• Metabolism first vs replication first
• Chemotrophs
On Wednesday (Sep 20)

• Lecture 10:00 – 10:15
 – Giving out HW3, review, Q/A

• Quiz 10:20 – 10:50 (closed book)
 – 3 pages (1p multiple choice)
 – RGS pp. 1-34 + lecture notes

• Special accommodations
 – I have emailed those who contacted me
 – If you didn’t, make sure you do
Today

• Replication first vs Metabolism first
• Early cells
• RNA world
• LUCA
• Reading:
 – RGS pp. 30-34
 – Lon pp. 193-195
 – BS pp. 172-176, 206-208
Primitive cells

- Lipid bilayers
- Protein droplets (Oparin 1924)
- Dehydration – rehydration (S Fox 1958)
Properties of protocells

- Confinement of organics within cells is advantageous:
 - Facilitates chemical reactions.
 - Cooperative relationships evolve.
- Membrane-like spheres easily made in lab experiments!
 - Cooled amino acids solutions.
 - Lipids in water.
- First “cell” may have been RNA replicating within simple membrane.
Abiotic “cells”

- Volcanic rock (pumice)
 - Small air pockets
 - Tiny compartments
 - Could house small chemical mixtures
 - First steps toward life (?)
Role of minerals

• Support
 – Amino acids polymerize on surfaces

• Selection
 – Different crystal faces select left/right
 – Both possible → natural selection chose one

• Catalysis
 – N_2 to N_3H via metallic surfaces
 – Suitable in hydrothermal vents
• **Support** – Amino acids polymerize on surfaces

• **Selection** – Different crystal faces select left/right – Both possible \[\rightarrow\] natural selection chose one

• **Catalysis** – N_2 to N_3H via metalic surfaces
Metabolism

• How to make a living (Longstaff 193)

• Use of catalysts
 – Speeds up reaction
 – Regardless of direction (!)

• Two types
 – Proteins
 – RNA catalysts (=ribozyme)
Three requirements

- **Source of carbon** (CO$_2$ or CH$_2$O)
- **Source of energy**
 - To reduce inorganic to org macromolecule
 - Electron donor (e.g. H$_2$)
- **An oxidant**
 - To harness chemical potential energy
 - Electron acceptor (e.g. O$_2$)
“Food” in Greek?

food

τροφή
Troph (Greek) = food

- auto – hetero
- photo – chemo
- litho – organo

- Photoautotroph
- Chemoautotroph
- Photoheterotroph
- Chemoheterotroph
Range of possibilities

<table>
<thead>
<tr>
<th>Energy source</th>
<th>Sunlight</th>
<th>Photo-</th>
<th>Chemo-</th>
<th>Electron donor</th>
<th>Organic</th>
<th>Inorganic</th>
<th>Organo-</th>
<th>Litho-</th>
<th>Carbon source</th>
<th>Organic</th>
<th>Inorganic</th>
<th>Hetero-</th>
<th>Auto-</th>
</tr>
</thead>
</table>

- e.g.: Chemolithoheterotroph
- Altogether 8 possibilities!
Thiobacillus denitrificans

- Discovered 1904
 - 0.5x1x3 μm³
- Soil & mud
 - Oxidize U(IV) → U(VI)
- Chemolithoautotroph or chemoautotroph
 - H₂S + CO₂ → CH₂O + 2S
Gray bacterium in rock spaces

Always found to be growing
Excreting CO₂
Rocks mineral structure depleted in Fe

A. Chemoautotroph
B. Lithoautotroph
C. Photoautotroph
D. Lithoheterotroph
Gray bacterium in rock spaces

Always found to be growing
Excreting CO₂
Rocks mineral structure depleted in Fe

A. Chemoautotroph
B. Lithoautotroph
C. Photoautotroph
D. Lithoheterotroph
Blue-green in petri dish

Cells grow when exposed to sunlight
Excrete O_2
Grow and produce O_2 as long as in sunlight

A. Chemoautotroph
B. Lithoautotroph
C. Photoautotroph
D. Lithoheterotroph
Blue-green in petri dish

Cells grow when exposed to sunlight
Excrete O_2
Grow and produce O_2 as long as in sunlight

A. Chemoautotroph
B. Lithoautotroph
C. Photoautotroph
D. Lithoheterotroph
Metabolism/replication first?

• Organism needs 2 things
 – Replication (otherwise not self-sustaining)
• Turn disorder to ordered chem reactions to extract energy from surroundings
 → metabolism, needed to control flow of energy
Advantage of RNA over DNA?

A. More stable?

B. Less stable?
Advantage of RNA over DNA?

A. More stable?
B. Less stable?
DNA transcription

• DNA \rightarrow messenger RNA (mRNA, transient)
• mRNA read out by ribosome (rRNA)
 – Ribosomes contain their own type of RNA
 – Amino acids + RNA (tRNA, small)
• Ribosome synthesizes proteins (incoming tRNA)
 – Forges peptide bonds between amino acids
 – tRNA liberated, captures new amino acids
 – 10-20 amino acids/second
RNA world before DNA/protein

- Nucleotides in RNA easier made
- RNA evolved to DNA (greater stability)
- No scenario for protein replication w/o RNA
- Natural selection outcompeted DNA+protein
On Friday

- RNA world (RGS pp. 35)
 - Last common ancestor (LUCA)

- Top-down approach
 - RGS pp. 37-41
 - BS pp. 172-176