;--------Here the unit are SI unit----------- ;grid=128 ;grid_len=1.0/grid grid_len=L/grid k_prefactor=3.13 density_ratio=1000.0 g=9.80 good_t=50 ;seconds ;read initial parameters------ pc_read_param,obj=start boxsize=abs(start.xyz0*2) boxsize=boxsize(0) a0=start.ap0 pc_read_param,/param2,obj=param nu=param.nu*1.0 k1=2*!pi/boxsize kf=k1*k_prefactor pc_read_ts,obj=ts good=where(ts.t GT good_t) good=good[0] urms=mean(ts.urms(good:*)) epsk=mean(ts.epsk(good:*)) print,'boxsize=',boxsize print,'urms=',urms print,'epsk=',epsk print,'nu=',nu print,'k1=',k1 print,'kf=',kf ;Komogorov scales ;Re=urms/(nu*kf) Re=urms*boxsize/(nu*k_prefactor) ; Re=Urms*L_inj/nu eta=boxsize/Re^0.75 scale_seperation=(boxsize/k_prefactor)/eta ;note that the largest scale in turbulence is the energy injection scale tau=(boxsize/urms)/sqrt(Re) epson=urms^2/tau v_eta=(nu*epson)^0.25 ;t_turnover=1.0/(kf*urms) ; T_eddy=L_inj/U_rms=L/(k_prefactor*U_rms) t_turnover=boxsize/(k_prefactor*urms) nu_tur=urms/(3.0*kf) t_tur=boxsize^2/nu_tur Re_mesh=urms*grid_len/nu ;Re_mesh shoud be <=5. print,'Re=',Re print,'eta=',eta print,'tau=',tau print,'epson=',epson print,'v_eta=',v_eta print,'t_turnover=',t_turnover print,'nu_tur=',nu_tur print,'t_turDiffusion=',t_tur print,'Re_mesh=',Re_mesh print,'scale_seperation',scale_seperation ;stokes time tau_p=2.0/9.0*density_ratio*a0^2/nu v_p=tau_p*g St=tau_p/tau v_ratio=v_p/v_eta print,'tau_p=',tau_p print,'v_p=',v_p print,'St=',St print,'v_ratio=',v_ratio END