenholm 1990), and the work of Lazarian and Esquivel (2005) showed that this
normalization does not change the statistical properties of the measure. However, the nu-
merical and analytical analysis in Lazarian and Esquivel (2005) and Esquivel et al. (2007)
showed that the Velocity Centroids fail for studying supersonic turbulence. This provides
bad news for the studies of velocity statistics in molecular clouds and the diffuse cold ISM
(Dickman and Kleiner 1985; Miesch et al. 1999; Miville-Deschênes et al. 2003) The studies
for HII regions (O’dell and Castaneda 1987) are less strongly affected, as in most cases the
turbulence there is subsonic.

There have been attempts to analyze PPV data cubes in other ways. For instance, Cro-
visier and Dickey (1983), Green (1993), and Stanimirovic et al. (1999) analyzed power
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Fig. 1 Turbulence in the
interstellar gas obtained from
electron density fluctuations. The
“Big Power Law in the Sky” of
Armstrong et al. (1995) is here
extended using data from the
Wisconsin Hα Mapper
(WHAM). The slope corresponds
to that of Kolmogorov
turbulence. Adapted from
Chepurnov and Lazarian (2010)

spectra of velocity channels of HI data. The spatial spectrum of fluctuations of these velocity
slices of PPV revealed power-law dependences, but the physical meaning of these depen-
dences remained unclear. (Indeed, some of the authors erroneously identified the spectral
index of intensity perturbations in slices of PPV data with the spectral index of the under-
lying turbulence spectrum. The nature of the variations of the spectral index in different
studies was unclear.)

The analytical study of the statistical properties of the PPV energy density ρs has been
initiated by Lazarian and Pogosyan (2000). There the observed statistics of ρs was related
to the underlying 3D spectra of velocity and density in the astrophysical turbulent volume.
Initially, the volume was considered transparent, but later the treatment was generalized to
volumes with self-absorption and to studies of turbulence using absorption lines (Lazar-
ian and Pogosyan 2004, 2006, 2008). The resulting theory of mapping of fluctuations in
Position-Position-Position space with turbulent velocity into PPV space was successfully
tested in a number of studies (Padoan et al. 2006, 2009; Chepurnov and Lazarian 2009;
Burkhart et al. 2013). This theory lays the foundation for two separate techniques, Velocity
Channel Analysis (VCA) and Velocity Correlation Spectrum (VCS) which were applied by
a number of groups to different data sets including HI, C O13, 18C O; see more in Lazarian
(2009). The results can be briefly summarized as follows: the tested supersonic media ex-
hibit a velocity spectrum that is steeper than the spectrum of Kolmogorov turbulence and
a density spectrum that is shallower. This result is, in fact, expected for supersonic MHD
turbulence (Beresnyak et al. 2005; Kowal et al. 2007).
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We emphasize that VCA and VCS are two related techniques based on solid analytical
foundations. The theory of the VCA in Lazarian and Pogosyan (2000, 2004) and VCS in
Lazarian and Pogosyan (2006, 2008) describe the non-linear mapping provided by veloc-
ity fluctuations from the turbulent volume to the Position-Position-Velocity (PPV) space.
Therefore the technique provides the true spectrum of velocity and density fluctuations, ir-
respectively of the sources and sinks of turbulence. The energy injection associated with
localized injection of turbulence, e.g. with the outflows should be detected as the changes in
the spectral slope corresponding to the scales of energy injection.

3 The Picture of Alfvénic Turbulence

The picture of MHD turbulence has been developing over decades and pioneering works
by Iroshnikov (1963) and Kraichnan (1965) are definitely to be mentioned. The Iroshnikov-
Kraichnan model was the extension of Kolmogorov’s isotropic turbulence model and it is
the assumption of anisotropy that was a deficiency of this model. The notion of anisotropic
turbulence was established later in important works, notably, by Shebalin et al. (1983) for
incompressible turbulence and Higdon (1984) for the compressible turbulence. These papers
provided the ground for the further advance.

Quantitative insight into MHD turbulence has been obtained in the seminal paper by
Goldreich and Sridhar (1995), hereafter referred to as GS95. This paper quantified the prop-
erties of the anisotropic cascade and provided foundations for further theoretical develop-
ment in the field. We may mention parenthetically that the original paper could not provide
the perfect picture of MHD turbulence theory and a number of key aspects were clarified
and corrected in subsequent studies. For instance, the original claim in GS95 and Goldre-
ich and Sridhar (1997) about the role of 3-wave interactions were later corrected, and for
weak MHD turbulence the point of view expressed in Ng and Bhattacharjee (1996) was
adopted. Similarly, the notion of a local system of reference that is essential for under-
standing critical balance, which is a corner stone of our modern understanding of GS95
theory, was missing in the original paper. In fact, the closure relations that are used in
GS95 to justify the model are written in the system of reference related to the mean field
and therefore cannot be used as a proof. The importance of a local system of reference
was understood only in subsequent theoretical and numerical studies by Lazarian and Vish-
niac (1999), henceforth LV99, Cho and Vishniac (2000), as well as Maron and Goldreich
(2001).

3.1 Incompressible MHD Turbulence

While having a long history of ideas, the theory of MHD turbulence has become testable
recently with the advent of numerical simulations (Biskamp 2003), which confirmed (see
Cho and Lazarian 2005, and references therein) the prediction of magnetized Alfvénic
eddies being elongated in the direction of the magnetic field (Shebalin et al. 1983;
Higdon 1984) and provided results consistent with quantitative relations for the degree of
eddy elongation obtained by GS95.

MHD turbulence theory is in many respects similar to the famous Kolmogorov (1941)
theory of turbulence. In the latter theory, energy is injected at large scales, creating large
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eddies which do not dissipate energy through viscosity1 but transfer energy to smaller ed-
dies. The process continues until the cascade reaches the eddies that are small enough to
dissipate energy over an eddy turnover time. In the absence of compressibility the hydrody-
namic cascade of energy is ∼ v2

l /τcasc,l = const, where vl is the velocity at the scale l and
the cascading time for the eddies of size l is τcasc,l ≈ l/vl . From this the well known relation
vl ∼ l1/3 follows.

In MHD turbulence, in the presence of dynamically important magnetic fields, eddies be-
come anisotropic. At the same time, one can imagine eddies mixing magnetic field lines per-
pendicular to the direction of the magnetic field. For these eddies, the original Kolmogorov
treatment is applicable resulting in perpendicular motions scaling as vl ∼ l

1/3
⊥ , where l⊥

denotes eddy scales measured perpendicular to the magnetic field. These mixing motions
induce Alfvénic perturbations that determine the parallel size of the magnetized eddy. A cor-
nerstone of the GS95 theory is critical balance, i.e. the equality of the eddy turnover time
l⊥/vl and the period of the corresponding Alfvén waves ∼ l‖/VA, where l‖ is the parallel
eddy scale and VA is the Alfvén velocity. Making use of the earlier expression for vl , one
can easily obtain l‖ ∼ l

2/3
⊥ , which reflects the tendency of eddies to become more and more

elongated as energy cascades to smaller scales.
It is important to stress that the scales l⊥ and l‖ are measured with respect to a system of

reference related to the direction of the local magnetic field “seen” by the eddy. This notion
was not present in the original formulation of the GS95 theory and was added to it later by
Lazarian and Vishniac (1999), henceforth LV99, and Cho and Vishniac (2000). The local
system of reference was also used in numerical studies in Cho and Vishniac (2000), Maron
and Goldreich (2001), and Cho et al. (2002) that tested GS95 theory. In terms of mixing
motions, it is rather obvious that the free Kolmogorov-type mixing is possible only with
respect to the local magnetic field of the eddy rather than the mean magnetic field of the
flow.

While the arguments above are far from being rigorous, they correctly reproduce the basic
scalings of magnetized turbulence when the velocity is equal to VA at the injection scale L.
The most serious argument against this picture is the ability of eddies to perform mixing
motions perpendicular to the magnetic field. This problem was addressed in LV99, where
the self-consistency of the GS95 theory was related to fast reconnection of the magnetic
field in turbulent fluids. A more rigorous discussion of a self-consistent treatment of MHD
turbulence and magnetic reconnection is presented in Eyink et al. (2011).

The GS95 theory is formulated assuming isotropic injection of energy at scale L and the
injection velocity equal to the Alfvén velocity in the fluid VA, i.e. the Alfvén Mach number
MA ≡ (VL/VA) = 1, where VL is the injection velocity. Thus, it provides the description of
trans-Alfvénic turbulence. This model was later extended for both sub-Alfvénic, i.e. MA <

1, and super-Alfvénic, i.e. MA > 1, cases (see LV99 and Lazarian 2006, respectively; see
also Table 1). Indeed, if MA > 1, then, instead of the driving scale L one can use the scale

lA = LM−3
A , (1)

which is the scale at which the turbulent velocity equals VA. For MA � 1, magnetic fields
are not dynamically important at the largest scales and the turbulence at those scales follows
the isotropic Kolmogorov cascade vl ∼ l1/3 over the range of scales [L, lA]. At the same

1The Reynolds number Re ≡ LfV/ν = (V/Lf)/(ν/L2
f ) characterizes the ratio of the eddy turnover rate

τ−1
eddy = V/Lf and the viscous dissipation rate τ−1

dis = η/L2
f . Therefore large values of Re correspond to negli-

gible viscous dissipation of large eddies over the cascading time τcasc which is equal to τeddy in Kolmogorov
turbulence.
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Table 1 Regimes and ranges of MHD turbulence

Type of MHD turbulence Injection velocity Range of scales Motion type Ways of study

Weak VL < VA [L, ltrans] Wave-like Analytical

Strong sub-Alfvénic VL < VA [ltrans, lmin] Eddy-like Numerical

Strong super-Alfvénic VL > VA [lA, lmin] Eddy-like Numerical

L and lmin are injection and dissipation scales

ltrans and lA are given by (2) and (1), respectively

time, if MA < 1, the turbulence obeys GS95 scaling (also called “strong” MHD turbulence)
not from the scale L, but from a smaller scale

ltrans = LM2
A, (2)

while in the range [L, ltrans] the turbulence is “weak”.
The properties of weak and strong turbulence are rather different. Weak turbulence is

wave-like turbulence with wave packets undergoing many collisions before transferring en-
ergy to small scales. Unlike strong turbulence, weak turbulence allows an exact analyti-
cal treatment (Galtier et al. 2000). By contrast, in strong turbulence intensive interactions
between wave packets prevent the use of a perturbative approach. Numerical experiments
have supported the GS95 ideas both for incompressible MHD turbulence (Cho and Vishniac
2000; Maron and Goldreich 2001; Cho et al. 2002; Beresnyak and Lazarian 2010, 2011)
and for the Alfvénic component of compressible MHD turbulence (Cho and Lazarian 2002,
2003; Kowal and Lazarian 2010). [The compressible MHD turbulence simulations of Beres-
nyak et al. (2005) and Kowal et al. (2007) demonstrated that the density spectrum becomes
more shallow and isotropic as the Mach number increases.]

While there are ongoing debates whether the original GS95 theory must be modified
to better describe MHD turbulence, we believe that we do not have compelling evidence
that GS95 is not adequate. The most popular one is the modification of the GS95 model by
Boldyrev (2005, 2006), who, motivated by the spectral index of −3/2 observed in simula-
tions of Maron and Goldreich (2001), proposed that the difference of the GS95 predictions
and the numerical experiments arises from the dynamical alignment of velocity and mag-
netic fields. However, Beresnyak and Lazarian (2009, 2010) showed that present day numer-
ical simulations may not have enough resolution to reveal the actual inertial range of MHD
turbulence and the existing numerical simulations may be dominated by the bottleneck ef-
fect that distorts the actual slope of turbulence. Incidentally, the bottleneck effect already
played a trick with the researchers when supersonic simulations suggested a −5/3 spectrum
of supersonic turbulence (Boldyrev et al. 2002) which later was proven to be a bottleneck
effect of shock wave turbulence with the expected −2 spectrum (Kritsuk et al. 2007). Such a
spectrum has been confirmed with several different codes (Kritsuk et al. 2011). In addition,
the −5/3 spectral index agrees well with the resolution studies by Beresnyak (2011, 2012).
Thus, within the present review we will refer to GS95 when we shall talk about strong MHD
turbulence.

The issue of the spectral slope is of both theoretical and practical importance. Although
the differences between spectral slopes of 5/3 and 3/2 or even 2 do not look large, they cor-
respond to very different physical pictures. The spectrum of 3/2 corresponds to interactions
decreasing with the scale of turbulent motions, 5/3 corresponds to a strongly Kolmogorov-
type picture of eddies, while 2 corresponds to a spectrum of shocks. The anisotropies
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predicted in these different pictures of turbulence are also different. They are in fact ex-
tremely important for cosmic ray propagation; see Yan and Lazarian (2004) and references
therein. We also note that even a small difference in the slope can result in substantial dif-
ferences in the energy at small scales due to the enormous extent of the astrophysical tur-
bulent cascade. Finally, as GS95 has now the status of the accepted model of turbulence,
it is essential to test all the predictions of this theory, including the predicted 5/3 spectral
slope.

Usually, one considers balanced turbulence, i.e. the situation when the flows of energy in
opposite directions are equal. In a more general case the turbulence is imbalanced, i.e. the
flow of energy from one side dominates the flow from the opposite direction. The existing
models of imbalanced turbulence are hotly debated at the moment and their predictions are
being tested (Lithwick et al. 2007; Beresnyak and Lazarian 2008; Perez and Boldyrev 2009).
Here we will just mention that in the case of astrophysical turbulence, compressibility may
decrease the degree of imbalance, making the simple GS95 model applicable in spite of the
presence of sources and sinks of energy.

3.2 Compressible MHD Turbulence

The statistical decomposition of 3D MHD turbulence into fundamental modes, i.e.
Alfvén, slow and fast, was performed in Fourier space by Cho and Lazarian (2002,
2003), henceforth CL02 and CL03, respectively, and later using wavelets by Kowal
and Lazarian (2010). The idea of the decomposition is presented in Fig. 2. The proce-
dure was tested with the decomposition in real space in special cases when such a de-
composition was possible, for instance, in the case of slow modes in a low plasma-β
medium.

The most important result of this decomposition was establishing the relevance of
Alfvénic turbulence scaling to a compressible medium. As we see in Fig. 3, the anisotropy
of the Alfvénic component corresponds to the GS95 predictions. In general, the study of
trans-Alfvénic turbulence with different Mach numbers in CL02 and CL03 revealed that
GS95 scaling is valid for Alfvén modes:

Alfvén: EA(k) ∝ k−5/3, k‖ ∝ k
2/3
⊥ .

Slow modes also follow the GS95 model for both high β and mildly supersonic low β cases:

Slow: Es(k) ∝ k−5/3, k‖ ∝ k
2/3
⊥ .

For the highly supersonic low β case, the kinetic energy spectrum of slow modes tends to
be steeper, which may be related to the formation of shocks.

Fig. 2 Graphical representation
of the mode separation method.
We separate the Alfvén, slow and
fast modes by the projection of
the velocity Fourier component
vk on the bases ξ̂A, ξ̂s and ξ̂f,
respectively. Adapted from CL03
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Fig. 3 Highly supersonic low β (β ∼ 0.02 and Ms ∼7). VA ≡ B0/
√

4πρ = 1. a (sound speed) = 0.1.
δV ∼ 0.7. Alfvén modes follow the GS95 scalings. Slow modes follow the GS95 anisotropy. Fast modes are
isotropic

Fast mode spectra are compatible with acoustic turbulence scaling relations:

Fast: Ef(k) ∝ k−3/2, isotropic spectrum.

The coupling between fast and Alfvén modes was shown to be weak and therefore the
cascades of fast and Alfvén modes weakly affect each other (CL02). At the same time,
Alfvén modes cascade to slow modes, which are otherwise passive in the cascade. This cor-
responds to the theoretical expectations discussed in GS95, Lithwick and Goldreich (2003),
and CL03.

In terms of energy transfer from Alfvénic to compressible modes CL02 suggested the
theory-motivated expression

δEcomp

δEAlf
≈ δVAVA

V 2
A + c2

s

, (3)

where δEcomp and δEAlf are the energies of compressible and Alfvén modes, respectively.
Equation (3) suggests that the drain of energy from Alfvénic cascade is marginal when the
amplitudes of perturbations are weak, i.e. (δV )A 
 VA. Results of numerical calculations
in CL02 are consistent with the expression above. The marginal transfer of energy between
Alfvénic and compressible motions justifies considering the Alfvénic and fast cascades sep-
arately.

Higher resolution simulations in Kowal and Lazarian (2010) used a different wavelet-
based decomposition technique. The results agree well with those in CL03. The advantage
of the wavelet decomposition is the ability to decrease the error for the case of strongly
perturbed fields.
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4 Implications of MHD Turbulence for Diffusion Processes

4.1 Diffusion of Heat by MHD Turbulence

Transport processes are known to be affected by turbulence. A big issue related to MHD
turbulence is the nature of turbulent eddies. If magnetic field lines are perfectly frozen into
fluid, then one cannot talk about mixing motions at the scale of dynamically important mag-
netic fields. On the contrary, if magnetic reconnection is fast enough to resolve the knots
of intersecting magnetic fluxes that naturally arise in GS95 turbulence, mixing motions per-
pendicular to the local magnetic field should be similar to those in hydrodynamical fluids.
This problem was addressed in LV99, where it was shown that magnetic reconnection in-
duced by turbulence makes the GS95 picture of a perpendicular cascade self-consistent.
A more recent study by Eyink et al. (2011) revealed the deep connection between turbu-
lence and magnetic reconnection. This provides a theoretical justification for discussing
hydrodynamic-type turbulent advection of heat in the presence of dynamically important
magnetic fields.2

In addition, in hot plasmas, the motion of electrons along wandering magnetic fields is
important. The statistics of magnetic field wandering was described in LV99 for different
regimes of turbulence and provides the necessary foundations for a quantitative description
of the heat transfer process. This is the process that we start our discussion with.

Let us initially disregard the dynamics of fluid motions on diffusion, i.e. we consider dif-
fusion induced by particles moving along wandering turbulent magnetic field lines, whose
motions we disregard for the sake of simplicity. Magnetized turbulence with a dynamically
important magnetic field is anisotropic with eddies elongated along the direction of local
magnetic field (henceforth denoted by ‖), i.e. l⊥ < l‖, where ⊥ denotes the direction per-
pendicular to the local magnetic field. Consider isotropic injection of energy at the outer
scale L and dissipation at the scale l⊥,min. This scale corresponds to the minimal dimension
of the turbulent eddies.

Initially, the problem of heat transport by electrons moving in turbulent magnetic fields
was considered by Narayan and Medvedev (2001) for trans-Alfvénic turbulence. The treat-
ment for both sub-Alfvénic and super-Alfvénic turbulence was presented in Lazarian (2006);
henceforth L06.

It is easy to notice that the separations of magnetic field lines at scales below the damping
scale of turbulence, i.e. for r0 < l⊥,min, are mostly influenced by the motions at the smallest
scale. This scale l⊥,min results in Lyapunov-type growth ∼ r0 exp(l/ l‖,min). This growth is
similar to that obtained in earlier models with a single scale of turbulent motions; see Rech-
ester and Rosenbluth (1978), henceforth RR78, and Chandran and Cowley (1998). Indeed,
as the largest shear that causes field line divergence is due to the marginally damped motions
at the scale around l⊥,min the effect of larger eddies can be neglected and we are dealing with
the case of single-scale “turbulence” described by RR78.

The electron Larmor radius presents the minimal perpendicular scale of localization,
while the other relevant scale is the Ohmic diffusion scale corresponding to the scale of
damped motions. Thus, conservatively it is natural to associate r0 with the size of the cloud

2The arguments in Eyink et al. (2011) should be distinguished from the arguments based on attempted renor-
malization of the effective magnetic Reynolds numbers in Blackman and Field (2008). Eyink et al. (2011) do
not introduce artificial “turbulent diffusivities” but appeal to the established and tested concept of Richardson
diffusion.
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of electrons of the electron Larmor radius rLar,particle. Applying the original RR78 theory,
they found that the electrons should travel over a distance

LRR ∼ l‖,min ln(l⊥,min/rLar,e) (4)

to get separated by l⊥,min.
Within the single-scale “turbulence model”, which formally corresponds to Lss =

l‖,min = l⊥,min, the distance LRR is called Rechester–Rosenbluth distance. For the intracluster
medium parameters, for which the problem was discussed originally, the logarithmic factor
in (4) is of the order of 30. This causes a 30-fold decrease of the thermal conductivity for
the single-scale models.3

The single-scale turbulence model is just a toy model to study the effects of turbulent
motions. However, one can use this model to describe what is happening below the scale
of the smallest eddies. Indeed, shear and, correspondingly, magnetic field line divergence
are maximal for the marginally damped eddies at the dissipation scale. Thus, for scales less
than the damping scale the action of the critically damped eddies is dominant and the results
of (4) are applicable. The additional traveling distance of LRR is of marginal importance for
diffusion of heat over distances � LRR.

For the diffusion in super-Alfvénic turbulence the Alfvénic scale lA given by (1) is im-
portant. It acts as the characteristic scale of magnetic fluctuations. Assuming that the mean
free path of electrons is less than lA, L06 obtained:

κe ≡ �2/δt ≈ (1/3)lAve, lA < λ, (5)

where ve is the electron velocity. In the opposite limit of effective scattering λ < lA, we
have κ ∼ λve with the coefficient of proportionality equal to 1/5 according to Narayan and
Medvedev (2001).

For sub-Alfvénic turbulence, the turbulence gets into the regime of strong GS95 type
turbulence, which is described by (2). The diffusivity becomes anisotropic with the diffusion
coefficient parallel to the mean field, κ‖,particle ≈ 1/3κunmagn being larger than the coefficient
for diffusion perpendicular to the magnetic field (L06):

κ⊥,e = κ‖,eM4
A, MA < 1. (6)

As discussed above, turbulent motions themselves can induce advective transport of heat.
Appealing to the LV99 model of reconnection, one can conclude that turbulence with
MA ∼ 1 should be similar to hydrodynamic turbulence, i.e.

κdynamic ≈ CdynLVL, MA > 1, (7)

where Cdyn ∼ 0(1) is a constant, which for hydro turbulence is around 1/3 (Lesieur 1990). If
we deal with heat transport, for fully ionized non-degenerate plasmas we assume Cdyn ≈ 2/3
to account for the advective heat transport by both protons and electrons.

The advection of heat in the regime of sub-Alfvénic turbulence is reduced compared to
the super-Alfvénic case and given by expression (L06):

κdynamic ≈ (β/3)LVLM3
A, MA < 1, (8)

where β ≈ 4.
Figure 4 illustrates the existing ideas on processes of heat conduction in astrophysical

plasmas. They range from heat insulation by unrealistically laminar magnetic field (a), to

3For the single-scale model, LRR ∼ 30L and the diffusion over distance � takes LRR/Lss steps, i.e. �2 ∼
LRRL, which decreases the corresponding diffusion coefficient κe,single ∼ �2/δt by a factor 30.
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Fig. 4 Enßlin and Vogt (2006). (a) Textbook picture of electrons moving along magnetic field lines in ther-
mal conduction process. (b) Actual motions of electrons in realistic turbulent plasmas where reconnection
and spontaneous stochasticity of magnetic field are present. (c) Numerical simulations of heat advection in
magnetized turbulence. From Cho and Lazarian (2004)

heat diffusion in turbulent magnetic field (b) and to heat advection by turbulent flows (c).
field, to heat diffusion in turbulent magnetic field and to heat advection by turbulent flows.
The relative efficiencies of the two latter processes depend on parameters of the turbulent
plasma. The observational data for two clusters are also shown and it is clear that for the
clusters of galaxies discussed, the turbulent advection of heat is the dominant process. The
dominance of turbulent motions gets even more prominent if one takes into account that
instabilities in the collisionless plasma of galaxies are likely to dramatically decrease the
mean free path of electrons.

In thermal plasma, electrons are mostly responsible for thermal conductivity. The
schematics of the parameter space for κparticle < κdynamic is shown in Fig. 5, where the
Mach number Ms and the Alfvén Mach number MA are the variables. For MA < 1,
the ratio of diffusivities arising from fluid and particle motions is κdynamic/κparticle ∼
βαMsMA(L/λ); see (6) and (8). The square root of the ratio of the electron to proton mass
α = (me/mp)1/2, which provides the separation line between the two regions in Fig. 2,
is given by βαMs ∼ (λ/L)MA. For 1 < MA < (L/λ)1/3 the mean free path is less than
lA which results in κparticle being some fraction of κunmagn, while κdynamic is given by (7).
Thus κdynamic/κparticle ∼ βαMs(L/λ), i.e. the ratio does not depend on MA (horizontal line
in Fig. 5). When MA > (L/λ)1/3 the mean free path of electrons is constrained by lA. In
this case κdynamic/κparticle ∼ βαMsM

3
A; see (7) and (5). This results in the separation line

βαMs ∼ M−3
A in Fig. 5.

The application of the MHD approach to turbulent plasma has of course its limitations.
For instance, in terms of magnetic reconnection, it is shown in Eyink et al. (2011) that
the model of turbulent reconnection described in LV99 is applicable to current sheets if
the broadening of the current sheet introduced through the wandering of magnetic field
lines is larger than the Larmor radius of thermal ions. This makes the model not applicable
to magnetosphere, where more sophisticated, e.g. based on PIC simulations, modeling is
required.

4.2 Diffusion of Magnetic Fields in Turbulent Molecular Clouds

MHD turbulence induces not only mixing motions advecting heat, but it also induces the
transport of magnetic field and matter in molecular clouds. This process, first discussed in
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Fig. 5 Parameter space for particle diffusion or turbulent diffusion to dominate: application to heat transfer.
Sonic Mach number Ms is plotted against the Alfvén Mach number MA. The heat transport is dominated
by the dynamics of turbulent eddies is above the curve (area denoted “dynamic turbulent transport”) and
by thermal conductivity of electrons is below the curve (area denoted “electron heat transport”). Here λ is
the mean free path of the electron, L is the driving scale, and α = (me/mp)1/2, β ≈ 4. Example of theory
application: The panel in the right upper corner of the figure illustrates heat transport for the parameters for
a cool core Hydra cluster (point “F”), “V” corresponds to the illustrative model of a cluster core in Enßlin
and Vogt (2006). Relevant parameters were used for L and λ. From L06

Fig. 6 Reconnection diffusion: exchange of flux with entrained matter. Illustration of the mixing of matter
and magnetic fields due to reconnection as two flux tubes of different eddies interact. Only one scale of
turbulent motions is shown. In real turbulent cascade such interactions proceed at every scale of turbulent
motions. From Lazarian et al. (2012b)

Lazarian (2005) and Lazarian and Vishniac (2009), was later tested numerically in Santos-
Lima et al. (2010, 2012) and showed high efficiency for removing magnetic fields from
clouds and accretion disks. Lazarian et al. (2012a) showed that the process that they termed
“reconnection diffusion” can explain why in observations by Crutcher et al. (2010) the en-
velopes had a lower mass to flux ratio than the cloud cores. In contrast, the usually consid-
ered ambipolar diffusion process predicts the opposite situation.

The elementary process of reconnection diffusion is illustrated in Fig. 6, where the den-
sities of plasma along magnetic flux tubes belonging to different eddies are different. The
process of fast turbulent reconnection (LV99) creates new flux tubes with columns of en-
trained dense and rarefied plasmas. The situation is similar to the earlier discussed case with
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plasma moving along magnetic fields and equalizing the pressure within the newly formed
flux tubes. As a result, eddies with initially different plasma pressures exchange matter and
equalize the plasma pressure. This process can be described as the diffusion of plasma per-
pendicular to the mean magnetic field. In reality, for turbulence with the extended inertial
range, the shredding of the columns of plasmas with different density proceeds at all turbu-
lence scales, making the speed of plasma motion irrelevant for the diffusion. For the case of
strong turbulence, the diffusion of matter and magnetic field is given by (8). In the presence
of the gravitational potential, the matter gets concentrated towards the center of the potential
well. This was seen in the numerical simulations in Santos-Lima et al. (2010). The physical
justification of the process is based on the nature of the GS95 cascade and the LV99 model
of turbulent reconnection. The deep relation between the two is discussed in Eyink et al.
(2011).

4.3 Cosmic Ray Scattering, Acceleration and Perpendicular Diffusion

MHD turbulence plays an important role in accelerating energetic particles. First of all,
the second order Fermi acceleration can arise directly from the scattering of particles by
turbulence (Melrose 1968). Properties of MHD turbulence that we discussed above are es-
sential to understanding this process. If turbulence is injected at large scales, the anisotropy
of Alfvénic modes at small scales makes them inefficient for scattering and acceleration of
cosmic rays (Chandran 2000; Yan and Lazarian 2002).4 In this situation, fast modes were
identified in Yan and Lazarian (2002) as the major scattering and acceleration agent for cos-
mic rays and energetic particles in interstellar medium (see also Yan and Lazarian 2004,
2008). This conclusion was extended for solar environments in Petrosian et al. (2006) and
intracluster medium in Brunetti and Lazarian (2007). Turbulent magnetic field in the pre-
shock and post-shock environment are important for the first order Fermi acceleration asso-
ciated with shocks (Schlickeiser 2002). In particular, magnetic field enhancement compared
to its typical interstellar values is important in the pre-shock region for the acceleration of
high energy particles. The turbulent dynamo can provide a way of generating magnetic field
in the precursor of the shock. In Beresnyak et al. (2009) it was shown that the interactions
of the density inhomogeneities pre-existing in the interstellar medium with the precursor
generate strong magnetic fields in the shock precursor, which allows particle acceleration
up to the energy of 1016 eV.

While discussing heat transport by thermal electrons streaming along turbulent magnetic
fields, we have discussed the perpendicular diffusion that is also relevant for the turbulent
transport of cosmic rays perpendicular to the mean magnetic field. The relation between
the parallel and perpendicular diffusivities in this case is also given by (6); see Yan and
Lazarian (2008). The important factor in this equation is M4

A. This dependence follows from
the modern theory of MHD turbulence and it is very different from the dependence of M2

A
discussed in the literature (Jokipii 1974).

A stream of cosmic ray protons propagating parallel or antiparallel to a large-scale mag-
netic field can lead to important instabilities such as the Bell instability (Bell 2004). This is
reviewed extensively in a companion paper by Bykov et al. (2013). The combined presence

4The resonant scattering is happening on the magnetic scales of the order of the cosmic ray gyroradius. If
the Alfvénic eddies are strongly elongated, the particles interacts with many eddies within its radius and the
scattering effect is dramatically reduced. Scattering efficiency and the acceleration efficiencies are closely
related for the second order Fermi acceleration of cosmic rays by turbulence (see Schlickeiser 2002).
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of a cosmic ray current and a parallel magnetic field gives rise to a pseudoscalar in the prob-
lem, and hence to an α effect which can lead to large-scale dynamo action (Rogachevskii
et al. 2012). In the following, we discuss magnetic field amplification by dynamo action in
more detail.

5 MHD Turbulence with Dynamo-Generated Magnetic Fields

In this section we discuss the case where the magnetic field is produced self-consistently
by the action of turbulence through dynamo action. We discuss here mainly the results of
numerical simulations.

5.1 Definitions and Conventions

In the following we characterize turbulent flows by the Reynolds number, which quantifies
the ratio of advective to viscous accelerations, u · ∇u and ν∇2u, respectively. Here, u is the
velocity and ν is the kinematic viscosity. Throughout the remainder of this review, we define
the Reynolds number as

Re = urms/νkf, (9)

where urms = 〈u2〉1/2 is the rms velocity within some appropriate volume and kf is the
wavenumber of the energy-carrying eddies, which is also known as the integral or correla-
tion wavenumber. It can be defined through a weighted average of the inverse wavenumber
over the kinetic energy spectrum, EK(k, t), where k = |k| is the modulus of the wave vector
k, and t is time. The kinetic energy spectrum is normalized such that

∫ ∞

0
EK(k, t)dk = 1

2
ρ0

〈
u2

〉
, (10)

where ρ0 = 〈ρ〉 is the volume average of the gas density ρ. For incompressible and weakly
compressible flows, it is customary to ignore fluctuations of ρ in the definition of EK(k, t).
In fact, there is no unique way of incorporating density. For supersonic turbulence, this is
very much a current research topic in its own right. We refer here to the papers of Kritsuk
et al. (2007), Galtier and Banerjee (2011), and Banerjee and Galtier (2013).

Returning to the case of incompressible or weakly compressible (subsonic) turbulence, a
formal definition of kf can be written as

k−1
f =

∫
k−1EK(k, t)dk

/∫
EK(k, t)dk. (11)

Note that kf = kf(t) is in general time-dependent, which can be important in studies of de-
caying turbulence. An important example is helical MHD turbulence, because it drives an
inverse cascade which manifests itself in a time-dependent decrease of kf(t); see Tevzadze
et al. (2012) and Kahniashvili et al. (2013) for recent examples. In most of the cases consid-
ered below we consider a time average of kf.

MHD turbulence is additionally characterized by the magnetic Reynolds number,

ReM = urms/ηkf, (12)

where η is the magnetic diffusivity. The ratio ReM/Re = ν/η = PrM is the magnetic Prandtl
number. Furthermore, a magnetic energy spectrum EM(k, t) can be defined such that

∫ ∞

0
EM(k, t)dk = 1

2
μ−1

0

〈
B2

〉
, (13)
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where B is the magnetic field and μ0 is the vacuum permeability. Analogously to (11)
we can then also define a magnetic correlation wavenumber kM(t). The relative alignment
between u and B is characterized by the so-called cross helicity, 〈u · B〉, and its scale de-
pendence is characterized by the cross helicity spectrum EC(k, t) with the normalization∫

EC(k, t)dk = 〈u · B〉. This quantity is a pseudoscalar and changes sign for a mirror-
reflected image of the turbulence. Other important helicities are the kinetic helicity, 〈w · u〉,
with w = ∇ × u being the vorticity, the current helicity, 〈J · B〉, with J = ∇ × B/μ0 be-
ing the current density, and, in particular, the magnetic helicity, 〈A · B〉, with A being the
magnetic vector potential such that B = ∇ × A.

In some cases we also discuss the evolution of a passive scalar, whose concentration is
governed by a corresponding diffusivity κ . The relevant non-dimensional parameter is the
Péclet number, Pe = urms/κkf.

5.2 Dynamo Instability and Spectrum

In the absence of an imposed magnetic field, the zero-field limit is unstable to dynamo action
when the magnetic Reynolds number exceeds a critical value,

ReM > ReM,crit (dynamo instability). (14)

In practice, this means that the theory of Kolmogorov turbulence is not directly applicable
to most astrophysical flows when the gas is ionized and therefore electrically conducting.

In this section we restrict ourselves to non-helical isotropic turbulence, i.e., 〈w · u〉 

kf〈u2〉. In that case, only random or turbulent magnetic fields can be expected. This possi-
bility was already anticipated by Batchelor (1950), but the relevant theory was only devel-
oped later by Kazantsev (1968). He assumed that the velocity field was given by a smooth
large-scale random flow and found that the resulting magnetic field has typical wavenum-
bers close to the resistive cutoff wavenumber, kη = 〈μ2

0J
2/η2〉1/4, and much larger than kf.

In fact, his work predicted a k3/2 spectrum for the magnetic field in the wavenumber range
kf < k < kη .

The first numerical solutions of such dynamos have been performed by Meneguzzi et al.
(1981) at a resolution of just 643 collocation points. Those where the “golden years” of
numerical turbulence research. For the first time, many of the ideas in turbulence could be
put to the test and, although the numerical resolution was still poor, it was clear that it could
only be a matter of time until all the newly emerging results will be confirmed at better
resolution.

In the following years, small-scale dynamo action emerged in several direct numer-
ical simulations (DNS). At first it appeared that kinetic helicity had only a minor ef-
fect in Cartesian simulations (Meneguzzi and Pouquet 1989; Kida et al. 1991; Nord-
lund et al. 1992). This was later understood to be an artefact of the lack of scale sepa-
ration, i.e., kf/k1 was not big enough (Haugen et al. 2004). Meanwhile, global convec-
tion simulations in spherical shells did produce large-scale magnetic fields (Gilman 1983;
Glatzmaier 1985). Remarkably, although there was general awareness of the concepts of
large-scale and small-scale dynamos, which was also clearly spelled out in an early re-
view of Vainshtein and Zeldovich (1972), the theory of Kazantsev (1968) was still not yet
widely cited in the West. This has changed by the late 1990s (e.g., Gruzinov et al. 1996;
Subramanian 1998; Kulsrud 1999), and by the early 2000s many groups investigated the
small-scale dynamo systematically (Cho and Vishniac 2000; Schekochihin et al. 2002,
2004a, 2004b; Haugen et al. 2003, 2004).

Although the resolution has improved significantly over the past two decades, some
important aspects of small-scale dynamos was evident already early on. In particular,
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Fig. 7 Magnetic, kinetic and
total energy spectra.
Re = ReM = 960 using 10243

meshpoints. Courtesy of Nils
Erland Haugen (Haugen et al.
2003)

Fig. 8 Magnetic and kinetic
energy spectra for runs with 5123

meshpoints and hyperviscosity
with hyperresistivity (solid line)
and Smagorinsky viscosity with
hyperresistivity (red, dashed
line). Note the mutual approach
of kinetic and magnetic energy
spectra before entering the
dissipative subrange. Adapted
from Haugen and Brandenburg
(2006)

Meneguzzi et al. (1981) and Kida et al. (1991) found that the magnetic energy spectrum
reaches a maximum at a wavenumber kM that is by a factor of ≈ 6 larger than kf, which
is where the kinetic energy has its maximum. This was an aspect that was later motivated
by the work of Subramanian (1998), who proposed that kM/kf should be of the order of
Re1/2

M,crit. This result was indeed borne out by all the DNS obtained so far. In Fig. 7 we repro-
duce the result of Haugen et al. (2003) using 10243 meshpoints. For larger values of PrM ,
ReM,crit increases, so kM also increases, making it harder to confirm the expected scaling
in that regime. Indeed, Schekochihin et al. (2004b) propose that at large values of PrM the
field shows folded structures. While Brandenburg and Subramanian (2005) confirmed the
presence of folded structures in a simulation with PrM = 50, they found them rather the ex-
ception and showed other cases where the field was not folded. Recent simulations by Bhat
and Subramanian (2013) confirmed that, after sufficiently many turnover times, kM/kf is of
the order of Re1/2

M,crit even when PrM = 50.
Note that, at the position where the magnetic energy spectrum peaks, the magnetic field

is in super-equipartition with the kinetic energy by a factor of 2–3. Initially, this was a
somewhat surprising result in view of the work of GS95, according to which one might have
expected equipartition. Subsequent work using large eddy simulations suggested that this
super-equipartition would not persist deeper into the inertial range, provided Re and ReM are
large enough. Indeed, a trend toward equipartition can be seen in the compensated energy
spectra of Haugen and Brandenburg (2006); see also Fig. 8, where a Smagorinsky subgrid
scale model was used for the momentum equation and hyper-resistivity in the induction
equation.
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5.3 Small-Scale Dynamo Action at Small Values of PrM

The question of what happens in the case of PrM 
 1 has always been on people’s mind.
Small values of PrM are characteristic of denser bodies such as stars, planets, and especially
liquid metals. Only in recent years a clearer picture has emerged of what happens in the
limit PrM → 0. By comparing the onset of dynamo action, it became clear that ReM,crit grew
larger and larger as one approached the value PrM = 0.1 (Schekochihin et al. 2005). Crucial
insight was gained through a paper by Iskakov et al. (2007), who found that ReM,crit has
a local maximum at PrM = 0.1, and that it decreases again as PrM is decreased further.
Early work of Rogachevskii and Kleeorin (1997) did already predict an increased value of
ReM,crit in the limit of small values of PrM , but not really a local maximum. Boldyrev and
Cattaneo (2004) argue that the reason for an increased value of ReM,crit is connected with
the “roughness” of the velocity field, as quantified by the scaling exponent ζ in velocity
differences δu� ∼ �ζ over spatial separations �. In the diffusive subrange, ζ = 1, so the
velocity is smooth, but in the inertial range we have ζ ≈ 0.4, so velocity gradients diverge
and the velocity field is therefore called “rough.”

The connection with roughness also helped explaining the occurrence of a maximum
in ReM,crit as PrM goes through 0.1. Indeed, the reason for this is that near PrM = 0.1 the
resistive wavenumber is about 10 times smaller than the viscous one and thus right within the
“bottleneck” where the spectrum is even shallower than in the rest of the inertial range, with
a local scaling exponent ζ → 0, corresponding to turbulence that is in this regime rougher
still, explaining thus the apparent divergence of ReM,crit.

The physical reality of the bottleneck effect remains still a matter of debate, but the
work of Falkovich (1994) suggests that it is related to the fact that near the viscous cut-
off wavenumber the flow becomes harder to stir, and that triangle interactions between a
wavenumber in the bottleneck range with wavenumbers in the dissipative subrange expe-
rience a difficulty in disposing of their energy. It is claimed in Beresnyak and Lazarian
(2010) that the MHD turbulence while formally local, is more diffusive in terms of the in-
teractions involved. This property termed “diffuse locality”, may explain that the bottleneck
effect in hydrodynamics is much more prominent that in MHD. Thus, one may suspect
that even the highest resolution simulations would still not be showing the actual inertial
range, but are influenced by an extended bottleneck effect Beresnyak and Lazarian (2009).
This may be the reason why the numerically measured spectrum is a bit shallower than
the GS95 prediction. A numerical study in Beresnyak (2011) seems to support this conclu-
sion.

It has recently become possible to demonstrate that in the nonlinear regime, when the
magnetic field affects the flow, the hydrodynamic bottleneck effect tends to be suppressed
as the field strength becomes appreciable, so the divergence in the roughness disappears
and there is a smooth dependence of the saturation field strength on the value of PrM ; see
Brandenburg (2011a) for details. In Fig. 9 we show the saturation energy of small-scale
dynamos as a function of PrM using the data of Tables 1 and 2 of Brandenburg (2011a). It is
clear that the position PrM = 0.1 is no longer special and that dynamo action is possible for
small values of PrM as well. For ReM = 160 the value of Brms/Beq is still ReM -dependent,
but this may be an artefact of the dynamo being close to onset. For ReM = 220 the dynamo
is more clearly supercritical and, although there are only two data points, the results are now
more clearly consistent with Brms/Beq being independent of ReM .
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Fig. 9 Saturation field strengths
for small-scale dynamos as a
function of PrM for two values
of ReM . Note that for
ReM = 160 (open symbols) the
dynamo is close to onset and the
saturation field strength declines
with decreasing values of PrM ,
while for ReM = 220 (filled
symbols) the field strength
changes only weakly although
only two data points are available

Fig. 10 Visualization of Bx on
the periphery of the
computational domain for a run
with ReM = 600 and a resolution
of 5123 mesh points. Note the
clear anisotropy with structures
elongated in the direction of the
field (which lies in the xy plane).
Adapted from Brandenburg et al.
(2008a)

5.4 Helically Driven Turbulence

Eigenfunctions of the curl operator provide an ideal means of stirring the flow. In wavenum-
ber space, these take the form (Haugen et al. 2004)

f k = RRR · f (nohel)
k with Rij = δij − iσεijkk̂k√

1 + σ 2
, (15)

where σ is a measure of the helicity of the forcing and σ = 1 for positive maximum helicity
of the forcing function. Furthermore,

f
(nohel)
k = (k × ê)/

√
k2 − (k · ê)2 (16)

is a non-helical forcing function, where ê is an arbitrary unit vector not aligned with k; note
that |f k|2 = 1 and f k · (ik × f k)

∗ = 2σk/(1 + σ 2), so the relative helicity of the forcing
function in real space is 2σ/(1+σ 2). When σ = 0, the forcing function is non-helical, and so
is the resulting flow. This case is special, as was demonstrated on various occasions. Firstly,
helical turbulence introduces an α effect which means that a weak large-scale magnetic
field becomes destabilized and will be amplified. In Fig. 10 we show a visualization of one
of the field components on the periphery of a Cartesian domain with periodic boundary
conditions. Note the presence of both large-scale and small-scale components. Secondly, in
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Fig. 11 Decay of magnetic energy with and without initial helicity (left) and the approximately linear evo-
lution of 〈B〉−3/2 and 〈B〉−1 in the two cases (right)

the absence of forcing, a fully helical magnetic field decays more slowly than a non-helical
one. Specifically, we have (Biskamp and Müller 1999; Biskamp 2003)

〈
B2

〉
(t) = 〈B2〉(0)

(1 + t/τ )2/3
, (17)

where τ = √
μ0ρ0〈A · B〉/〈B2〉3/2 is the typical decay time scale. In Fig. 11 we compare

results of two simulations of Kahniashvili et al. (2013), one with an initial magnetic helicity
and the other one without. Note the slower decay proportional to t−2/3 in the helical case
compared to the faster t−1 decay in the non-helical case. In both cases, time has been nor-
malized by τ = √

μ0ρ0/kf0Brms, where kf0 = kf(t = 0) ≈ 15k1. The rms velocity is about
20 % of the Brms in the helical case and about 28 % in the non-helical case. The Reynolds
number based on kf(t), which decreases with time either like t−2/3 in the helical case, or like
t−1/2 in the non-helical case, increases from 50 to 100 during the coarse of both simulations.
Even if the magnetic field is initially not fully helical, the relative helicity will increase,
because magnetic energy decays faster than magnetic helicity; see Tevzadze et al. (2012).
These considerations are important for primordial magnetic fields generated during cosmo-
logical phase transitions, because the inverse cascade allow the fields to reach appreciable
length scales at the present time (Brandenburg et al. 1996; Banerjee and Jedamzik 2004;
Kahniashvili et al. 2010).

The α effect is the reason behind the large-scale dynamo effect leading to the global
magnetic field observed in many astrophysical bodies (Moffatt 1978; Parker 1979; Krause
and Rädler 1980). The resulting magnetic field is helical and its helicity has the same sign
as α. However, because of total magnetic helicity conservation, no net magnetic helicity can
be produced. Therefore the α effect produces magnetic helicity of opposite signs at large
and small length scales at the same time. In Fig. 12 we show magnetic and kinetic energy
spectra compensated by k1.5 together with compensated magnetic and kinetic helicity spec-
tra, normalized by k/2 and 1/2k, respectively. This normalization allows us to see whether
or not the realizability conditions, EM(k) ≥ 2kHM(k) and EK(k) ≥ 2HK(k)/k, are close to
being saturated. Note also that HM(k) changes sign and becomes negative at k/k1 = 1 (thin
line), and is positive at all larger values of k/k1 (thick line).

The case of homogeneous helical turbulence is a particularly interesting example, be-
cause accurate estimates can be made about the saturation field strength and the magnetic
helicity balance, for example. However, such circumstances are not usually found in realis-
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Fig. 12 Compensated time-averaged spectra of kinetic and magnetic energy (dashed and solid lines, respec-
tively), as well as of kinetic and magnetic helicity (dotted and dash-dotted lines, respectively), for a run with
ReM ≈ 600. Note that HM(k) changes sign and becomes negative k/k1 = 1 (indicated by a thin line), and is
positive at all larger values of k/k1 (indicated by a thicker line). Adapted from Brandenburg et al. (2008a),
where however HK(k) and HM(k) are compensated by k1.2 and k3.2, respectively

tic applications. The significance of homogeneity is that then the divergence of the magnetic
helicity fluxes vanishes and does not affect the magnetic helicity evolution, so we have

d

dt
〈A · B〉 = −2ημ0〈J · B〉. (18)

Furthermore, in a homogeneous system, 〈A ·B〉 is gauge-invariant, so in the steady state we
have

〈J · B〉 = 0 (steady state). (19)

This is remarkable and applies even (and especially) in the case of helical forcing when
large-scale fields can be generated by the α effect.

For the rest of this review, it will be crucial to distinguish between large-scale and small-
scale magnetic fields. We do this by making use of the following decomposition:

U = U + u, B = B + b. (20)

In the previous sections of this review, there was no mean flow, so U = u, but from now on
we shall denote the full velocity by a capital letter. Likewise, the vorticity of U is given by
W = ∇ × U .

In rotating astrophysical bodies, a commonly used average is the azimuthal one. How-
ever, in the present case of fully periodic Cartesian domains, the resulting large-scale fields
can be described by planar averages, such as xy, yz, or xz averages. The resulting mean
fields, B , depend then still on z, x, or y, in addition to t . Examples of such fields are
those proportional to (sinkz, cos kz,0), (0, sinkx, coskx), and (cos ky,0, sinky), respec-
tively. All these examples obey

∇ × B = kB (21)

and are thus eigenfunctions of the curl operator with eigenvalue k. In particular, it follows

then that J · B = kB
2
/μ0 is uniform. This can only be compatible with (19), if there is

a residual (small-scale or fluctuating) magnetic field, b = B − B , which obeys 〈j · b〉 =
−〈J · B〉. Here, j = ∇ × b/μ0 is the corresponding current density. Assuming 〈j · b〉 =
εfkf〈b2〉/μ0, we find that B

2
/〈b2〉 = εfkf/k, which can exceed unity in cases of fully helical
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Fig. 13 Example showing the evolution of the normalized 〈B2〉 (dashed) and that of 〈B2〉+d〈B2〉/d(2ηk2t)

(dotted), compared with its average in the interval 1.2 ≤ 2ηk2
1 t ≤ 3.5 (horizontal blue solid line), as well as

averages over 3 subintervals (horizontal red dashed lines). Here, B is evaluated as an xz average, 〈B〉xz . For
comparison we also show the other two averages, 〈B〉xy (solid) and 〈B〉yz (dash-dotted), but their values are
very small. Adapted from Candelaresi and Brandenburg (2013)

forcing (εf → ±1). We recall that the parameter εf is related to the helicity parameter σ

in the forcing function (15) via εf = 2σ/(1 + σ 2). Repeating this calculation for the late
saturation phase of a dynamo, we have

B
2

〈b2〉 ≈ εfkf

k

[
1 − e−2ηk2(t−tsat)

]
, (22)

with a suitable integration constant tsat, having to do with just properties of the initial field
strength. This equation describes the late (t > tsat), resistively dominated saturation phase of
a helically driven dynamo of α2 type. By differentiating this equation again, we can find that
the final saturation field strength, Bsat = B rms(t → ∞), obeys (Candelaresi and Brandenburg
2013)

B
2
sat ≈ B

2 + dB
2
/d

(
2ηk2t

)
. (23)

This equation allows one to compute the value of Bsat based on the measured rate at which

B
2

increases. It is now routinely used to estimate Bsat without actually reaching the final
state; see Fig. 13 for an example.

5.5 Turbulent Mixing and Non-diffusive Transport

Turbulent flows are known to be capable of enhanced mixing. A prime example is the mixing
of a passive scalar concentration C(x, t), whose evolution is governed by the equation

∂C

∂t
= −∇ · (UC) + κ∇2C. (24)

Loosely speaking, turbulent mixing can be modeled as an enhanced diffusivity in the corre-
sponding evolution equation for the mean passive scalar concentration C(x, t), which then
takes the form

∂C

∂t
= −∇ · (U C) + κT∇2C, (25)

where κT = κ + κt is the sum of molecular (or atomic) and turbulent diffusivities.
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In a more precise formulation, κt becomes not only a tensor, κij , but also an integral
kernel that takes into account that on the right-hand side of (25) higher-order derivatives
of C in space and time appear. In particular, there can in principle also be a term of the
form ∇ · (γ CC) on the right-hand side which describes turbulent pumping or turbophore-
sis, and γ C is a vector. This term acts like advection, but without any material motion. (In
a kernel formulation, such a term could in principle be subsumed into the integral kernel.)
However, under isotropic conditions, γ C must vanish and the diffusivity tensor κij becomes
an isotropic tensor κtδij . Analogous equations can also be derived for the magnetic induc-
tion equation and the momentum equation. In both cases this can lead to physically new
effects such as the mean-field (or large-scale) dynamo instability and the negative effective
magnetic pressure instability (NEMPI), which will be discussed further below. The former
exists in isotropic turbulence, while the latter requires inhomogeneity and sufficiently strong
density stratification.

In the simulations presented in Sect. 5.4 we found the development of large-scale fields
of Beltrami type. Such fields do indeed emerge as eigenfunctions of the related mean-field
induction equation with constant coefficients,

∂B

∂t
= ∇ × (U × B + αB − ηTμ0J ). (26)

Significant progress in this field has recently become possible through the numerical de-
termination of the full set of turbulent transport coefficients. This method is known as the
test-field method and involves the solution of additional evolution equations for the mag-
netic fluctuations arising from a given test field. One needs enough test fields to obtain all
tensor components. By allowing the test fields to attain suitable variability in space and time,
it is possible to determine then also the full integral kernel in spectral space.

The results obtained so far have shown that

α ≈ α0 ≡ −εfurms/3 (27)

and

ηt ≈ ηt0 ≡ urms/3kf (28)

for ReM � 1. For ReM � 1, both coefficients increase linearly with increasing ReM (Sur et al.
2008). In the nonlinear regime, there can also be velocity fluctuations generated through
the presence of a mean field, but this requires what is known as magnetic background tur-
bulence, i.e., magnetic fluctuations that would be present even without a mean magnetic
field. This is in principle possible when there is small-scale dynamo action. This case can
be treated with a correspondingly modified test-field method (Rheinhardt and Brandenburg
2010).

In the following we state several important results obtained by using the test-field method.
We did already mention that for fully helical turbulence and large values of ReM , α and ηt

attain values of the order of ±urms/3 and urms/3kf, respectively. In turbulence, both co-
efficients possess a wavenumber dependence that is of the form of a Lorentzian propor-
tional to (1 + k2/k2

f )
−1, corresponding to an exponential integral kernel proportional to

exp[−(z − z′)kf]; see Brandenburg et al. (2008b). When the mean field is non-steady, the
memory effect can become important and this leads to a dependence of the form (1− iωτ)−1,
corresponding to a kernel proportional to exp(−|t − t ′|/τ) for t ′ < t , and 0 otherwise. Here,
τ ≈ (urmskf)

−1 is the correlation time.
In the limit � = 1/kf → 0 and τ → 0, the integral kernels become δ functions in space

and time. However, this approximation breaks down at the bottom of the solar convection
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Fig. 14 ReM -dependence of α

and η̃t . Both curves are
normalized by α0. Adapted from
Brandenburg et al. (2008a)

zone, where the resulting mean magnetic field in dynamo models often shows structures on
scales much smaller than � (Chatterjee et al. 2011). Furthermore, nonlocality in time is vio-
lated when the mean magnetic field is either growing or decaying. Ignoring this can lead to
discrepancies that are well detectable with the test-field method (Hubbard and Brandenburg
2009; Rädler et al. 2011). Finally, when the mean magnetic field depends strongly on both
space and time, the integral kernel in spectral space becomes approximately proportional to
(1 − iωτ + �2k2)−1. This form has the advantage that it can easily be treated in real space
by solving an evolution equation in time with a positive diffusion term, i.e.,

(

1 + τ
∂

∂t
− �2∇2

)

E i = αijBj + ηijkBj,k. (29)

Here, αij and ηijk are the usual α effect and turbulent diffusivity tensors for ω → 0 and
k → 0, and equal to αδij to ηtεijk in the isotropic case. This equation has been studied in
some detail by Rheinhardt and Brandenburg (2012). It is a special form of the telegraph
equation, which has been studied in similar contexts (Brandenburg et al. 2004; Chamandy
et al. 2013).

Using the quasi-kinematic test-field method, Brandenburg et al. (2008a) showed that in
the case of a saturated dynamo, both α and ηt remain weakly ReM -dependent; see Fig. 14.
Note that no fully asymptotic regime has been obtained yet, so it remains unclear when or
whether this will happen. It is clear, however, that α must approach ηtk1 at large ReM for the
system to be in the stationary saturated state. However, in view of the astrophysical impor-
tance of turbulent dissipation, the remaining weak dependence of ηt on ReM is expected to
disappear eventually.

6 Inhomogeneous MHD Turbulence

6.1 Density Stratification

Stratification refers to nonuniformity that is usually caused by gravity. As a consequence,
pressure increases in the direction of the gravity, and this causes similar changes in density
and/or temperature. The turbulence intensity can itself also be stratified. This usually comes
as a consequence of density stratification, but one can envisage circumstances in which the
forcing is nonuniform. Such non-uniformity affects turbulent transport–not just diffusive
but also non-diffusive transport, similar to the pumping velocity proportional to γ C , de-
scribed in Sect. 5.5. Both effects are astrophysically important. Stratification usually leads
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Fig. 15 Dependence of κxx/κt0
(open symbols) and κzz/κt0
(filled symbols) on the
normalized buoyancy frequency.
The dashed line shows that
κxx/κt0 ≈ 2.5 while the solid line
gives κzz/κt0 ≈ 0.09(τN)−3/2.
Adapted from Kitchatinov and
Brandenburg (2012)

to a suppression of diffusive transport. An example is shown in Fig. 15, where we show the
suppression of the vertical passive scalar diffusivity as a function of the stratification, which
is here measured by the normalized Brunt–Väisälä frequency, N , with N2 = −g ·∇s/cp and
s being the specific entropy. For details of this, see the work of Kitchatinov and Brandenburg
(2012).

Suppression of turbulent transport, for example, is critical for understanding the depletion
of primordial elements (e.g., lithium) by mixing with deeper layers in the stably stratified
lower overshoot layer of the convection zones of stars with outer convection zones. The
suppression is here caused mainly by the stabilizing entropy gradient [reversing the gradient
of s leads the negative values of N , corresponding the onset of convection with exponential
growth proportional to exp(ImNt)]. In the following, we shall focus on another manifesta-
tion of stratification, namely the expansion of rising structures as they ascent into less dense
surroundings. For that purpose, we make the assumption of an isothermal equation of state,
which is a simplification that leads to a constant pressure scale height and suppresses also
the stabilizing effect from the entropy gradient. For further discussion on this, see the pa-
pers by Brandenburg et al. (2012a) and Käpylä et al. (2012b) in the context of NEMPI; see
Sect. 5.5.

6.2 Stratified Turbulence with a Vertical Field

In the presence of stratification and an imposed magnetic field along the direction of strati-
fication, there is the possibility of producing another pseudoscalar called cross helicity. On
theoretical grounds, one expects (Rüdiger et al. 2011)

〈u · b〉 ∝ g · B. (30)

More specifically, it turns out that

〈u · b〉 = −ηtB/Hρ, (31)

where Hρ is the density scale height. This does indeed turn out to be the case, as has been
shown using simulations of forced isothermal turbulence in the presence of gravity. The
result is shown in Fig. 16, where we plot 〈u · b〉 as a function of ReM .

6.3 Effects of Rotation

In the presence of stratification and/or rotation, MHD turbulence is subject to a range of new
effects. These phenomena are associated with the vectors g (gravity) and Ω (angular veloc-
ity), which introduce preferred directions to the flow. They do so in different ways, because
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Fig. 16 Dependence of the
normalized cross helicity on Rm
for various field strength
Bz/Beq < 0.1, Pm = 1,
kf/k1 = 2.2, and Hρk1 = 2.5.
The straight line denotes the fit
〈u · b〉/τg〈B〉 = 0.05 Rm

Fig. 17 Dependence of passive scalar pumping velocity, γ (C) , and passive scalar diffusivity κt on Peclet
number, Pe. The scale separation ratio is kf/k1 = 5

g is a polar vector (identical to its mirror image) while Ω is an axial vector (antiparallel to
its mirror image). This means that turbulent transport effects characterized by some effective
velocity must be proportional to another polar vector. This can then either be the vector g

or, in forced turbulence simulations, where it is possible to produce helical turbulence, it can
be the vector Ω̂ . In that case there is kinetic helicity, 〈w · u〉, which is a pseudoscalar, so
〈w · u〉Ω would also be a polar vector, allowing pumping even in the homogeneous case if
there is rotation and helicity.

In Fig. 17 we show such an example, where there is fully helical turbulence that is initially
isotropic, but because of rotation it becomes anisotropic and there is now a polar vector that
leads to turbulent pumping with the velocity

γ (C) ≈ 0.075〈w · u〉Ω/(urmskf)
2. (32)

A similar result has previously been obtained by Pipin (2008) and Mitra et al. (2009) for
shear flows, where the resulting mean vorticity vector acts as the relevant pseudovector.
However, these situations are somewhat artificial, because helicity does not normally occur
in the absence of additional stratification, so any pumping would still be indirectly associated
with the stratification vector, although it can now attain a direction proportional to Ω̂ or the
mean vorticity.

Owing to the presence of stratification and rotation, the turbulence attains helicity and
can then produce an α effect. This has been studied in great detail in the past using analytic
methods and, more recently, the test-field method. In Fig. 18 we show an example from
Brandenburg et al. (2012b), where the turbulence is governed by only one preferred direc-
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Fig. 18 Dependence of transport coefficients in a model with rotation and density stratification as a function
of the Coriolis number, Co = 2Ω/urmskf. The other relevant parameters are ReM ≈ 10, Gr = g/c2

s kf ≈ 0.16,
kf/k1 = 5, for ν = η = κ

tion, and Ω̂ and g are therefore assumed to be parallel. In that case, EEE can be represented in
the form

EEE = −α⊥B − (α‖ − α⊥)(ê · B)ê − γ ê × B

− β⊥μ0J − (β‖ − β⊥)(ê · μ0J )ê − δê × μ0J

− κ⊥K − (κ‖ − κ⊥)(ê · K)ê − μê × K (33)

with nine coefficients α⊥, α‖, . . . ,μ.
Clearly, because of stratification and rotation, the turbulence is no longer isotropic, so

α will also no longer be isotropic. In the simplest case when both g and Ω are parallel, α

has components parallel and perpendicular to their direction. The α effect is of particular
interest, because it can lead to large-scale magnetic field generation. Another effect that is
known to lead to large-scale dynamo action is the Rädler or Ω × J effect (Rädler 1969).
Unlike the α effect, it exists already with just rotation and no stratification. Its astrophysical
relevance is however still to be demonstrated. Note also that in all practical situations there
must still be an additional source of energy, because Ω × J has no component along J and
does therefore not provide energy to the system.

6.4 Stratified Turbulence with an Imposed Magnetic Field

In the presence of an imposed magnetic field there is an important effect that deserves to
be mentioned. In mean-field parameterizations of the Reynolds stress, there are terms that
are quadratic in the mean magnetic field and contribute to a decrease of the Reynolds stress
if there is a weak magnetic field. This suppression was discussed by Rüdiger (1974) and
Rädler (1974) in connection with the understanding of the quenching of the α effect by a
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mean magnetic field. However, later it was understood that it also leads to a suppression of
the turbulent pressure and that this suppression is stronger than the explicitly added magnetic

pressure from the mean field, B
2
/2μ0. This means that the contribution of the mean field to

the total turbulent pressure,

ptot = pgas + pturb = pgas + p
(0)

turb + [
1 − qp

(
B

2
/B2

eq

)]
B

2
/2μ0, (34)

which is embodied by the last term, [1 − qp(B
2
/B2

eq)]B2
/2μ0, can be negative (Klee-

orin et al. 1989, 1990, 1993, 1996; Kleeorin and Rogachevskii 1994; Rogachevskii and

Kleeorin 2007). Here, qp(B
2
/B2

eq) is a non-dimensional quenching function describing
the suppression of the total stress, which consists of Reynolds and Maxwell stress. It is

only a function of B
2
/B2

eq, so even for a uniform B
2

it can show spatial variation if
B2

eq changes, for example as a result of density stratification. This allows the full depen-

dence of qp on B
2
/B2

eq to be probed in a single simulation (Brandenburg et al. 2012a;
Kemel et al. 2012). The effect of the Maxwell stress turns out the be weaker than that of
the Reynolds stress and it has the opposite effect, as was demonstrated by numerical calcu-
lations (Brandenburg et al. 2010).

In a stratified layer with a sub-equipartition magnetic fields this negative effective mag-
netic pressure can lead to an instability producing spontaneously magnetic flux concentra-
tions (Kleeorin et al. 1989, 1993; Rogachevskii and Kleeorin 2007). This has recently been
confirmed with DNS (Brandenburg et al. 2011b; Kemel et al. 2012) and is being discussed in
connection with explaining the spontaneous formation of active regions (Kemel et al. 2013)
and sunspots (Brandenburg et al. 2013). In Fig. 19 we show horizontal and vertical cuts
through a magnetic spot from the simulation of Brandenburg et al. (2013) in the presence
of an imposed vertical field. In the horizontal cut, again, strong fields correspond to dark
shades. The vertical cut is with a different color table where strong fields now correspond to
light shades. It shows that the magnetic field (in units of the local equipartition field strength)
decreases with height. Note also that the mean magnetic field fans out toward the bottom
of the domain. Applying this finding to the origin of sunspots, it suggest that, contrary to
common belief (cf. Brandenburg 2005), those structures may not be deeply anchored.

Fig. 19 Cuts of the vertical magnetic field in units of the equipartition field strength, Bz/Beq(z), through the
horizontal plane at the top boundary (left) and the vertical plane through the middle of the spot (right). Field
lines of the numerically averaged mean field are superimposed. Adapted from Brandenburg et al. (2013)
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6.5 Solar Dynamo and Magnetic Helicity Fluxes

One of the main applications of mean-field theory has always been to explain the Sun’s
global magnetic field, its 11 year cycle, and the migration of magnetic field from mid
to low latitudes, in addition, of course, eventually the formation of sunspots themselves.
In the last few years, several groups have engaged in tackling the problem of the Sun’s
global magnetic field by performing numerical simulations of rotating turbulent convec-
tion in spherical shells using either spherical harmonics (Miesch and Toomre 2009; Brown
et al. 2010, 2011), an implicit solver (Ghizaru et al. 2010; Racine et al. 2011), or finite
differences in spherical wedges (Käpylä et al. 2010, 2012a) to overcome the timestep
constraint at the poles. The results from all groups trying to model the Sun agree in
that they show equipartition-strength magnetic fields in the bulk of the convection zone
(rather than highly super-equipartition-strength magnetic fields just at the bottom of the
convection zone), with magnetic activity concentrated toward low latitudes and, in some
cases, cyclic reversals of the magnetic field direction, resembling the solar 22 year cy-
cle.

A major breakthrough has been achieved through the recent finding of equatorward mi-
gration of magnetic activity belts in the course of the cycle (Käpylä et al. 2012a); see
Fig. 20. These results are robust and have now been reproduced in extended simulations
that include a simplified model of an outer corona (Warnecke et al. 2013). Interestingly,
the convection simulations of all three groups produce cycles only at rotation speeds that
exceed those of the present Sun by a factor of 3–5 (Brown et al. 2011). Both lower and
higher rotation speeds give, for example, different directions of the dynamo wave (Käpylä
et al. 2012a). Different rotation speeds correspond to different stellar ages (from 0.5 to 8
gigayears for rotation periods from 10 to 40 days), because magnetically active stars all
have a wind and are subject to magnetic braking (Skumanich 1972). In addition, all sim-
ulations are subject to systematic “errors” in that they poorly represent the small scales
and emulate in that way an effective turbulent viscosity and magnetic diffusivity that is
larger than in reality; see the corresponding discussion in Sect. 4.3.2 of Brandenburg et al.
(2012a) in another context. In future simulations, it will therefore be essential to explore the
range of possibilities by including stellar age as an additional dimension of the parameter
space.

Fig. 20 (Left) Azimuthally averaged toroidal magnetic field as a function of time (in turnover times) and
latitude (clipped between ±60◦). Note that on both sides of the equator (90◦ − θ = ±25◦), positive (yellow)
and negative (blue) magnetic fields move equatorward, but the northern and southern hemispheres are slightly
phase shifted relative to each other. (Right) Snapshot of the toroidal magnetic field Bφ at r = 0.98 outer radii.
Courtesy of Käpylä et al. (2012a)
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In support of our statement that a poor representation of the small scales in DNS emulates
artificially enhanced turbulent viscosity and turbulent magnetic diffusivity, let us recall that
ηt and α are scale-dependent. As discussed before in Sect. 5.5, they decrease with increasing
k in a Lorentzian fashion. The relative importance of Ω effect over the α effect depends on
the ratio of CΩ and a similar parameter Cα = α/ηtk characterizing the strength of the α

effect. Both CΩ and the ratio CΩ/Cα would be underestimated in a large eddy simulation in
which ηt(k)k and α(k) are too big, so one would need to compensate for this shortcoming
by increasing Ω to recover cyclic dynamo action.

As alluded to in Sect. 5.4, magnetic helicity fluxes play a major role in the dynamo by
alleviating the otherwise catastrophic quenching of the dynamo (Blackman and Brandenburg
2003). Recent work using a simple model with a galactic wind has shown, for the first time,
that this may indeed be possible. We recall that the evolution equation for the mean magnetic
helicity density of fluctuating magnetic fields, hf = a · b, is

∂hf

∂t
= −2EEE · B − 2ημ0 j · b − ∇ ·FFF f, (35)

where we allow two contributions to the flux of magnetic helicity from the fluctuating field
FFF f: an advective flux due to the wind, FFFw

f = hfUw, and a turbulent–diffusive flux due to tur-

bulence, modeled by a Fickian diffusion term down the gradient of hf, i.e., FFFdiff
f = −κh∇hf.

Here, EEE = u × b is the electromotive force of the fluctuating field. The scaling of the terms
on the right-hand side with ReM has been considered before by Mitra et al. (2010) and
Hubbard and Brandenburg (2010). They also drew attention to the fact that, even though
FFF f is gauge-invariant, the time average of ∇ ·FFF f is not, provided the system is statistically
stationary and ∂hf/∂t vanishes on average.

In Fig. 21 we show the basic result of Del Sordo et al. (2013). As it turns out, below
ReM = 100, the 2ημ0j · b term dominates over ∇ · FFF f, but because of the different scal-
ings (slopes being −1 and −1/2, respectively), the ∇ · FFF f term is expected to becomes
dominant for larger values of ReM (about 3000). Unexpectedly, however, ∇ ·FFF f becomes
approximately constant already for ReM � 100 and 2ημ0j · b shows now a shallower scal-
ing (slope −1/2). This means that the two curves would still cross at a similar value. Our
data suggest, however, that ∇ ·FFF f may even rise slightly, so the crossing point is now closer
to ReM = 1000.

Fig. 21 Scaling properties of the
vertical slopes of 2EEE · B ,
−2ημ0 j · b, and −∇ · F f. The
three quantities vary
approximately linearly with z, so
the three labels indicate their
non-dimensional values at
k1z = 1. The dotted lines show
the extrapolated initial scaling for
low ReM . Adapted from Del
Sordo et al. (2013)
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7 Solar Wind Observations

Solar wind observations provide a good way of determining the energy spectrum of MHD
turbulence. As already mentioned in Sect. 5.2, recent work by Boldyrev et al. (2011) pro-
vides an explanation of why the kinetic and magnetic energy spectra have slightly different
spectral indices in that the magnetic energy spectrum is slightly steeper (∝ k−1.6) than that
of the kinetic energy (∝ k−1.4). This was found previously by Podesta et al. (2007). Indeed,
looking again at Fig. 8, it is clear that different slopes of kinetic and magnetic energy spec-
tra is a consequence of the super-equipartition just below k = kf and the subsequent trend
toward equipartition for larger values of k.

Solar wind observations have long been able to provide estimates about the magnetic
helicity spectrum (Matthaeus et al. 1982). We recall that, even though the magnetic helicity
is gauge-dependent, its spectrum is not. Technically, this is because the computation of the
spectrum involves an integration over all space. In practice, this is not possible, of course.
However, by making use of statistical homogeneity and the Taylor hypothesis of the equiv-
alence of spatial and temporal Fourier spectra, Matthaeus et al. (1982) were able to express
the magnetic helicity spectrum as

H(kR) = 4 Im
(
B̂T B̂�

N

)
/kR, (36)

where B̂T (kR) and B̂N(kR) are the Fourier transforms of the two magnetic field components
perpendicular to the radial direction away from the Sun, and (R,T ,N) refers to the com-
ponents of a locally Cartesian heliospheric coordinate system. Here, kR is the wavenumber,
which is related to the temporal frequency via ω = uRkR , where uR ≈ 800 km s−1 is the
wind speed at high heliographic latitudes. Note that in (36), the expression for H(kR) is
manifestly gauge-invariant.

Most spacecrafts have probed low heliographic latitudes, where the helicity is governed
by fluctuations around zero. In recent years, however, it has been possible to estimate the
magnetic helicity spectrum also at high heliographic latitudes using data from the Ulysses
spacecraft that flew in a near-polar orbit. However, even at high heliographic latitudes the
magnetic helicity is still strongly fluctuating and a clear sign of magnetic helicity can only
be seen by averaging the spectra over broad, logarithmically spaced wavenumber bins; see
Fig. 22. One can define the relative spectral magnetic helicity, 2μ0EM(k)/kHM(k), which
is a non-dimensional quantity between −1 and 1. It turns out that it is just a few per-
cent. Nevertheless, the magnetic helicity is negative at large scales (small wavenumbers,
k < 30 AU−1 corresponding to frequencies below 0.03 mHz) and positive at smaller scales
(large wavenumbers); see Brandenburg et al. (2011a). This agrees, at least qualitatively, with

Fig. 22 Magnetic energy and
helicity spectra, 2μ0EM(k) and
kHM(k), respectively, for two
separate distance intervals.
Furthermore, both spectra are
scaled by 4πR2 before averaging
within each distance interval
above 2.8 AU. Filled and open
symbols denote negative and
positive values of HM(k),
respectively. Adapted from
Brandenburg et al. (2011a)
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earlier results by Smith and Bieber (1993) that at low frequencies the magnetic helicity is
negative in the northern hemisphere. At much higher frequencies (beyond 100 mHz), posi-
tive magnetic helicity in the northern hemisphere has now also been found by Podesta and
Gary (2011).

When comparing with numerical simulations, it should be noted that virtually all ob-
served spectra are based on one-dimensional measurements, while those of numerical sim-
ulations are based on the full three-dimensional velocity field. The two are related to each
other via

E1D
M (kR) =

∫ ∞

kR

E3D
M (k)d ln k, (37)

H 1D
M (kR) =

∫ ∞

kR

H 3D
M (k)d ln k. (38)

This transformation is well known for the energy spectrum (cf., Tennekes and Lumley 1972;
Dobler et al. 2003), and was recently generalized to the case with helicity (Brandenburg
et al. 2011a). The resulting one- and three-dimensional spectra agree in the case of pure
power laws, but near the dissipative cutoff wavenumbers there is a sharp departure from
power law behavior. This is significant in view of the fact that energy spectra of three-
dimensional simulations indicate the presence of a so-called bottleneck effect (Falkovich
1994). This corresponds to an uprise of the compensated energy spectrum, k5/3EK(k), near
the dissipative cutoff wavenumber kν = 〈w2/ν2〉1/4. This bottleneck effect is much weaker
or absent in one-dimensional spectra (Dobler et al. 2003; Beresnyak and Lazarian 2009).
The bottleneck might therefore be a real effect. Although it happens at such small scales
that is should not be astrophysically significant, it does play a role in three-dimensional
simulations and can lead to effects whose astrophysical significance needs to be assessed
carefully in view of the fact that the growth rate of small-scale dynamos depends on the
shape of the spectrum at the resistive scale; see Sect. 5.3.

8 Concluding Comments

The last decades have been marked by important advances in our understanding of MHD
turbulence. To a substantial degree this happened as numerical simulations became capable
of producing high resolution MHD cubes. Therefore, MHD turbulence became a theory that
can be tested. As a result of both analytical and numerical studies, as well as observational
measurements of turbulence, the GS95 model of MHD turbulence has been established as
the most promising model. While we believe that the model is not complete in detail (e.g.
in terms of intermittency), it is able to describe the astrophysically important properties
of turbulence, for instance, the scale dependence of local anisotropy important for cosmic
ray propagation, and the magnetic field wandering important for heat transfer and magnetic
reconnection.

The physical ideas of the GS95 model have been extended and applied to successfully de-
scribing compressible MHD turbulence. It has been shown that the low coupling of fast and
Alfvén modes allows the independent treatment of the Alfvénic cascade, which is very im-
portant; see Sect. 3.2. Indeed, it allows one to use the GS95 scaling for describing Alfvénic
modes in moderately compressible fluids, which is of major astrophysical significance.

However, there are many issues that require further studies. Those include the properties
of highly compressible, highly supersonic MHD turbulence, scaling and properties of fast
modes etc. Last but not the least, more work is required for the highly debated subject of
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imbalanced turbulence. The corresponding studies call for extensive numerical efforts to
test the existing theories. We hope that many of these currently controversial issues will
be solved in the near future. This has important applications for turbulent dynamos of all
sorts. It is now clear that nonlinear turbulent dynamos work also at small magnetic Prandtl
numbers, even though the excitation conditions for kinematic dynamos become prohibitively
high at low magnetic Prandtl numbers of around 0.1. As discussed in Sect. 5.3, the reason
for this has meanwhile been identified as the bottleneck effect in turbulence.

Large-scale dynamos are affected by similar subtleties. They are in particular subject to
the possibility of catastrophic quenching, which means that dynamos and their underlying
turbulent transport coefficients remain dependent on the magnetic Reynolds numbers. As-
trophysical dynamos are believed to be independent of ReM , but we now know that most
dynamos in DNS are probably not yet in that regime, but there is not much doubt that such
a regime exists that is independent of the magnetic Reynolds number. In practice, this is
accomplished by magnetic helicity fluxes. Regarding solar and stellar dynamo theory, the
reason for equatorward migration of magnetic activity belts is still not understood. This is
an example where simulations might now lead the way toward explaining the observed solar
behavior, but more progress is needed to fully understand the physics behind the behavior
seen in simulations.
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