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Table i: Some typical parameter values in geophysical and astrophysical settings.

Adiabatic Density Kinematic

sound speed o [kgm~3] viscosity

A [kms™!] v [m?s™!]
Water 1.5 998 10—
Air 0.3 1.21 1.5 x107°
Sun (surface) 10 1073 1076
Sun (interior) 300 10° 1072
Galaxy 10..100 10~2 10%2

Table ii: Some useful units used in astrophysics and the corresponding conversion into SI units.

IMm = 105m

1AU = 15x10'Mm
lpc = 31x10%m
1My = 20x103¥kg
lyr = 32x107s
IMyr = 108yr

Table 15: Radii of some celestial bodies.

Body Radius
Earth 6 Mm
Jupiter 70 Mm
Sun 700 Mm

Accretion disc (CV) 10..1000 Mm
Galaxy 10kpc ~ 3 x 10" Mm




ii

Table iv: Some common abbreviations.

AGN  Active galactic nucleus (plural: nuclei)
SN Supernova (plural: supernovae)

SNR  Supernova remnant

BH Black hole

WD  White dwarf (compact, degenerate star)

CV  Cataclysmic variable (unstable disc around WD)

HST  Hubble Space Telescope

Table v: Table of useful physical constants.

Quantity Symbol value units
Newton’s constant of gravity G 6.673 x 107" mdkgls?
Stefan-Boltzmann constant 0SB 5.67 x 1078 kgs 3K
Universal gas constant R 8315 m?s?2K™!
Speed of light c 3 x 108 ms !
Induction constant 140 47 x 1077 VsA tm!

Table vi: A list of symbols and their meanings.

Q  Omega angular velocity
4 mu specific molecular weight
140 induction constant




Chapter 1

Introduction

Astrophysics is concerned with phenomena in the sky that can be studied using mathematics
and the law of physics. Many observed phenomena in the Universe are related to fluid dynamics
and electromagnetism (stellar variability and rotation, solar sunspot cycle, stellar and galactic
jets, galactic radio emission, cosmological expansion, etc). In this course, topics in modern
astrophysical fluid dynamics will be discussed in order to obtain a conceptual understanding
of the various processes involved. Their mathematical description will be introduced at an
elementary level. The governing equations will be derived within the context they occur in.

1.1 Fluid dynamics

Fluid dynamics is the collective description of the flow of a large number of particles. Familiar
examples of fluid dynamics include for example the flow of water in a river, surface waves in the
sea, and of course the wind in the air. More complicated flow patterns on Earth are generated
by obstructions due to solid bodies (buildings in a city, trees, etc). Other familiar examples of
flows are free convection (updrafts above fields, downdrafts above lakes, but also the large scale
atmospheric circulation).

In astrophysics the flow particles are not always neutral (molecules, atoms), but can be
partially or fully ionised (electrons, ions, possibly mixed with neutrals). The forces acting on
such particles are then not only pressure and gravity, but also the electromagnetic (or Lorentz)
force.

Before we begin to describe fluid dynamical phenomena in astrophysics, let us first discuss
the various astrophysical phenomena we see in the sky in a clear night. Not all of them will
directly be relevant to fluid dynamics, at least not in the narrower sense. Also, some phenomena
would rather be classified as geophysical fluid dynamics, but again, from a broader perspective
they can also be relevant to astrophysics.

1.2 Examples of astrofluids in the sky

Let us think of some typical phenomena that everybody can observe, either with the naked eye
or with a small telescope. We order them according to increasing distance from the Earth.

1. The aurora, or Northern lights, can be seen regularly in northern latitudes, but sometimes
also further south, for example in Scotland.
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. The Sun, sunspots, 11l-year cycle, prominences. In order to see some of those
phenomena a little telescope or binoculars would help. Some big sunspot groups can
sometimes also be seen with the naked eye at sunset when the Sun is not too bright. Also
seen can be traces of the solar granulation, a convective flow pattern on the solar surface,
but here one definitely needs a small telescope.

. Planets, Saturn’s rings, Shoemaker-Levy crash onto Jupiter, Jupiter’s red spot
are some topics related to our solar system. The following questions arise: how were the
planets formed, what do Saturn’s (and other giant planet’s) rings tell us, why was it so
difficult to predict the consequences of the comet crash on Jupiter, or what kept Jupiter’s
giant red spot together for so long?

. The zodiacal light is a relict of the protostellar disc that surrounded the forming Sun
and out of which planets formed. The zodiacal light can best be seen in the morning hours
of the months October/November and the evening hours of February/March, when the
ecliptic stands most steeply above the horizon.

. Meteors, meteorites, and comets also tell us a lot about the solar system. Some
meteorites are magnetised, which provides evidence that the early protostellar disc was
magnetised when it cooled down below the Curie point, where ferromagnetic materials are
able to hold a magnetic field. One particular meteorite has also been used as evidence of
life on Mars, but this story now turned out to be a red herring.

. The Sun and other stars, variable stars, binaries, supernovae (SN), supernova
remnants (SNR) are examples in astrophysics where hydrodynamics and magnetic fields
in stars play important roles. Stars may show complicated motions (circulation, granula-
tion, oscillations), which can sometimes be very violent (supernovae). In other cases, they
lead to magnetic field generation (the solar dynamo), which is the basis of solar and stellar
activity, the sunspot cycle, prominences, and so on.

. The Milky Way, ie our Galaxy, as well as other galaxies, are examples of astrophysical
bodies on a much larger scale (ten orders of magnitude larger than the Sun). A lot of
new physics is introduced by them which explains for example why galaxies can have a
spiral structure, or why galaxies can have a halo of synchrotron emission. Many galaxies
also show magnetic fields with a large scale pattern, reviving again the interest in dynamo
theories. The Andromeda nebula is the brightest spiral galaxy visible with the naked eye.

. Interstellar clouds, Hil nebulae, and reflection nebulae are topics of galactic physics
which touch to some extent upon questions of hydrodynamics: how do interstellar clouds
form (this in turn is related to turbulence in the interstellar medium), and how can stars
form out of clouds. Hir nebulae are best seen on photographs using even an ordinary
50-mm lens. Exposure times of 5 min can be sufficient. The Orion nebula is the most
dramatic one an can be seen with the naked eye.

. Open and globular clusters are also members of our Galaxy which can be seen by the
naked eye. With a somewhat broader understanding of what fluid dynamics is, they too
belong to the subject. Clusters are selfgravitating bodies consisting of many stars. Similar
to an ensemble of randomly moving gas particles in a star, the ensemble of stars too can
provide some kind of a pressure that prevents the cluster from collapsing. The Pleiades
are an example of a big nearby open cluster. M13 in the constellation of Hercules is a large
globular cluster.
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There are many more things that can now be seen, using the Hubble space telescope (HST)
for example. Completely new classes of objects and phenomena have been discovered by employ-
ing other wavelengths of the electromagnetic spectrum (radio telescopes, as well as telescopes
operating at microwave, infrared, ultraviolet, X-ray and gamma-ray wavelengths). Some events
have been of particular interest quite recently:

o The supernova SN1987A provided essential information. Its neutrino emission was moni-
tored, which led to new constraints regarding supernova explosions in general.

e The crash of comet Shoemaker-Levy onto Jupiter has been an unexpectedly dramatic event,
which teaches us a lot about impacts of bodies in planetary atmospheres. Some of you
may have seen the impact through a big telescope.

e The measurements of the cosmic background radiation by the COBE satellite have spawned
a lot of new research in cosmology.

o The Hubble Space Telescope has provided direct images of objects whose existence has so
far only been inferred theoretically. For example, accretion discs around protostars and in
X-ray binaries are now observed directly. The outer rings of active galactic nuclei (AGN)
have now also been seen directly.

e Ground-based telescopes provided evidence for an acceleration of cosmological expansion,
thus calling into question the standard cosmological theories.

Table 1.1 gives an overview of the topics mentioned above, and which will be (or should have
been) addressed in this course.

Table 1.1: Summary of topics

Planets, Stars, Galaxies, AGNs,
Planetary systems Binaries Clusters
Material iron, lava hydrogen, helium gas, stars
Large scale flows differential rotation rotation and circulation Keplerian flow, spirals
Discs, winds, jets protoplanetary around compact objects AGNs, Quasars
Violent events comet crash SN explosions starbursts, BH collisions
Flows & turbulence circulation convection galactic rotation, SN explosions
Magnetic fields compass, space crafts cyclic fields synchrotron emission

1.3 Units and symbols

Throughout this course we adopt SI units. However, most common in astrophysics are actually
gaussian cgs units. In order to facilitate comparison with the literature we sometimes give some
basic results in cgs units.

In addition to SI units we also use sometimes units that are appropriate in astrophysical
context. For example distances in the solar system and in protostellar discs are often measured
in astronomical units (1 AU is the average distance between the Sun and the Earth). On galactic
scales one often measures distances in parsec or in kiloparsec. (The distance between the Sun and
the centre of the Milky Way is approximately 10 kpc.) Time is sometimes conveniently measured
in years (1yr = 3.16 x 10" s), and mass is expressed in units of solar masses (1 Mg = 2 x 103 kg).
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See Table ii for a list of such units and Table v for some frequently needed fundamental
constants.

When we use cartesian coordinates we denote them (z,y, z). For cylindrical polar coordinates
we use (w, ¢, z), and for spherical polar coordinates we use (r, 8, ¢).

Typically we end up using a bunch of greek symbols in places. However, not all funny
symbols are greek. The symbol w is a mixture between pi () and omega (w), and is therefore
sometimes called ‘pomega’. Table vi shows a list of some other symbols and their meanings.

1.4 The equation of motion

At the basis of mechanics lies the equation of motion describing the motion of a single particle
or an ensemble of particles (and a gas is an ensemble of molecular or atomic particles) under
the influence of external forces. The equation of motion is also known as Newton’s first law and
can be written as

dv
m— =F 1.1
dt 7 ( )
where d/dt denotes time differentiation, v is the velocity vector and F is the force acting on the
particle of mass m. Table 1.2 gives examples of forces.

Table 1.2: Table of forces that can govern the motion of a single particle of mass m, electric charge g,
radius r, volume V', in the presence of gravity g, a magnetic field B, overall rotation €, in a medium of
dynamical viscosity u, and density p.

Name symbol expression
gravity force F, = mg
electrostatic force Fq = qE

Lorentz force Fr = ¢gvxB
Coriolis force Fcor = —-m XV
centrifugal force F. = mP’w
Stokes drag force Fp = —6murv
turbulent drag force F](jturb) = —Cprriov’v
buoyancy force Fhuoy = ApVg

1.5 Text books

Some useful text books include:

Shore, S. N. 1992 An Introduction to Astrophysical Hydrodynamics. Academic Press.

Shu, F. H. 1992 The Physics of Astrophysics. Vol. II. Gas Dynamics. University Science
Books, Sausalito, California.

Zeilik, M. 1994 Astronomy: The FEvolving Universe. John Wiley & Sons.

The book by Zeilik has many pictures and explains things qualitatively (no formulae). The
book by Shore is more mathematical and interesting to read. It has many misprints however.
Finally, the book by Shu covers things in much more detail. Regarding accretion discs good
books are those by Frank et al (1992) and Campbell (1997):
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Campbell, C. G. 1997 Magnetohydrodynamics in Binary Stars. Kluwer Academic Publishers,
Dordrecht.

Frank, J., King, A. R., & Raine, D. J. 1992 Accretion Power in Astrophysics. Cambridge:
Cambridge Univ. Press.

As for solar physics, the book by Stix is quite comprehensive:

Stix, M. 1989 The Sun: An Introduction. Springer.
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Chapter 2

Particle flows and atmospheric
dynamics

Again, we start with phenomena closed to us. We mentioned already the aurora, which is just
100 km above us, provided we are in the right latitudes or otherwise just lucky enough. The
aurora results from a complicated interaction of the Earth’s magnetic field with the solar wind.
Therefore we mention the origin of the Earth’s magnetic field first.

2.1 The Earth

2.1.1 JIonosphere and magnetosphere

Thirty years ago, when the American space craft Explorer flew high enough into the upper layers
of the Earth’s atmosphere, they discovered a belt with very energetic particle radiation. These
belts are now called the van Allen radiation belts. In fact, certain magnetic field configurations
can trap particles (magnetic bottle). These ionised particles then form the ionosphere.

The Earth atmosphere plays the role of a TV screen, it starts to emit light when electrons
ionise or excite N2 and/or Oy. The final acceleration is due to strong electric fields high in the
atmosphere at a height of a few thousand kilometers. Initially, however, the particles are set
into motion because of field aligned currents that are produced in the magnetosphere. Those
currents are driven by plasma motions in the magnetotail and occur when the magnetotail goes
unstable. This instability in turn is caused by changes in the solar wind, especially when the
magnetic field of the solar wind turns south, i.e. in the opposite direction as the Earth’s magnetic
field, facilitating thus reconnection.

Magnetospheres, ie magnetised envelopes shielded against the ambient solar wind, occur
around all planets that have a magnetic field. Also strongly magnetised stars, such as neutron
stars, have magnetospheres. We won’t go further into this right now. Instead we shall now
consider the motion of a charged particle in a magnetic field in more detail. After that we shall
consider another case of particle motion where the governing force is not the magnetic field, but
gravity together with friction.
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2.1.2 Spiralling along field lines

Electrically charged particles spiral along magnetic field lines. If the particle’s motion is only
governed by the magnetic force, the equation of motion is

mi—‘t’ =qv x B, (2.1)
where m is the mass of the particle (electron, proton, etc) and ¢ is its charge (negative for an
electron). This effect may be familiar from the technique of a TV tube, where an electron beam
is deflected according to Eq. (2.1); see Figure 2.1.

The magnetic field is now assumed to be constant and along the z-direction (in a local
coordinate system), B = (0,0, B), so

Vg 0 +vyB
vxB=|v | x|0])=|-vB], (2.2)
Uy B 0
and therefore
muy = +qu,B, (2.3)
muy = —quiB,
mu, = 0, (2.5

where the dots denote time differentiation, ie v = dv/dt, and the solution is

vy = vgocos(wgt + D), (2.6)
vy = —Ugosin(wyt+ @),
Vz = 720 2.8
where
qB

is the gyration frequency or cyclotron frequency. The integration constants ® (the phase) and
Vg0, V0 follow from the initial conditions. The corresponding trajectories are given by

s = x4+ Zﬂ sin(wgt + ¢) , (2.10)
g
v
Yy = Yo+ % cos(wgt + @) , (2.11)
)
z = zo+ vt (2.12)

with three more integration constants zg, o, 20- These equations define a helical spiral of
constant radius and pitch.

2.1.3 The magnetic bottle and magnetic drift

If the field is not uniform, the motion will no longer follow perfect spirals. Two different things
can happen. If the field strength increases along the direction of the magnetic field, the gyration
frequency will increase, so the particle will spin faster. However, the particle has only a certain
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Figure 2.1: Electron path in a TV tube. Deflection of an electron beam by a magnetic field. The field
points out of the paper. The term v x B points downwards but, because electrons have negative charge,
the beam is deflected upwards.

amount of energy and there is therefore a limit how fast it can go. Having reached this limit,
the particle cannot go any further into the regions of stronger field strength and has therefore to
return. This property allows the particle to be trapped in a magnetic flux tube whose ends are
closed by having enhanced field strength there. Such an arrangement is also called a magnetic
bottle.

Magnetic bottles play a role in confining plasma in fusion experiments. The dipole magnetic
field of the Earth also provides effectively a magnetic bottle, because towards the poles the field
becomes strong, causing particles to be reflected back into the region of weaker field. The result
of a numerical integration of Eq. (2.1) is shown in Figure 2.2, where a dipolar field has been
assumed with B = V x (Ac;ﬁ) and A = sinf/r?, where r is spherical radius and 6 is colatitude.

Figure 2.2 shows yet another effect, namely a drift of the particle perpendicular to the
direction of the field and perpendicular to the direction in which the field strength varies. This
leads to a drift of the particle in the longitudinal direction. The reason is simple. When the
particle spirals along the field, the part of the arc where the field is stronger is tighter than the
part of the arc where the field is weaker. This leads to a mismatch which causes the drift.

2.1.4 The Earth’s magnetic field

The Earth’s magnetic field is dipole-like, tilted 12° against the rotation axis, and it has reversed
polarity 9 times in the past 3.5 Myr in an irregular fashion. (1 Mega-year is 106yr.) Since
the field is not constant, and because the conductivity is too poor to keep currents going for
long enough, there must be some mechanism (a dynamo) that converts kinetic energy (from
convection in the outer iron core) into magnetic energy and thus replenishes the magnetic field
continuously. The key ingredients of such a mechanism are differential rotation and cyclonic
motions, see the box below.

The self-exited dynamo: differential rotation winds up an initially poloidal magnetic field
and generates a toroidal magnetic field. As we will explain later, magnetic field lines are
often strongly coupled to the fluid and can therefore be dragged along by the fluid motion,
provided the field is not too strong to resist this process. A toroidal magnetic field in turn
can generate new poloidal magnetic field (needed in the first place) by convection in the
presence of rotation. A downdraft starts to swirl because of the overall rotation (Coriolis
force) similar to lows and highs on a weather map.
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Figure 2.2: Left: plot of a particle path in the dipole magnetic field of the Earth. Note the reflection
near the two poles where the field strength increases and therefore the gyration radius decrease. Right:
three-dimensional visualisation of the particle trajectory. Note a drift of the magnetic field perpendicular
the magnetic field gradient, ie in the azimuthal direction.

2.2 Particle settling in the atmosphere

Let us still stay on Earth with our examples and consider the ejecta of a volcano some years
after the eruption. We want to know how long it takes for little micrometer-sized particles to
settle to the surface. In fact, up to 10 years after the eruption of Krakatau (a volcanic island in
the sea between Sumatra and Java that erupted violently in 1883) there were luminous clouds
visible 45 min after sunset.

Geometric optics after sunset: near the equator, 45 min after sunset, the Sun is about
a = 10° below the horizon. (24h corresponds to 360°, so 0.75h corresponds to 0.75 x

360°/24 = 10°.) Since the dust clouds are still illuminated by the Sun, their height must
be H = (1/cosa — 1) Rg = 120 km; see Figure 2.3.

Figure 2.3: 45 min after sunset the Sun still illuminates dust particles in 100 km height.
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The reason those dust particles can stay for such a long time in the atmosphere is because
of friction or a viscous drag force Fp. In the absence of friction, the free fall time, ¢t = \/2H/g
would be about 160s. Now in the presence of friction, the equation of motion is

d
me = —-mg + Fp, (2.13)
dt
where the drag force Fp can be computed from the full hydrodynamical equations under the
assumption that nonlinear terms are unimportant. The result is called Stokes’ drag with

Fp = —6muro, (2.14)

where p is the dynamical friction p = 2 x 107> kgm~! s~ for air, r the radius of the particles, m
its mass, and v its velocity. Initially the particle will just accelerate, but fairly quickly friction
sets in and the terminal velocity is reached, which results from the balance

4
0= —?ﬁr?’gpg — 6murv, (2.15)
where the particle mass is replaced by its volume times its density which, for rocks and silicates,
is about 4 x 103kgm—3. So, for 7 = 1ym = 10~% m we obtain
2 2
v| = gﬂ ~4x1074m/s. (2.16)
1

So, the descent time from a height of H = 100km is then ¢ = H/|v| ~ 3 x 10¥s = 10yr.

We shall return to this type of algebra later in connection with the formation of planetesimals
out of the dust in the protosolar nebula. Before this, we shall briefly discuss thermal buoyancy,
which we just encountered in connection with the volcano eruption.

2.3 Flows in the atmosphere

The dust particles are not simply tossed out into the air by the volcano, but they can rise along
with the heated air into high altitude. This raises the following question. Consider a fluid parcel
that is heated by a certain amount. How far would it rise before it returns back, for example.
Or does it return back? In order to answer those questions let us first consider the effect of the
buoyancy force.

2.3.1 The buoyancy force: the hot air balloon as an example

Gas motions in the Earth’s and solar atmospheres are often driven by buoyancy. As an example
we now calculate the buoyancy force from a hot air balloon. The buoyancy force results from
a lower density inside the balloon (or any other container) and the density outside it. So the
buoyancy force is given by

Fbuoy = _AQ Vg, (2'17)

where g is the gravitational acceleration (= 10ms 2), and Ap = g; — g is the density difference
between the interior and the exterior of the balloon. If the density within the balloon is smaller
than outside, Ap < 0 and Fi,oy is positive. The density deficit depends on the temperature
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excess and, assuming that there is no pressure difference (which is justified for a hot air balloon),
the two are proportional to each other, so

Ao _AT

- 2.18
-5 (218)
Let us assume that the temperature inside the balloon is 80° C and the exterior temperature is
209 C. The temperature difference is then 60® C = 60K, and the absolute temperature is then
isT=20K + 273K =~ 300K (Kelvin), so

Ap 60
— =—-——=~0.2. 2.19
0 300 ( )
So, one cubic meter of hot air is about 20% lighter than cold air. Since the density of air is
approximately ¢ = 1kgm™3 we have A = 0.2kgm~3. The larger the balloon, the more hot air
there is and the lighter is the balloon. Assuming a spherical shape with radius R the volume of
the balloon is Vianeon = (47/3)R3, so the upward force of the entire balloon is

(—Ap)gV = 4%R?’(—Ag)g- (2.20)

This has to be balanced against the weight of the balloon, which is mg, if m is the mass of the
payload. Thus, we have
a7

?R?’Ag =m. (2.21)

If we want to know the size of the balloon necessary to carry, say, m = 500 kg, we have

3 m\Y* /1 s500kg \Y®
(2 2) & (-2 )~ ¥Y625mw~ 2.22
R ( ) (40.2kgm—3) 625m ~ 9m, (2.22)

which seems quite plausible.

2.3.2 The perfect gas. Equation of state

We need an equation of state that relates the pressure p of a gas to its density p and its
temperature T'. For a perfect gas this relation is

R
p= ;TQ, (2.23)

where R = 8315m?2 s~ 2 K~ (this is a script or curly R!) is the universal gas constant and y is the
molecular weight (dimensionless), which is the atomic or molecular mass expressed in units of
lamu (to a good approximation, px = 1). The quantity RT/u has the dimensions of a velocity
squared. As we will see later, this quantity equals the square of the sound speed in a situation
where changes in the pressure and density are isothermal.!

The quantity

. 1/2
CngOth) — (E) (2.24)
7

! Whe(n th)e changes are adiabatic, e.g. when thermal conduction is weak, the sound speed is slightly larger:
isoth
cs = \/'7(:5 .
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is therefore also referred to as the isothermal sound speed. For air the value of u is 28.8, so

. 1 1/2
CngOth) ~ (W) Hl/ s ~ 300 m/s (225)

For ionised hydrogen 1 = 0.5 (the atomic mass is 1 and the number of particles 2, because there
are protons and electrons). However, in the Sun, as well as elsewhere in the cosmos, there is also
helium and the value of y is then around 0.6. On the other hand, the presence of neutral and
molecular hydrogen increases the average value. Approximate values (to an order of magnitude)

of céismh) and T are given in Table 2.1.

Table 2.1: Typical sound speeds in the Sun.

T C(isoth)

S

102K  1km/s
10* K 10km/s
10° K 100km/s

Specific heats: The energy content of a gas is measured by its specific heat, which
is the energy needed to increase the temperature by one degree. This quantity can be
measured by holding either the volume of the gas constant (specific heat at constant
volume, ¢,) or by keeping the pressure constant (specific heat at constant pressure, c,). In
general, the specific heat at constant volume is smaller than the specific heat at constant
pressure, because when the pressure is constant the energy is not only used to increase the
temperature, but also to increase the volume. The work associated with this is p AV =
R/uAT, and therefore

N R/u (2.26)
According to the kinetic theory of gases (ie the theory that describes the gas as noninter-
acting particles) the specific heat at constant volume is equal to R/(2u) times the number
of degrees of freedom f of a single particle (atom or molecule), ie ¢, = fR/(2u). Because
of Eq. (2.26) we have ¢, = (f + 2)R/(2). Therefore the ratio of the two specific heats,
Y = ¢p/cy, is equal to

y=—. (2.27)

For a mono-atomic gas f = 3, corresponding to the three directions of translation, so
v = 5/3 = 1.67. Further, for a bi-atomic (dumbbell-like) molecule there are two additional
degrees of freedom corresponding to the rotation of the molecule about the axis connecting
the two atoms and perpendicular to it, so f = 3+2 and y = 7/5 = 1.4. The third rotation
axis is only distinguished in molecules with more than two atoms. So, for example in CO-
f = 6 and therefore v = 8/6 = 4/3 =~ 1.33. Yet, values of 7y closer to unity are possible
when the molecules exhibit various kinds of oscillations that further increase the number
of degrees of freedom.
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2.3.3 The isothermal atmosphere

Things are changing as we rise. The exterior density decreases, decreasing therefore the buoyancy
force. On the other hand, the pressure decreases, so the balloon (or gas parcel) expands and
so the interior density also decreases. Which one decreases faster, depends on the temperature
profile in the atmosphere. The simplest type of atmosphere is the isothermal atmosphere, ie one
where the temperature is constant.

In any atmosphere in hydrostatic (or mechanical) equilibrium the weight (per unit area) of
a thin layer of gas, pgdz, increases the pressure by the amount piop — prot = —Ap = pgdz, so
the condition of hydrostatic equilibrium is

dp

- =- 2.28

7, = 09 (2.28)
where ¢ is the gravitational acceleration (~ 10m/s? for the Earth and ~ 300m/s? at the solar
surface).

If the atmosphere is isothermal, then p = cgg, where cg = const. In that case we obtain
d do
(o) =~ = —og (2:29)
or (after dividing by ¢ and c2)
1do dlnp
od: " dn —g/c2 = const, (2.30)
SO
Inp = —gz/c2 + In gy, (2.31)

where In gg is an integration constant.

So, ¢ decreases exponentially with height, ie
0= ooe *H, (2.32)
where
H==¢c/g (2.33)

is also called the scale height of the atmosphere.

Furthermore, since p = cgg we have

p=poe /", (2.34)

where py = c20p.

2.3.4 Adiabatic changes. Entropy

If a fluid parcel preserves its heat content, ie if radiative losses or other heating mechanisms
are unimportant, pressure and density changes are said to be adiabatic. This is described by a
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quantity called the entropy which is then unchanged. For a perfect gas, we define the specific
entropy (ie entropy per unit mass) as

s=cylnp—cplnp. (2.35)

(In principle there could be an additive constant sp, but we can put it to zero, because only
changes in s matter.) The entropy per unit mass is relevant, because we consider a bubble of a
given mass. The specific entropy, in units of ¢, is

1 1
sfep=—Inp—Inp=-In(p/o"), (2.36)
Y Y
so if changes in p and p are adiabatic, ie if s = const, then

p= e’YS/Cp Q’Y (2.37)

- (2

or
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Figure 2.4: Entropy profile for an unstable atmosphere. The entropy difference between the bubble
and the exterior increases constantly as the bubble ascends.

In order to understand the evolution of a parcel in an atmosphere it is convenient to compute
the vertical dependence of s. For an isothermal atmosphere the vertical gradient is

1 ds 1 1 y-11

-2 =———>0 2.39

cp dz vyH H v H ’ (2:39)
so s increases with height. This means that a rising fluid parcel, whose entropy is conserved, will
end up in a location where the surrounding entropy is higher. At the same time, however, the
pressure inside and outside the bubble will be the same, so p; — pe = Ap = 0, where subscripts

i and e refer to interior and exterior values. Thus, from Eq. (2.36) we have
As/cy, = —Alnp. (2.40)

So, since the rising fluid parcel ends up in a location of higher exterior entropy, we have As < 0
and therefore Alnp > 0, so the fluid parcel becomes heavier and will be pulled back by the
gravity. This provides a restoring force proportional to the vertical displacement, which leads to
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2.3.5 Brunt-Vaisala oscillations

When the bubble rises over a distance z (from its original position, where As = 0), the relative
change of density Ap/¢ = Alnp between interior and exterior is equal to
1 ds

Alng=—-As/cp = +—

— 241

so it is proportional to the displacement z. Now the buoyancy force acting on the fluid parcel
per unit volume, is —Apg, so

0z =—Apg (2.42)
(dots indicate differentiation with respect to time), or 2
A A d
0 Cp cpdz

A solution of this differential equation is
z = zg cos(wpyt), (2.44)
where 2z is the initial displacement from the equilibrium state and wgy is the Brunt-Vaisala (or

buoyancy) frequency (sometimes also called Ngy) with

2 g ds
= =—. 2.4
Wry cp dz (2.45)

This expression only makes sense if the atmosphere is stably stratified, ie if g - Vs < 0, and so
we can express (2.45) in vector notation,

Wiy = —g - Vs/cp. (2.46)

2.3.6 Polytropic atmospheres

Real atmospheres are not isothermal. A better approximation is to assume that 7' increases
linearly with depth. (See Chapter 3.2.) Warning: depth increases downwards, whereas height
increase upwards. To distinguish between the two we denote depth by z, with Z = zp — 2.
Thus, dz = —dZ, and therefore Eq. (2.28) becomes

1dp
e 2.47
0d5 9 (2.47)
Now for a polytropic atmosphere we have

T/To = Z/Hr, (2.48)

where Hp is the temperature scale height, the value of which will be determined below. The
density is then assumed to be a power law of T', so

o/oo = (T'/To)"™, (2.49)
2 The change in sign in the last equation may be counter-intuitive, but one should keep in mind that
d d
As=si—se=8(2=0) —8(2) = = - (0—2) = —=—2.

T dz dz
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where m is the polytropic index. Because of Eq. (2.23) the pressure is then

p/po = (T/Tp)™*. (2.50)
Plugging this into (2.47) we have
- )
0y ' (z/Hr) " [po(z/Hr)" '] =g (2.51)
or
RTy
E(m +1) =g. (2.52)

The (constant) temperature gradient is then

9

B =To/Hr = m

(2.53)

In order to see what happens to our fluid blob we determine again the entropy gradient, using
Eq. (2.36),

(y=1m-1
—7 .

1 1 1 1
1ds __1ds _mtl,m_1 (2.54)
cpdz cpdz vz zZ  Z

Here we have used the fact that dIlnp/dz = dIn(p/py)/dZz, because the second term in In(p/pg) =
Inp — Inpg is constant, and so

dlnp _ dIn(p/po)
dz dz

dIn(T/Tp)
dz

dlnz m+1
— = . 2.55
dz z ( )

=(m+1) =(m+1)

Evidently, for
m< —— (2.56)

the entropy gradient ds/dz turns negative, so a rising blob would find itself in an environment
whose entropy is getting smaller and smaller as it rises further. This means its density relative
to the exterior density is getting smaller and smaller, so the bubble becomes even more unstable.
Since such bubbles may break lose all over the place the whole medium will start to bubble.
This process is called convection. In this case the Brunt-Vaisala frequency becomes formally
imaginary, corresponding to an exponentially growing solution. This is because coswpyt =
Re (e ™rVt) = BVt where ogy = Im(wpy). For 7 = 5/3 the criterion (2.54) for instability is
m < 3/2 (or m > 5/2 for vy =7/5 and m > 3 for y = 4/3).

We shall return to convective instability in connection with the solar convection zone; see
Figure 3.2.

2.4 The Jovian Planets

Talking of Jovian planets one normally means Jupiter, Saturn, Uranus, and Neptune. These
planets are also called giant planets, because their radii are 5 — 10 times that of the Earth. Their
average density is around (0.7 — 1.6) x 10°kg/ m3, as opposed to (4 — 6) x 103kg/ m? for the
terrestrial planets (Mercury, Venus, Earth and Mars).
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Figure 2.5: Foucault pendulum: want to change sense of plot, so that it applies to northern hemisphere.
The pendulum swing back and forth tries to keep its orientation in space. The earth moves under it
in the counter-clockwise direction, which makes the direction of the pendulum appear to turn in the
clockwise direction.

A prominent hydrodynamical phenomenon on Jupiter is the Great Red Spot. It has an
elliptical shape and is about 14 Mm X 40 Mm in size, ie larger than the Earth! It is basically
a region of high pressure and very stable (we know about its existence for at least 400 yr). It
is located on the southern hemisphere where it rotates counterclockwise, as expected from the
action of the Coriolis force; see the box below. Its revolution time is about 7 days, which is long
compared to the rotation period of Jupiter of just 10 hours.

The Coriolis force. It is often convenient to consider the governing equations in a
rotating frame of reference. When performing a coordinate transformation from a non-
rotating to a rotating frame of reference, an extra force appears in the equation of motion.
(An example of such a coordinate transformation was given in the course MAS215 on
Planetary Orbits.) Thus, the equation of motion takes the form

fz_::l -2 xu, (2.57)
where the dots refer to the terms that we had before also. The Earth’s rotation can
be established by using a pendulum (the Foucault pendulum). Assume that we are on
the north pole, so 2 = (0,0,9), and that the pendulum swings in the z direction, ie
u = (ug,0,0), then the Coriolis force is —2Q x u = —(0,2Qug,0). After a short time 7
the pendulum experiences a force in the negative y direction when the pendulum swings
forward (u; > 0) and in the negative y direction when it swings backwards. After one
day the plane in which the pendulum swings back and forth has rotated by 360%rc.
This an be understood by viewing the Earth as rotating underneath the pendulum; see
Figure 2.5. An important effect of the Coriolis force is to cause converging flow regions
to swirl counterclockwise. Those are the regions of low pressure, as seen on a weather
map; see Figure 2.6. For such a motion, the Coriolis force (pointing inwards) balances
the outwards directed pressure force. High pressure regions, on the other hand, rotate
clockwise. This is the case for Jupiter’s red spot.

Jupiter has a magnetic field that is 10 times as strong as the Earth’s magnetic field (4 x
10~*T). Jupiter also has a magnetosphere and auroras in higher latitudes. The Jovian mag-
netic field is probably also generated by a hydromagnetic dynamo, but now it is liquid metallic
hydrogen which conducts the currents.
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Figure 2.6: The action of the Coriolis force: low pressure regions are converging, and then the Cori-
olis force makes them swirl in the counter-clockwise direction (or clockwise direction on the southern
hemisphere).

2.5 The pressure-less collapse

The gravitational acceleration due to a point mass is in general given by

GM
3

g=- r. (2.58)

r

In the following we adopt spherical polar coordinates, so the radial component of the gravita-
tional force is —GM /r?.

2.5.1 Free-fall collapse of a homogeneous sphere

Consider a spherical molecular cloud of constant density gg. Let us first assume there is nothing
to prevent it from collapsing, i.e. pressure and magnetic fields are assumed to be negligible. The
equation of motion then reduces to the form

(2.59)

where r is, as usual, the spherical radius, ie the distance from the centre of mass. The mass M
inside the sphere of initial radius rq is (47/3)r300, so we obtain

T A7 r\ 2
=__@q — 2.60
To 3 o (7‘0) ( )

We may nondimensionalise by defining & = r/rg and 7 = t/ty, where tg = [(47/3)Goo]~ /2.

Thus we have

s (2.61)
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Figure 2.7: Solution of the homogeneous collapse problem.
where the dot now denotes differentiation with respect to 7. We multiply by f and integrate
(note that dé~1/dr = —££72)
=", (2.62)

where the integration constant is put to unity, because § = ( initially when £ = 1. It is convenient
to define a new variable 6 via

¢ = cos® 0, (2.63)
SO
£ =—20sinfcosf, ¢ ' —1=sin’0/cos?0, (2.64)
so we are left with
262 cos? 0 = cos 20 (2.65)
which can be integrated
/cos2 0d0 = 2727 + const. (2.66)
The integral can be looked up in a table:
10+ Lsin20 = 271/27, (2.67)

which can easily be verified. The integration constant is zero, because § = 0 for 7 = 0. The
solution is plotted in Figure 2.7.

We define the free-fall time 7¢ as the time it takes for the sphere to collapse to & = 0, ie
6 = 7/2. This time is 7 = 7/4/8 ~ 1.11 or, in physical units,

3
=/ 2.
ta 32G oo (2.68)

Note that the free-fall time is independent of ry, and depends just on the initial density gg.
Therefore, all shells collapse at the same time to the origin. Plugging in the mean interstellar
density o = 2 x 1072 kgm™3, we have tg = 5 x 107 yr. The density can be ~ 10 times shorter
if a hundred times larger density is assumed, which is indeed the case in interstellar clouds.
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Figure 2.8: Collapse calculation with centrifugal force with £2/(GMr) = 0.1. The dotted line gives the
solution for £ = 0 and the dotted-dashed line gives the equilibrium value, req = £2/(GM).

2.5.2 Free-fall collapse with rotation

In the presence of rotation we have to take the centrifugal force into account,
Frentrit = mQ2°r, (2.69)

where € is the angular velocity. As the collapse progresses, the radius decreases, and so the
body will spin up like a pirouette dancer. This is because angular momentum is conserved. The
angular momentum is given by

(= Q% (2.70)
and so if £ = const then we can rewrite the centrifugal force as
Frontrit = m(Q2%r?) r=3 = me?r=3. (2.71)
Thus, Eq. (2.59) has an additional term,

GM £
— =+

- (2.72)

F=-= et
Figure 2.8 gives a numerical solution, which shows that the collapse stops and reverses in an
oscillatory way. In reality we won’t expect such oscillations to occur, because this would require
coherent motion of all particles within one ring. More realistic is that each particle goes on
an elliptic orbit instead. Nevertheless, the main thing is that rotation does prevent the final
collapse. The only way to proceed with the collapse is by having a mechanism that removes
angular momentum. There are two possibilities: magnetic fields and turbulent viscosity. They
will be discussed later.

2.5.3 The effect of gas pressure

In the presence of gas pressure, there will eventually be a balance between gas pressure and
gravity. If the overall mass involved is anywhere between 0.1 and 10 solar masses, a star of that
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mass will form. If the mass is greater than 10 solar masses the configuration is likely to break
up into smaller pieces, and multiple stars may form, for example. If the mass is too small (less
than ~ 0.1 M) the configuration will never become hot enough to ignite and will form a brown
dwarf.

Stars are really in a state of balance between gas pressure and gravity. However, any pertur-
bation to this state results in oscillations. Those oscillations can be spherically symmetric, in
which case they are called radial pulsations, but in the more general case they are non-spherically
symmetric. Their frequency is a multiple of v/Gp, which is thus similar to the inverse free-fall
time. Because the restoring force is the pressure gradient, those modes are in general referred
to as p-modes. Those modes play an important role in astrophysics, especially in solar physics,
because their frequencies depend on the average sound speed in various parts of the Sun and
can actually be used to infer the variation of the sound speed (and therefore the temperature)
with depth. We return to this in the section on helioseismology (§3.5).

2.6 Protostellar discs

The solar system, like other planetary systems, has formed out of a spinning cloud, also called
the protosolar nebula. There are however various problems and the details of the explanation
are more complicated.

2.6.1 Angular momentum transport

There is a problem regarding the angular momentum distribution. Although the Sun contains
99.9% of the mass of the solar system, it holds only 1% of the angular momentum. So there must
have been a mechanism that removes angular momentum from the inner parts and deposits it in
the outer parts. One such mechanism could be magnetic fields. Suppose the early Sun already
had a magnetic field, and suppose also that the protoplanetary nebula was sufficiently hot for
the matter to be ionised, then the field would couple shells at different radii, so the inner shells
tend to be slowed down and the outer shells tend to be spun up. Obviously, all this must have
happened early on before the planets formed, because the magnetic field only couples to the gas
(charged particles), but not to the planets.

2.6.2 Formation of planets: the qualitative picture

There are three main mechanisms that contribute to the growth of planets: gravitational con-
traction, accretion and condensation. The whole process begins with little micrometer-sized
grains that collide and stick together to form larger-pebble sized bodies. This process is similar
to the growth of snowflakes. Once they are formed they quickly fall to the midplane of the disc;
see Figure 2.9. Then gravitational attraction can take over and accumulate the pebbles to form
planetesimals of a few kilometers to a few hundred kilometers in size. This whole process of
planetesimal formation with sizes of a few hundred kilometers may last only a few 10* yr. These
bodies continue to feed themselves by pulling lighter neighbouring bodies by gravitation and
so sweep clear a strip of material in the surroundings of forming protoplanets. The terrestrial
planets have grown to the present size in about 10® yr. This clearing out of a region around each
protoplanet must have been responsible for the spacing of the planets that we see now.

The chemistry of the terrestrial planets is governed by the temperature at which they formed.
Mercury formed at a temperature of about 1400 K, Venus 900K, the Earth at 600 K, Mars at
400K and Jupiter at 200 K. The hotter the material from which planetesimals condensed, the
heavier the dominant elements. For example Mercury has a larger iron core than the Earth.
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Figure 2.9: Sketch illustrating the formation of planetesimals and planets in the protosolar nebula.
(Taken from Zeilik’s book.)

At some point, around an age of 105 to 10 yr the protosun must have ignited. Intense
radiation pressure and strong solar wind will have pushed the remaining gas out of the solar
system. Only heavier gases remained captured by the gravity of the planets.

The formation of Jupiter may have been entirely different. It is possible that Jupiter formed
by gravitational attraction alone. In the beginning Jupiter was much hotter, because the release
of gravitational energy could have heated Jupiter to about 1000 K. Thus, during the formation
of the Galilean satellites the dominant elements may have mimicked a similar chemical sequence
as the terrestrial planets.

2.6.3 Particle dynamics in a disc potential

Assuming now cylindrical polar coordinates, r = (w, ¢, z), where w is the distance from the
rotation axis and z the distance from the midplane. The gravitational potential is ¢ = —-GM /r =
—GM/vVw? + 22, so the gravitational force is

g=—-V¢= 3 0. (2.73)
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The radial component of gravity is balanced by the centrifugal force, Q?w, so

3w = Q?w, (2.74)
or, cancelling out w,
(’;—]y =02, (2.75)
The force is therefore
—w
g=0%1 0 |. (2.76)
—z

In particular the vertical component of gravity is thus
g, = —Q%z. (2.77)

In the vertical direction a particle is governed by the z dependent gravity force, g, = —Q2z.
This affects both the gas as well as dust grains. The resulting stratification of the gas will be
considered in §5.2. Here we consider the effects on dust particle. The vertical component of the
equation of motion of a particle, Eq. (2.13), is then

dv

— = —mg, + Fp. 2.
m— mg, + Fp (2.78)

In protostellar discs, however, the mean-free path of the gas particles causing the friction is so
long that the usual Stokes formula (2.14) has to be modified and is therefore instead

Fp = —ocsa®z, (2.79)

where a is the radius of the particle and ¢g is the ambient sound speed. Using z = v for the
velocity of the particle and m = (47/3)gpa® for its mass, we can rewrite (2.78) as

P14+ Q%2 =0, (2.80)
where
AT op a
S e 2.81
Tp 3 0 ¢ ( )

is the damping time. The characteristic equation,

N4, A+ 02 =0, (2.82)
has two solutions. For small values of 7,2 the two solutions are A\; = T, Land Ay = TpQQ, so the
solution to (2.80) can be written as

H _02 _

Z = 1_7% [e Q ot _ QQTEG t/Tp] (283)

where H is the initial height of the particle. This solution satisfies 2(t = 0) = 0.
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2.6.4 Sweeping up particles in the midplane

When all the mass has accumulated near the midplane, it is likely to get very crowded near the
midplane. Since neighbouring orbits have different orbital speeds, the particles will eventually
collide. One can work out that this will happen when the bodies have grown to a size of 30 km.

However, if the bodies are on exactly circular orbits the collision time is pretty long. If a is
the radius of the body and r the orbital radius then the orbital periods on the orbits r &+ a are

3 3a
Po=2m1y/— 1L =-— 2.84

12 VoM < 2 7") (2:84)
In order that the period difference, AP = P, — P», becomes equal to the period itself one has to
wait N = P/AP = r/(3a) orbits. For 30km sized bodies and r = 1 AU = 150 x 10% km (solar
neighborhood) one has to wait for about 10° orbits, ie 106 yr, because the orbital period in the
solar neighborhood is 1 year.
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Chapter 3

The Sun (and other stars)

In this chapter, we explicitly discuss only the Sun. This is mainly because for the Sun a lot of
details are observable and known that are much more difficult to obtain for distant stars. Apart
from this “selection effect”, all the concepts presented here are applicable to broad classes of
stars and in this sense, the Sun appears only as a representative of stars in general.

3.1 The energy budget of the Sun

The luminosity of the Sun is Le = 4 x 1026 W. The total interception with the Earth is

2
TR,

=4 x10719 (3.1)
47rR%®

where Rg is the radius of the Earth (6400km) and Rgg is the distance between the Earth and
the Sun (= 1 AU = 1.5x10'! m). So the total power reaching the Earth is 4x10 10 x4x 102 W =
1.6 x 101" W, which is still a lot compared with the total energy consumption in the US, which
is 108 W.

The total thermal energy content of the Sun is approximately

By = /chng ~ Mc2 ~ 2% 10°kg (10°m/s)” = 2 x 10%] (3.2)

The time it would take to use up all this energy to sustain the observed luminosity is the
Kelvin-Helmholtz time

ki = Fin /Lo = 10%yr (3.3)

which is long compared to time scales we could observe directly, but short compared with the
life time of the Sun and the solar system (more like 5 x 10° yr). This led to the discovery of
the nuclear energy source of stars. One sometimes defines the Kelvin-Helmholtz time scale as
the ratio of potential energy to luminosity, but thermal and potential energy are quite similar
(Virial theorem). In fact, this similarity can be used to estimate the central temperature of a
star by equating GM/R = RT./u. For the Sun this gives
P GM 06 7x10712x 1030K 3
"R R 8300 7 x 108 4
for its central temperature. This estimate is actually spot on. It also tell us that the central
temperature of the Sun is only determined by its mass and radius, and not, as one might have
expected, by the effectiveness of the nuclear reactions taking place there.

107410712 x 102K =1.5x 10'K  (3.4)

27
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3.2 Energy transport and convection

In the central parts of the Sun, energy is transported by photon diffusion: the optical mean-free
path is short compared with other relevant length scales (eg pressure scale height), so we can
make the diffusion assumption, by which the radiative flux F,,q points from hot regions to cooler
regions and is proportional to the temperature gradient, ie

Froa = —KVT (3.5)
where
160gpT?
K=—"%"=>"_ 3.6
3n0 (3.6)

is the radiative conductivity, x the opacity, and osg the Stefan-Boltzmann constant. The value
of x, and therefore of K, depends on the atomic physics involved in absorbing and scattering
photons. It changes slowly, so to a first approximation, VT = const. In a plane parallel
atmosphere dT'/dz = const, ie T increases linearly with depth, which leads to the polytropic
atmosphere considered in §2.3.6.

A good approximation for the opacity x is given by Kramer’s formula

Kk = kool ™72, (3.7)

where kg = 6.6 x 108 m® K7/2kg=2. This value may well be up to 30 times larger if the gas
is “metal rich”, ie a good electron supplier, so that bound-free processes become important as
well. In practice, a good value is kg ~ 1029 m® K7/2kg=2. With this coefficient and Kramer’s
formula, the conductivity is

16055T%/2
K=29580 (3.8)
3Kko0?
If the stratification is given by a polytrope, o ~ T™, then
K ~ T13/2—2m, (39)
which is constant for m = 13/4 = 3.25. This is gives a reasonable representation of the

stratification of stars in convectively stable regions. At the bottom of the solar convection
zone the density is about 200kgm~3 and the temperature is about 2 x 10°K. This gives
K = (3-100) x 10°kgms 2K !. In order to carry the solar flux the average temperature
gradient then has to be around 0.01 K/ m.

However, in reality K changes slowly with height. Therefore the polytropic index effectively
changes with height. In the outer layers the temperature decreases and there is ionisation and
recombination. In that layer there are many electrons allowing for the formation of negative
hydrogen ions, H™, from polarised neutral hydrogen atoms. This leads to low values of K. To
transport the required energy flux, the temperature gradient has to go up. But this means the
polytropic index goes down, see Eq. (2.53), and so the stratification will become unstable. This
leads to convection in the outer parts of the Sun.

To a first approximation we can assume that convection leads to perfect mixing and there-
fore to a nearly uniform entropy distribution, corresponding to a state of marginal convective
stability; see §2.3.4. The star’s stratification can then locally be described by a polytrope with
m = 3/2 (for v = 5/3). A plot of the resulting stratification is shown in Figure 3.1. However,
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Figure 8.1: Simple polytropic stratification. The temperature is assumed to be inversely proportional
to the conductivity, K(z), such that KVT = Fio, = L/(47r?).

towards the surface layers cooling by radiation begins to play a role which causes the entropy to
decrease gradually. A better approximation for the vertical stratification of density and temper-
ature can be obtained by the mixing length theory, which will be discussed next. However, for
more accurate and more detailed models one has to use numerical simulations, which are now
beginning to become feasible.

Figure 3.2: Images of temperature in surface and deeper layers of a convection simulation. Dark means
lower temperatures and light higher temperatures.

3.3 Mixing length theory

3.3.1 Starting equations

e Buoyancy is balanced against advection, so Fyuoy = F](jturb) and therefore ApgV =
Cpov?S, where V is the volume of the bubble and S is cross-sectional area. Denoting
by £ = V/(CpS) the mixing length, we have
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Figure 3.83: Downdrafts contract as they dive into deeper layers where the density is higher. On the
other hand, upwellings expand as they ascend into the upper layers where the density is low.

The only natural length scale in the problem is the scale height, so we assume that the
mixing length is some fraction « of the local vertical pressure scale height, ie

¢ = aH,. (3.11)
The definition of the scale height is
T 2
H,= RT _ & (3.12)
©g g
The definition of the convective flux is
Feonv = 0vep AT. (3.13)

This expression shows that there is a positive convective flux if both the velocity is positive
(upwards) and the temperature fluctuation is positive, ie if the upward moving fluid parcel
is indeed warmer than its surroundings.

There is actually a second expression for the convective flux, which is however more an
approximation than a definition. We know convection can only occur when there is a
downward entropy gradient, ie if the entropy decreases upwards. The entropy transport is
stronger if the downward entropy gradient is stronger. To a first approximation the two
are proportional to each other, ie

Feonv = —x10T'Vs if g-Vs >0, (3.14)

where x; is a (turbulent) diffusion coefficient, and the p and T factors have to be there on
dimensional grounds.

Like with all other types of diffusion coefficients, they are proportional to the speed of the
fluid parcels accomplishing the diffusion, as well as the length over which such parcels stay
coherent. Thus, we have

Xt = cxv, (3.15)

where ¢, is another free parameter of order unity. (The other free parameter was c.)

This is the set of equations that we need to calculate the stratification in a convection zone.
Some of the expressions above, especially (3.10), are severe approximations, and so one usually
allows for extra non-dimensional factors in some of those expressions. This is why in other text
books some of the expressions may involve somewhat different coefficients in places.
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3.3.2 The entropy gradient

To calculate the stratification, the simplest approach was to assume that there was no entropy
gradient at all within the convection zone (perfect mixing). With the equations derived above we
can do better than that. The main thing we see from those equations is that v is proportional to
(AT/T)'/?, see Eq. (3.10), and that therefore Fiop, is proportional to (AT /T)%/?, see Eq. (3.13).
Therefore,

AT/T ~ F23  and v/cs ~ FY3. (3.16)
Using Eq. (3.14) and the fact that y; ~ v ~ Fclo/r}q’v we have

Froony ~ FL3 |ds/dz|, (3.17)
or

\ds/dz| ~ F2[3 . (3.18)

A proper calculation using the equations above shows that

g-Vs/c, =k <2>2 (FCOHV>2/3 (3.19)

Cs oc3

where

NPT
k= (T) 0;104_4/3, (3.20)

which is around unity for ¢, = 1/3 and o = 1.5.

3.3.3 Calculating the stratification

If we assume that all the flux is carried by convection, ie if Fiot = Feony, then we just have the
following system of equations governing the stratification:

dS/Cp g Ftot 2/3
=P 2L 3.21
iz (@ ’ (3:21)
dp g
@ __9 3.22
P 2 (3.22)

together with Inp = %ln p — s/cy, and ¢2 = p/o. A solution of those equations is given in
Figure 3.4. Note the almost perfectly flat s-gradient within the convection zone.
3.3.4 Including the radiative flux consistently

If the radiative flux is to be included consistently we have
Fraqd + Feony = Fiot- (3.23)

The radiative flux is

dT dlnT dlnp dInT
F,g=-K— =—-KT =—-KT . 3.24
ad dz dz dz dlnp ( )
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Figure 8.4: Mixing length stratification. The solid line is for solar luminosity, whilst the dashed and
dotted lines are respectively for 10° and 10° times the solar value.

Here, dInp/dz = —g/c?, and T = ¢2/(R /), so c¢Z cancels out and so

Kg dInT
Frog = —— 3.25
ad R/'u d ]np ( )
This can be expressed in terms of the entropy gradient using the differentiated form of Eq. (2.36),
1
ds/cp = ;dlnp—dlng (3.26)
which leads to

Kg 1 ds/cp
Froag=—=—||1-- . 3.27
TR/ [( 7)+dlnp] (3:21)

Thus, the radiative flux has two contributions, one from the adiabatic temperature gradient (see
?7?), and one from the super-adiabatic temperature gradient, so

ds/c
Fraq = &9 4 K, 2212 2
ad rad + Ky dlnp’ (3 8)
where
Kyg (ad) v-1
-y and F.i =K, — ) (3.29)
Inserting this into Eq. (3.23) we have
ds/c ds/c 3/2
FO 1 g, 22 L g r)  —F .
rad + T d]np + c d]np tot» (3 30)
where K. = oc2/k3/2. We now introduce the additional abbreviations
dS/Cp Ftot — F(:(;l)
= = —— =K, /K 31
dlnp’ f Kc 9 q ’I"/ Cy (3 3 )
so we can write
G3? = qG + F, (3.32)
which leads to a cubic equation for the entropy gradient, G,
G3 — ¢*G% — 2qFG — F2 =0. (3.33)

A table of some values is given below, where we compare with the gradient, Gy = (Fo;/K.)%/,
which is obtained when the radiative flux is neglected. An excellent approximation is to neglect
g, in which case G = F?/3, which is also given in the table.
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Table 3.1: Solutions of the cubic equation for a solar model

r[Mm] T[10°K] G/10°¢ Go/10°¢  F/10°° F?3/10°6 ¢/10°°

530 1.72 0.20 0.36 0.09 0.20 0.31
550 1.45 0.36 0.47 0.22 0.36 0.26
570 1.21 0.58 0.65 0.44 0.58 0.22
590 0.98 0.90 0.95 0.85 0.90 0.19
610 0.76 1.45 1.49 1.75 1.45 0.15
630 0.56 2.60 2.62 4.19 2.60 0.12
650 0.38 5.65 5.66 13.44 5.65 0.10
670 0.20 19.43 19.44 85.67 19.42 0.07
690 0.03 720.24 720.21 19329.29 719.98 0.02

3.4 Convective overshoot

Both numerical calculations of solar mixing length models as well as helioseismology (described
below) indicate that the depth of the convection zone is about 200 Mm. However, near and
beyond the boundaries of the convection zones the approximation (3.10) becomes very bad,
because it ignores the fact that convective elements have inertia and can therefore overshoot a
significant distance into the stably stratified regions. In those layers where the entropy gradient
has reversed, a downward moving fluid parcel becomes hotter than its surroundings. Thus, in
those layers the convection carries convective flux downwards, so its sign is reversed. This is
shown in Figure 3.5 where profiles of entropy and convective flux, (3.13), are shown from a
three-dimensional convection simulation.

Because of strong stratification, convection will be highly inhomogeneous, with narrow down-
drafts and broad upwellings. This leads to a characteristic (but irregular) pattern of convection;
see Figure 3.2. A sketch showing how stratification causes upwellings to broaden and downdrafts
to converge is given in Figure 3.3.

3.5 Helioseismology

3.5.1 Acoustic waves in the Sun

Since the beginning of the eighties, standing acoustic waves in the Sun have been used to gain
information about the interior of the Sun. It was possible to measure directly (ie without the
use of any solar model)

e the radial dependence of the sound speed — and hence temperature

as well as

e the radial and latitudinal dependence of the internal angular velocity of the Sun.

This technique is called helioseismology, because it is mathematically similar to the techniques
used in seismology of the Earth. Qualitatively, the radial dependence of the sound speed can
be measured, because standing sound waves of different horizontal wave number penetrate to
different depths. Therefore, the frequencies of those different waves depend on how exactly the
sound speed changes with depth. Since the Sun rotates, the waves that travel in the direction
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Figure 3.5: Profiles of entropy and convective flux. Region I is the radiative interior, II the overshoot
layer, III the radiative heating layer, IV the bulk of the convection zone, and V the surface layer.

of rotation will be blue-shifted, and those that travel against the direction of rotation will be
red-shifted. Therefore, the frequencies are split, depending on the amount of rotation in different
layers.

Figure 3.6 shows the spatial pattern of a standing wave in three dimensions. It is the frequen-
cies belonging to different latitudinal wave patterns that allow us to determine the latitudinal
dependence of the angular velocity as well.

These acoustic waves are possible, because they are constantly being excited by the “noise”
generated in the convection zone. The random fluctuations in the convection are turbulent and
contain noise at all frequencies, similar to the noise generated by a glider going through the air.
Now the Sun is a harmonic oscillator for sound waves and the different sound modes can be
excited stochastically. This is similar to a bell in a sand storm starting to ring.

Figure 3.7 gives the result an inversion procedure that computes the radial dependence of
the sound speed on depth, using the different frequency modes as input.

Helioseismology is a growing discipline, and more accurate data have now emerged due to the
SOHO satellite and the GONG project (GONG = Global Oscillation Network Group), which
has six stations around the globe to eliminate nightly gaps in the data.

3.5.2 Inverting the frequency spectrum

Like with a violin string, the acoustic frequency of the wave increases as the wavelength decreases,
ie

frequency o< 1/wavelength. (3.34)
More precisely, the frequency w is given by
w = csk, (3.35)

where ¢; is the sound speed and k = 27 /) is the wavenumber (A is the wavelength). If sound
waves travel an oblique path then we can express the wavenumber in terms of its horizontal
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IGURE 13.18 Computer model of some of the resonant tones of the solar interior, Blue
cpresents expanding regions; red, contracting ones. The pattern on the photosphere
csults from the resonances of waves in the sun's interior. The patcerned region just
wlow the surface represents the sun's convection zone, (Courtesy of NOAOL)

Figure 3.6: Three-dimensional wave pattern of a single wave mode. In reality, millions of different wave
patterns are all superimposed.

and vertical wave numbers, k;, and k,, respectively. We do this because only the horizontal
wavenumber can be observed. This corresponds to the horizontal pattern in Figure 3.6. Thus,
we have

k> =kl 4+ k2. (3.36)

The number of radial nodes of the wave is given by the number of waves that fit into the Sun,
or at least the part of the Sun where the corresponding wave can travel. This part of the Sun
will be referred to as cavity. The larger the cavity is, the more nodes there will be for a given
wavelength. The number of modes n is then given by

n:2Ar/>\:2AT§—V =Arky/m, (3.37)
T

where Ar is the radial extent of the cavity. If the sound velocity and, hence, k, depends on
radius, this formula must be generalised to

Ro
1
n=— / ky dr, (3.38)
T

Tmin
supposing the cavity to be the spherical shell ry, < r < Rg.
The horizontal pattern of the proper oscillation is described by spherical harmonics with
indices [ and m, hence the horizontal wave number is

I1+1)

k= (3.39)

and we can write

ho_ @R 104D g\/g 14D (3.40)



36 CHAPTER 3. THE SUN (AND OTHER STARS)

03y T Ty Fig. 5.18, Square of the snund speed [0 1he
i Ann. Cuatimedes fRa imversian of the dutu
M\.x in Tig. 515, darfed  Lheoreticul sl
2 i N : racdel. Frousr Chrisieasen Dalsgaard et al.
[tire & N 1985y
g1} T i
n| " 1 " -:- e
] 02 & (N3] ng 1.0
rirs

Figure 3.7: Radial dependence of the sound speed on radius in the Sun. Note the change in slope near
r = 0.7 solar radii. The oscillations near the centre are not physical. The theoretical model (dotted
line) is in fair agreement with the direct measurements. The sound speed has its maximum not in the
centre, because the mean molecular weight p increases towards the centre, which causes ¢s to decrease.
(Note that ¢Z = RT/p.)

Therefore, the number 7 of radial nodes is given by

Ro
(n + ) _ / g_l(l—l;l)@. (3.41)
w 2 w2 r

The phase shift a =~ 1.5 accounts for the fact that the standing waves are confined by “soft” and
extended, rather than fixed, boundaries.

Introducing new variables
72 I(1+1)

— U=

42
A (3.42)

£

Il

and denoting the left hand side by F(u), we can write

&o
F(u) = / VE—u dzr d€. (3.43)
u

Since we know, at least in principle, F'(u) from observations and are interested in the connection
between r and ¢ (i.e. r and ¢5), we interpret (3.43) as an integral equation for the unknown
function r(¢).

Most integral equations cannot be solved in closed form, but this one can. Differentiate
(3.43) with respect to u and, in the final result, rename ¢ to £

&o
dF 1 1 dlnr dlnr
— =F = —— —1-vu-— 44
U
i.e.
11
F'(u) = T ae. (3.45)

2] VE—u de
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This is Abel’s integral equation. It can be solved analytically: Multiply by 1/4/u — & and
integrate from u = £ to u = &5.

o £o ‘o y 7
m _ 1 1 , 1 dlnr _ 1 d de! 1 dlnr
; Vi-gl 2§/du\/mu/d§\/m e’ 25/ u/ V0w @
(3.46)

Due to the unknown function Inr ('), we cannot explicitly carry out the integration with respect
to &', but integrating over u will be possible. In order to do this, we interchange the order of
integration.

Interchanging the order of integra-
tion: This would be easy if integration were
over a rectangular region. In our case, where
the integration bounds for ¢’ depend on u, the
graphical representation on the right shows us ¢
what to do.

We can either let u run from € to &g (the outer
integral) and for every given u integrate over ¢’
from ¢ = u to & = & (the inner integral).

Or we can choose the outer integration to be
over & from ¢ = £ to ¢ = &5 and for every
given value of ¢ integrate over u from u = £ to

%o N
\
\

o o &o '3 ‘E ‘Eo “
/du/dg'(...) - df’/du( ), (3.47)
3 u 3 3

where (...) stands for an arbitrary integrand.

With this, (3.46) becomes

o o ¢
F'(u) u——l ,dlnr du
/ Vu—¢& = 2 g/dﬁ ¢’ §/ (u—&)(& —u) (3.48)

The integral over u can now be evaluated analytically. One way to do this involves a trigono-
metric substitution of variables. Alternatively, we can have a close look at the integrand, which
is sketched in Figure 3.8.

The integrand f(u) is symmetric with respect to (¢'4+&)/2, which motivates introduction of
a new integration variable v in the following way:

_g+¢ €<
==t (3.49)
with
="t ume= ), eou=t oy, (3.50)
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Figure 3.8: Sketch of the integrand f(u) = S as a function of u.
(w—=8&)(E —u)
Obviously, u = ¢ corresponds to v = —1, while u = ¢’ for v = 1. Thus,
¢ 1 y 1
/ du / ‘ 2_£ dv / dv arcsin v ' T ( 7r)
= = = = — — _—— = ﬂ'
— r_ r_ — 2 -1 2 2
/ Viu—=8 (& —u) I, /(525)2(1_,02) I V1—vw
(3.51)
Inserting this into (3.46), we obtain
7 P Fai f ©
U s nr T © T
du = —— ¢’ = —— 1 = —Iln—* 3.52
/\/uTé“ 2/d§' S T S (8:52)
£ 13
We can solve this equation for r(£):
5 &o F(w)
U
=R — d 3.53
7'(6) ® €Xp (7‘(’ \/’U,Tg ’U) ( )
13

This is the final result of inverting the integral equation (3.43). It establishes the link we were
looking for between the observable function F'(u) and the function r(§), from which the radial
profile of the sound velocity ¢ can directly be obtained.



Chapter 4

Magnetic fields

This chapter contains more material than will be presented in the course. The extra material is
included mainly for interest.

4.1 The Lorentz force

Astrophysical bodies are almost always electrically conducting and can thus interact with mag-
netic fields. The first example concerns the support of prominences against gravity by a magnetic
field. We have dealt with the effect of magnetic fields on charged particles already in §2.1.1.
There, we considered only one particle and the force exerted on a single particle was given by
gv x B. Now, if there are many particles with given number density n ( = number of particles
per unit volume), then the force on the gas per unit volume will be ngv x B. The expression
nqv is the current density, so

J = ngv. (4.1)

Thus the Lorentz force per unit volume is J x B and, if there are no other terms, this will
accelerate the gas. The acceleration per unit volume is pdv/dt, so the equation of motion takes
the form

d
Qd_‘t’ = J x B + possibly further terms. (4.2)

In order to calculate this force, we have to express J in terms of other known quantities. At this
point we may express J using one of Maxwell’s equations

,qu =V X B, (4.3)

which is also called Ampere’s law, and where the Faraday displacement current ¢ 20E/0t is
neglected. Thus the Lorentz force takes the form Fr =J x B = ﬁ(V x B) x B, which can also
be written in the form

F. = —V(B?/20) + (B - V)B/po, (4.4)

which shows that the Lorentz force has a gradient term (magnetic pressure gradient) and a
derivative of the field strength along the direction of the field. The latter tends to contract field
lines (magnetic tension).

39
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Figure 4.1: Magnetic support of a flare.

0.0

Figure 4.2: Contours of A = z—?, as a model for magnetic field lines supporting prominences against
gravity.

4.2 Magnetic support of prominences

The magnetic field is able to support fluid against gravity. An example is the quasi-steady
support of prominences in the solar corona. Figure 4.1 shows a simple cartoon picture of a
V-shaped magnetic field line where the Lorentz force points upwards, trying to move fluid with
the field lines such as to shorten the field lines.

We take a simple parabola-shaped field line. In order to automatically satisfy the condition
V -B =0 we write B =V x (Ay), where y is the unit vector in the direction out of the paper.
The lines A = const are parallel to field lines (at least in two dimensions). This can be verified
by showing that the gradient of A is perpendicular to B:

~0,A\ [0,A
B- (VA= 0o |- 0o |=o0. (4.5)
9, A 9,4

Now, we write our parabola-shaped field lines as

A=z — 12, (4.6)
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see Figure 4.2. Let us now calculate the resulting field, current and Lorentz force:

Og 0 -1
B=|0]|x|z-2%]|= 0
0, 0 -2z
Thus, the current is then
0 -1 0
1 z 1
J=—10]x| 0 |=—1]2],
Ko az —9r Ko 0
and so the Lorentz force is
0 -1 —4x
1 1
IJxB=—|2]|x| 0 | =— ’
Ho 0 —9r Ho 9

ie the Lorentz force has a vertical component upwards and points towards the z-axis.

4.3 Magnetic field evolution

The evolution of the magnetic field is governed by the Faraday equation

0B

— = -V X E,

ot 8
Ampére’s equation

J =V xB/puo,

and Ohm’s law,
J=0(E+v xB).
Eliminating E using (4.10) and (4.12) we obtain the induction equation,

0B
E—VX(VXB—J/O’).

41

(4.7)

(4.10)

(4.11)

(4.12)

(4.13)

The quantity o is here the conductivity (not to be confused with the Stefan-Boltzmann con-
stant!!). The magnetic diffusivity is n = (uoo)~! and has dimensions m?/s. If 5 is constant,

then the induction equation can also be written in the form

%—?:VX(VXB)—FT}VQB.

(4.14)
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In ST units Maxwell’s equations can be written in the form

B
88—75 = -V x E, Faraday’s law (4.15)
1 OE X
pod + Elrr V x B, Ampere’s law (4.16)
together with
V-B=0, and V-E=p, (4.17)

where g, is the charge density. The OE/0t term is also called the Faraday displacement
current. It is usually small compared with the other two terms in that equation. There are
two exceptions where it can become important: (i) if there is a vacuum, ie if the ordinary
current J vanishes, see Eq. (4.12), or if there are rapid variations over large length scales
so that the Faraday displacement current becomes comparable to V x B, ie the typical
velocity becomes comparable with the speed of light. The former occurs in the atmosphere,
where it is responsible for radio waves, whilst the latter may become important near a
black hole, where all velocities become comparable with the speed of light. In all other
cases the Faraday displacement current may safely be neglected. The resulting equations
are also called the pre-Maxwell equations.

4.4 Frozen-in magnetic fields

If magnetic diffusion vanishes, ie n — 0 and 0 — oo (high conductivity limit), we may neglect
the diffusion term and the induction equation then takes the form

0B

E:Vx(VXB):—(V-V)B—I—(B-V)V—B(V-v). (4.18)
Compare this now with the evolution equation of a material line element, dl. Let v be the
velocity on one end of the line element, then the velocity at the other end of the line element
0l is v + (01 - V)v. Thus, within the time dt the change of 41 is equal to dtdl. Therefore the
evolution of 41 satisfies the equation

%51 =(1-V)v (4.19)
This equation is equivalent to the evolution equation of the magnetic field if = 0 and if
V -v =0 is assumed. The latter assumption is unessential: if V - v # 0 then we have to invoke
the continuity equation

The derivative d/dt is here taken in a frame co-moving with the fluid at speed v. This
derivative is also called lagrangian derivative; to emphasise that one deals with a lagrangian
derivative one often uses a capital D for the differential. Expressing it in terms of the normal
non-moving frame of reference this becomes

D/Dt=09/ot+ (v- V). (4.20)
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If the velocity is divergence-free (no sources or sinks, ie the flow is incompressible) then the
magnetic field evolves according to

DB

D = (B-V)v, (4.21)
which is exactly the same equation as that for §l. Thus,we conclude that the magnetic field
vectors evolve in the same way as material line elements do. If the B-vectors had finite length,
the two ends of the vector would coincide with the locations of particles in the low. Furthermore,
if the flow diverges locally it will stretch the magnetic field lines, which will leads to their
enhancement. This stretching is an important ingredient of all dynamos.

4.5 The magnetic vector potential

It is sometimes convenient to consider the evolution of the vector potential A, because then the
magnetic field B = V X A is guaranteed to be divergence-free. The induction equation (4.13)
can be “uncurled”, ie the curl can be removed on both sides of the equation. However, this
leads to an uncertainly, because a gradient term could always be added to the uncurled equation
without changing B. Thus, we have

aa—?:va—J/U—V(;S, (4.22)

where ¢ is called the gauge potential, which is really like an integration constant. We are free
to choose any gauge that is convenient. Note that

pod =V XV xA=-VZA+V(V-A). (4.23)
A convenient gauge is the so-called Lorentz gauge,
p=V-A, (4.24)

in which the evolution equation for A becomes

% =v x B+7V2A. (4.25)

However, this works only if the magnetic diffusivity = (uoo) ! is constant.

4.6 Flux conservation

The condition V - B = 0 means that there are no magnetic monopoles, from which magnetic
field lines would originate. This becomes obvious when taking the volume integral of V-B = 0,
which can be turned into a surface integral by Gauss’ integral theorem; so

Oz/BdV:}{B-dS, (4.26)
14 S

see Figure 4.3. Here, S = 0V is the closed surface bounding the volume V. If field lines go out
of the volume, then there must be an equal amount of field lines going into the volume, such
that ¢ B -dS = 0.
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\Y,

Figure 4.3: Flux conservation. As many field lines enter the volume as field lines leave the volume.

ds
ds

S,

S,

Figure 4.4: Flux conservation. The total surface integral gives zero: nothing comes from the wall of
the tube and the contributions from the two ends must be equal in magnitude, but of opposite sign.

In Figure 4.4 we consider the magnetic field in a tube (flux tube). Only at the two ends does
the field stick out of the tube. Integrating over the tube we have

osz-ds: B-dS+ ¢ B-dS. (4.27)
S S1 Sa

Note that in Figure 4.4 the normal of the surface element points outwards. We now define the
flux though a surface S as

= / B.ds, (4.28)
S
where now dS points always in the same direction. Then we see that
® = constant along the tube. (4.29)

This property is referred to as flux conservation.

4.7 Connection with topology

The dot product A -B is of some importance in that it can be related to the topology of magnetic
flux ropes. Let us define the quantity

H:/ A -Bay, (4.30)
14

where the integration volume is chosen such that the normal component of B vanishes on the
boundary, ie in - B = 0. Let us consider two interlinked flux loops (Figure 4.5).
For the volume V; of the first loop we have

Hi=| A-Bdv= [ A-B(dl-dS), (4.31)
V1 Vl

where dS is the surface element across the tube and dl is the line element along the tube. Note
that B || dl || dS, so the integral can also be written as [(A - dl)(B-dS). In A - B only the
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Sy

Figure 4.5: Two interlinked flux loops.

S5

Figure 4.6: The trefoil knot.

component of A that is parallel to B (and dl) matters. This component is only affected by
the field of the other tube, but since the field of the other tube vanishes inside Vi, the parallel
component of A must be constant in Vi. Therefore we can split the integral into two separate

integrals, so
le(/ B-dS) (7{ A-dl), (4.32)
S1 C1

where C is a closed line along the tube. (It doesn’t matter where across the tube this line
goes because the parallel component of A, and therefore also A - dl, is constant). Now, the first
integral is just the flux ®; of the first tube. The second integral is actually the flux of the second
tube, @9, because, according to Stokes’ integral theorem,

q>2=/B-dS=/ (VxB)-dS=¢ A-dl (4.33)
S5 S(Cy) C1

Here S(C1) is the surface enclosed by the curve C;. We were able to take the integral over this
bigger cross-section, because the field outside Sy and inside S(C1) vanishes. Therefore,

Hy = 3,3, (4.34)

By the same arguments we find the same result for Ho when considering the other tube, so
Hy = ®1®,5. Therefore the integral over all space is

H = / A -BdV = Hy + Hy = 291 ®s. (4.35)
1%
For loops that are linked in more complicated ways one gets the product of the fluxes multiplied

by the winding number. In particular, for the trefoil knot shown in Figure 4.6, one gets the
result H = 2®2, even through this knot consists only of a single (knotted) flux tube.
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Chapter 5

Accretion discs in binaries

We have already mentioned the formation of discs in connection with the planetary system. The
same idea applies also to binary stars and to centres of galaxies. In the former case mass is being
transferred from one component to the other either via a wind (in the case of a hot donor) or
via Roche lobe overflow (see Figure 5.1).

In the second case, the centres of galaxies, the situation is even more reminiscent of planetary
systems, but on a larger scale and with different temperatures involved. Both in the centres of
galaxies as well as in protostellar discs one starts from a more-or-less homogeneous cloud that
collapses, but because of rotation there will be a time during the collapse when the centrifugal
force begins to balance gravity. This is the point when a disc is formed and further radial infall
is only possible because there is either a viscous or a magnetic torque that removes angular
momentum outwards.

In the following we consider the standard case of a viscous accretion disc with given viscosity.
Because discs are thin it is possible to calculate the radial structure analytically. This thin-disc
solution is due to Shakura & Sunyaev (1973) and it has become an important mile stone in
modern astrophysics.

Before deriving the governing equations and the standard solution we first explain in quali-
tative terms how discs occur in binary systems.

5.1 Binary stars

More than 50% of the stars are binary stars. Some say the higher probability of finding binary
stars is because they are counted twice. Anyway, binary stars can be divided into three different
classes: detached, semi-detached, and contact binaries.

Detached binaries are relatively boring from a hydrodynamical view point, unless they are
close enough to lead to tidal coupling between the two components, for example. However,
detached binaries may evolve. The heavier of the two components will at some point develop
into a red giant, which is so big that it will “fill its Roche-lobe”. That means matter will start to
flow to the other component. (We will take a closer look at the Roche potential and the dynamics
of overflow in the course MAS371.) What is now crucial for us is the fact that the overflowing
matter has angular momentum and will therefore be unable to fall onto the secondary star
directly. This is why a disc is formed. We encountered a similar problem earlier in connection
with star formation where, again, matter was unable to fall directly onto the central object
because of rotation. Instead a disc was formed. Such discs are typically viscous in the sense that
turbulence in them leads to friction which allows angular momentum to be removed, so matter
can move in further towards the central object.
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Figure 5.1: Accretion onto a companion star via Roche lobe overflow (upper panel) and via a wind
(lower panel).

5.2 Accretion discs

In this section we explain the basic theory used to describe the radial structure of accretion
discs. This theory is mathematically simple, because it involves only algebraic equations, and it
is physically rather powerful, because complicated physical processes can be taken into account.

As we mentioned in the beginning, the theory is important because it is applicable to a wide
range of different astrophysical bodies: protostellar and protoplanetary discs, discs in X-ray
binaries and other binary systems, and discs in active galactic nuclei and centres of galaxies.

To obtain the governing equations we derive vertically integrated equations for the mechanical
equilibrium in the vertical and horizontal directions, as well as the thermal equilibrium. An
important quantity in this business is the vertically integrated density o = ffooo odz, where H
is the half thickness of the disc. However, no attempt is usually made to consider the vertical
integration as an exact procedure. It is merely just a replacement of g by its value in the central
plane, g., which is then replaced in all the equations by o/H.
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5.2.1 Vertical equilibrium

In §2.6.3 we showed that the vertical component of gravity in a disc is
g, = —Q%z. (5.1)

As usual, this force has to be balanced by a pressure gradient, so in the steady state the vertical
momentum equation becomes simply

op

0z
This can be integrated in certain cases, eg for the case of constant temperature or under the
assumption of a polytropic atmosphere. However, the result is qualitatively always similar and
only some numerical coeflicients change.

0= + 09 (5.2)

A simple and instructive example is one where the density is constant (and equal to g.)
within the disc, |z| < H, and zero outside, ie |z| > H. In that case Eq. (5.2) can be
integrated as follows:

H dp H
- [ s /0 002dz. (5.3)
~[p(H) - p(0)] = L0.022H>. (54)

Now, since p(H) = 0 and p(0) = p., we have
Pe/0c = %QQH2- (5.5)

So, in this case there is a factor 1/2 on the right hand side.
Another simple example is the isothermal disc (isothermal in the vertical direction), where
p= cggc. The solution for the vertical structure is

0222

2
2cg

Inp=1ng, — (5.6)

In this case the disc extends till infinity, so H has to be defined as the height where ¢ has
dropped below a certain value. If we take o = g.exp[—22/(2H?)], then we have

=" q2p?, (5.7)
Oc
or
¢ = QH, (5.8)

which is the relation adopted here.

For the present purpose it will suffice to carry out the various vertical integrations by simply
replacing
0 1

— = +— — H 5.9
0z H ° ’ (5-9)
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where H is some disc height and the sign depends on where the differentiated quantity increases
or decreases with height. In the case of the pressure, which decreases with height, we have a
minus sign, for example. Thus, we have p. = 0.9, H = 0.0?H?. Here the subscript ¢ refers
to central values, ie to the values at the midplane. Since the ratio p/p is the isothermal sound
speed, cs, we have

s = QH. (5.10)

This is a relation that is strictly valid in the case of an isothermal atmosphere (see the box
above). The sound speed is related to the central temperature T, via

RT,
#C =c2. (5.11)

These last two equations, (5.10) and (5.11), are the first two equations governing the structure
of accretion discs. Next we need to find an expression that relates the temperature to some
other variable. This can be done by considering the radiative equilibrium.

5.2.2 Radiative equilibrium

The disc temperature results from a balance between heating and cooling. The cooling comes
from radiative losses. The decrease in thermal energy density is equal to the divergence of the
radiative flux, which we introduced in connection with the Sun, see Eq. (3.5).

The source of heating in an accretion disc is less obvious. Ultimately, the energy released
in the form of radiation comes from the potential energy that is liberated when matter falls
towards the central object.

In discs heat is generated by friction. Think for example of a rapidly spinning motor saw. If
you press too strongly to the wood it will become hot and start to burn. This is just because
of frictional heat and thus proportional to the (dynamical) viscosity u, which was introduced
earlier in connection with friction experienced by a single particle, see Eq. (2.14). The frictional
heat must also depend on the velocity gradient between adjacent rings of gas. However, the heat
cannot depend on the sign of the shear, so it must be proportional to the square of the shear, so

frictional heat = dynamical viscosity x (shear)?. (5.12)

In a rotating system the velocity gradient (ie du/0z) has to be replaced by the angular velocity
gradient multiplied by the cylindrical radius, ie shear = wd€2/dw. Those things can be derived
rigorously, but here we just try to motivate the various expressions qualitatively.

Thus, the heat generated per unit volume is

, o0\’
heat per unit volume = y | w—— | . (5.13)
ow

The dynamical viscosity is the product of gas density g times the so-called kinematic viscosity v,
ie 4 = pv. As mentioned earlier, in accretion discs one often operates with vertically integrated
quantities, so therefore we replace ¢ by o. Furthermore, since a disc has two surfaces, the heat
going into the upper disc plane is only one half of the total, so therefore we have for the

heat per unit area = fvo (%Q)2 , (5.14)

where we have made use of the fact that thin discs rotate according to Kepler’s law, Q ~ w3/2.
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This heat is lost by radiation and the rate of loss is equal to the divergence of the radiative
heat flux,

160512 0T

Fraa(z) = T (5.15)

where k is the opacity. The vertically integrated divergence of Fj,q is given by Fi,q(H) minus
F144(0), but F,4(0) vanishes because of symmetry reasons. Before replacing then all variables
by vertically integrated quantities we write 47307 /0z = 0T*/0z, so therefore the

4ogpT?
heat loss per unit area = Froq(H) = %. (5.16)
KO
So the radiative balance equation becomes
4osgTe 3\ 2

Together with equations (5.10) and (5.11) this is the third equation governing the structure of
accretion discs. We still need an equation that relates the accretion rate and the viscosity to
the remaining variables. In fact, one of the equations not used yet is the equation of angular
momentum conservation.

5.2.3 Angular momentum conservation

In general, the rate of change of the angular momentum (AM) density, cQw?, is balanced by
the negative divergence of the angular momentum flux, ie

%(rate of change of AM density) = —V - (AM flux density) (5.18)

The angular momentum flux has no net component in the vertical direction, only in the radial.
The radial component of the angular momentum flux consists of two main contributions, one
form the advection of angular momentum, ie

advected AM = (21w) v (0w?Q) = —Mw?Q. (5.19)

The mass flux M through a ring at radius @ is equal to
. o
M = —27r/ WOVwdz = — 2T WOV, (5.20)
—0o0

where the minus sign means that we count the mass flux positive if matter is accreted, ie when
the radial velocity v, is negative.

The other contribution to the radial angular momentum flux is the viscous flux of angular
momentum, ie

Q
viscous AM flux = —27w (uaw2§—> . (5.21)
w

Note that the latter has a minus sign. This is because AM is transported down the gradient of
angular velocity.
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Figure 5.2: Behaviour of (w) near the surface of the stellar object.

In the steady state the divergence of the sum of the two flux densities vanishes, so the sum
of the two fluxes is constant,

. Q
~Mw*Q — 21w (VO’ZUQB—) =C, (5.22)
ow

ie equal to an integration constant C' to be determined now.
Near the surface of the central object the angular velocity must match the angular velocity

of the star, but because the viscosity is generally small, this will be very near the stellar radius
R. So, for w = R we have

~MR*Q(R) = C. (5.23)

See illustration in Figure 5.2.
Plugging this into Eq. (5.22) we have

. oN .
~Mw?Q - 27rwuaw2% = —MR*Q(R). (5.24)
Now we use Kepler’s law for wdf)/0w = —%Q, SO
2mvow?(3Q) = M [«@?Q — R*Q(R)] . (5.25)

Using Q(R)R? = vVGMR we have finally

M R\ 1/2
o= 11 (_)
3 w
This is then the fourth equation needed to calculate the radial structure of accretion discs. Let us
count the number of unknowns: c¢5, H, T, 0, k and v, so we have altogether 6 unknowns. We need
two more equations for the opacity x and the viscosity v. Such equations are sometimes called
“material equations”, because they describe the behaviour of the matter and are exchangeable,

unlike three of the other equations with were based on physical conservation laws (vertical
and radial momentum together with radiative equilibrium). Equation (5.11) was also a material

(5.26)
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equation, because it assumed a perfect gas. [If radiation pressure becomes dominant, for example,
this equation will take the form ¢2 = (4osp/c)(T2H/0).]

The expression for x is complicated, but in principle straightforward, because it is based on
atomic physics which is well understood. In general,  is a function of ¢ and T" which has been
tabulated. In many cases where only certain absorption processes are important simple formulae
can be used. For example, if only free-free transitions are important we can use Kramer’s opacity

K = kooT /2, (5.27)

where kg = 6.6 x 10" m®K"/2kg™2. [This value may well be up to 30 times larger if the gas
is “metal rich”, ie a good electron supplier, so that bound-free processes become important as
well.] This equation is valid at any point, but we shall apply it only to the midplane, so we
adopt central values xk = nogcTc_7/ % For very hot gases electron scattering becomes the domi-

nant absorption process. In that case x = 0.04m?kg~! is constant.

Absorption processes in astrophysical plasmas.

o FElectron scattering: if an electromagnetic wave passes an electron the electric field
makes the electron oscillate.

o Free-free transitions: if during its thermal motion a free electron passes an ion, the
two charged particles form a system which can absorb and emit radiation.

e Bound-free transitions: a neutral hydrogen atom in its ground state is ionised by a
photon.

e Bound-bound transitions: after absorption of a photon the electron jumps to a higher
bound state, rather than leaving the atom altogether.

o Negative Hydrogen ion: a neutral hydrogen atom is polarised by a nearby charge and
can then attract and bind another electron.

[Adapted from Kippenhahn and Weigert (1990).]

The expression for v is more complicated, because the viscosity is due to some ill-understood
turbulent processes. Molecular viscosity would be far too small to cope with the observed
accretion rates, cf. Eq. (5.26). By analogy with kinetic gas theory, where the viscosity equals
the root-mean-square transport velocity (in general the sound speed) times a mean-free path, we
assume that the turbulent viscosity also scales with the sound speed ¢ = QQH times a fraction
a of the disc height H, which is the largest scale an eddy can have, so we write

v =aQH% (5.28)

This expression is pretty crude, but it leads to a closed theory of accretion discs which agrees
fairly well with observations. This expression was first introduced by Shakura & Sunyaev (1973)
and « is therefore sometimes also called ass. Also, don’t confuse this « with the « used in
dynamo theory.
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Summary of the equations governing the radial structure of accretion discs.
There are six equations

cs = QH, (5.29)
T
R ¢ e cs (: & e &H> , (5.30)
© Qc o

30)?, (5.31)

M 1/2
K = Ko %T;W, (5.33)
v =afH?, (5.34)

for the six unknowns ¢, H, T,, 0, k and v.

5.2.4 Solution of the disc equations

Solving the system of six algebraic equations in straightforward. First plug in (5.33) into (5.31)
to eliminate k:

15/2
% = lvo (30)°. (5.35)
Eliminate T¢ using (5.30) and move some numerical factors to the right-hand side.
—15/2
(%) / (QH) H = %ua?’QQ. (5.36)
For abbreviation let us denote
_ 2Tk (E) o (5.37)
3209 \ p
and eliminate v using (5.34) we have
QP HY = Kac®Q3H?, (5.38)

or

HY = Kac®*Q712. (5.39)
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This is a relation between H and o alone, because the other variables are constant (Ka) or
known functions of radius (£2). To solve then the whole system of equations we still need
another relation between H and o. This can be obtained by combining (5.32) and (5.34). For

abbreviation let us denote
M [ R\'/?
(2
3T w

The term in squared brackets is usually called f*, so

f= [1 - <§>1/2] 1/4. (5.41)

Eliminating v from those two equations yields simply

(5.40)

aQH?0 = 1. (5.42)

Now eliminating ¢ from (5.39) and (5.42) yields

H" = Ka (mPa*Q°H %) Q12 (5.43)

or
H? = Ko 2315, (5.44)

or
H — [1/20,,-1/10,:,3/20)—3/4 (5.45)

Before we proceed with calculating the remaining relations let us now look at some numerical
values.

5.2.5 Numerical values

First, using osg = 5.67 X 1078 Wm2K™*, ko = 6.6 x 10" m® K"/2kg™2, R = 8315 m?s 2K !,
and p = 0.62 we have

K =288x10°m?s 2 kg3, (5.46)

Note that 1W = 1kgm?s™3, so ogg = 5.67 x 10”8 kgs 3 K~*. The exact value of o is unknown,
because it depends on the nature of the turbulence, for which no theory exists at present.
Numerical simulations however indicate that the lower limit is & = 0.01, but it is conceivable
that o may be much closer to unity. Fortunately, in many expressions « enters only with a
relatively small power (see the box below).

Typical values for binaries are M = 10'3kg/s, so 70 ~ 10'2kg/s. We assume M = 1My =
2 x 1039 kg for the central mass. The keplerian angular velocity is then

GM\'? 107101030\ /% _| .

The exact calculation (with G = 6.67 x 107! m®kg™'s=2 and M = 2 x 103 kg) yields the value
Q) = 0.012s7!. We can always calculate Q for other values of the central mass M and distance
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from the central mass w, because we know that Q scales with M to the power 1/2 and with w
to the power —3/2, so we may write

M 1/2 w 73/2 1

Coming back to Eq. (5.45), let us first calculate the value of the disc height H for the reference
values mentioned above. The rough calculation gives

H — 1058/20 % 1012)(3/20 X 0.01—3/4 m = 102.9—|—1.8+1.5 m = 106.2 m. (549)

Again, a more precise calculation yields the value H = 1.2 x 108 m. To obtain the full dependence
on M, M and w we simply restore the relevant powers from (5.45) and (5.48), so

6 im0 Mf WO M N, (o8

5.2.6 Temperature

Let us now calculate the scaling of the disc temperature. To do this we make use of relations
(5.29) and (5.30)

RT,
7

=c2=0%H2 (5.51)

Since we know 2 and H, we have

. 3/10 —3/4
u o[ M w -3 oy, —1/5 [ Mf* M @ )2
=2 xo. — : K
T x 0.012 (1M®> (108 ) x (1.2 x 10°)?« (1013kg/s 1M, (108m) )

(5.52)
and with p/R = (0.62/8315) Ks?/ m? ~ 10~* K 52/ m? we have
. 3/10 1/4
M M @ \-3/4
_ b5 L — — K. .
T=15x10%xa (1013kg/s> (lM@) (1072 (5.53)

This is a temperature similar to that of the Sun. Indeed, in many respects the vertical structure
of accretion discs is quite reminiscent of the vertical structure of stars. We can now use this
relation to find the temperature at all radii. For example, if the central mass is a neutron

star with radius R = 10km = 10*m, we have a temperature near the surface of the star of
10* x (10*/108) 732K = 107 K.

5.2.7 The surface density

To calculate o we can use equations (5.32) and (5.34), so

o=mv ! =ma lQTTH2 (5.54)
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Using (5.48) and (5.50) we have

Mt M\ Y2, w32
B 12 et N I | i [ —
o=11x10" x (1013 kg/s) a”(0.012) <1M@) (108m)

6\—2 1/5 Mf4 e M\ w \~Y4 2
. - —_— — — kgm™~. .55
x(1.2 x 10972 x & 08 kg /s <1M®> (108m> gm (5.55)
This gives
. 7/10 1/4
M f4 M w \—3/4 _
=61 EA [k — — — k 2, 5.56
o=0lxa <1ol3kg/s> <1M®) (108111) gm (5.56)
5.2.8 The pressure
Using (5.29) and (5.30) we see that the pressure is given by
pe=VHo (5.57)

ie

M w -3 y st NP N s
= (0. 2 =) (== 1.2 x 10° -y _=J el _*
pe=(0.012) (1M@> (108m) X107 xa (1013kg/s) (1M@> (108m>

/ A N M\, o e
a5 (M M _m -1
x61 X « (1013kg/s) (lM@> (108m) kgm *s7(5.58)

y Mt R N w2
_ 4 —9/10 -1 _.,-2
pe=11%x10" x a (71013 kg/s) (—1M®> (—108 ) kgm™ s (5.59)

Full solution:

- 3/20 _3/8 o/s
H=12x10° x o /10 (%) <£> ( i ) ® (5.60)
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In the derivation we have omitted the contribution of the radiation pressure to the total
pressure. In general we would have to replace the pressure by the sum of the gas pressure
Pgas = (R/p)T and radiation pressure, prpq = %T‘l. If prag <K pgas We can neglect the
radiation pressure. To see whether this is the case we compute p;,q for the standard disc
solution:

) 6/5
_4osB, 4 —4/5 M M w 73 1 9
Praa = S 2T' =13 x a TETIE DL (108m> kgm~ls™2 (5.64)

This value is much smaller than pg,s at the same radius. To see how this changes as we go
further in let us calculate the ratio

Prad -3 1/10 Mf4 7/20 M 1/8 w -3/8

Obviously, this ratio is small. Only for @ = 1.6 m (ie way into the central object itself!) does it
become comparable to unity.

5.2.9 The opacity

Similar to the pressure, the opacity too has (at least) two different contributions: Kramer’s
opacity, kxr, and the opacity for electron scattering, xes. The latter is constant (= 0.04 m? kg_l),
ie independent of ¢ and T'. In order to see when electron scattering becomes important, let us
calculate ki, for the standard solution:

KKr = /iloO'H_lT_7/2, (566)
. 71/2 —1/4
Mf M @\,
082 x [ @ kgl .
e = 0.82 x (1013kg/s> <1M®> (108m) moe (5.67)

Note that this expression is independent of . We see that only for @ < 1.8 x 106 m does electron
scattering become important.



Chapter 6

Active (zalaxies and Quasars

In this chapter much more should be said, but we there was not enough time to cover it all.
Several points will just be mentioned very briefly. Most of the space is devoted to the nuclei
of so-called active galaxies. They are the engine of quasars — quasi-stellar (point-like) objects,
and are among the brightest objects in the sky. Quasars have been somewhat of a mystery
since they were discovered in 1963, but now we know that they are basically just accretion discs
on a gigantic scale around a supermassive back hole. They are very far away, at cosmological
distances, and have redshifts of z = 0.1 till z = 5. (Because the Universe is expanding, the
further something is away, the faster it runs away from us, so the larger is the redshift. For
z = 0.16, as in the quasar 3C273, the redshift is 16%, whilst for z = 5 the entire electromagnetic
spectrum is rescaled by a factor of 5.) It is really because of those large distances that quasars
look pointlike. However, now with the Hubble Space Telescope (HST) it has been possible to
say that all quasars are really within more-or-less ordinary looking galaxies. Therefore we now
believe that when the Universe was a few 10® yr old, most galaxies must have gone through a
phase where they had a quasar in their centre.

Figure 6.1: Artist’s impression of an accretion disc with a jet.
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Figure 6.1 gives an artist’s impression of an accretion disc around a supermassive black hole.
A real active galactic nuclei is shown in Figure 6.2.

6.1 Pretty pictures from the web

The Hubble Space Telescope has now been able to provide direct images of accretion discs. An
especially fascinating picture is that of M87; Figure 6.2. A full list of items is available under
the URL

http://opposite.stsci.edu/pubinfo/pictures.html

6.2 Active galactic nuclei

The luminosity of an AGN is about 100 times larger than the luminosity of ordinary galaxies.
There are actually objects that are even brighter than AGNs, but only for a very short time.
Those objects are gamma-ray bursters, whose nature we are only now beginning to understand,
even though they have been detected over 20 years ago when people were looking for gamma
ray bursts originating from H-bomb ignitions.

Typical masses of AGNs are around 108 solar masses. It has long be a mystery how a lumi-
nosity of 10'? solar luminosities could be explained. The mass-luminosity relation for galaxies
is approximately linear, ie L ~ M™ with n = 1, so this would not suffice to explain the enor-
mous luminosities of quasars. Stars have a nonlinear mass-luminosity relation, L ~ M? for
main sequence stars, which could yield sufficient luminosity for objects of 10® solar masses, if
that relation was actually valid for quasars. However, there are serious stability problems when
trying to explain so massive objects in terms of superluminous stars. In fact, for stars exceeding
50 solar masses the radiation pressure becomes so immense that it would blow away the star’s
atmosphere if the luminosity exceeded the L ~ M relation.

The reason why accretion discs can explain such high luminosities is because they can release
huge amounts of binding energy. A body of mass m that falls onto another object of mass M
gains kinetic energy that is equal to the potential energy, which is

GM

E = & m (6.1)

If mass falls in at a rate M the rate of energy release is

. GM .
L=F=—M. 2
— (62)

The smaller the central body, and the more massive it is, the larger will be the energy release.
The smallest and yet massive bodies are black holes. The Schwarzschild radius is 2GM/c?,
where c is the speed of light, and if we identify this with R we have

—FE =12
For accretion rates of 2 solar masses per year this amounts to

52 %2 x10%

~ 17 23 __ 40
Tt S 1017107 = 1010w, (6.4)

L=FE=0.5(3x10%

which would fit the observed luminosities of quasars very well. (10'3 solar luminosities correspond
to approximately 10'3 x 4 x 1026 W = 4 x 103® W.) The remarkable thing here is that such a
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mechanism can lead to energies very close to the rest mass energy, Mc?. Note that nuclear
fusion is much less efficient: here the energy generated is only 0.007 x Mc?. In that sense one
can say that black hole accretion discs are more powerful than nuclear fusion! In the following
we consider the properties of such discs in more detail.

6.3 AGN discs

In this section we use the standard accretion disc equations, but rescaled to the parameters
applicable to active galactic nuclei:

M =10%kgs™!, M=10Mgy =2x10%kg, w=10%m  (for AGNs). (6.5)

An important length scale here is the Schwarzschild radius, Rs = GM/(2c¢?), where ¢ = 3 x
10 m/ s is the speed of light. It would not be meaningful to consider disc radii smaller than Rg.
For 10% solar masses this radius is Rg = 7.4 x 101 m

Let us first calculate the orbital frequency for those values:

/ 6.67 x 1011 x 2 x 1038 W M N\, @ -2
\/ 012 =1.2x 10 <108M®> (m) S . (66)

In order to obtain the disc height H for the parameters (6.5) we just plug in those numbers into
Eq. (5.50)

108 kg/s\** (108Mx\ "% /1012 m\ "8
_ 6 ® _ 9
Hacn = 1.2 x 10° % (1013 kg/s) ( 1M ) (7108 ) m=12x10"m. (6.7)

Restoring now the full dependence on the various parameters we have

/ s N M M o
H=12x10°x o /10 2 7 . .
X107 a 108 kg5 105M,, (1012m> m (6:8)

For the temperature we calculate first the value for the AGN parameters using Eq. (5.61)

108 kg/s\ >0 /108Mu\* /1012 ¥/
Tagy = 1.5 x 10* ——__©ol” K =10°K. )
AGN = 1.5 X 107 % (1013kg/s) ( 1My, ) (108m> 0 (6.9)

Again, restoring the full dependence on parameters we have

6 s [ Mf* MO M N\ w -
T=15x1 —is (2 B ' 1
b x 107 xa 108 kg/s (108M®> (1012m) (6.10)

Now for the surface density, we have from Eq. (5.62)

108kg/s\ /"0 (108 Mo\ Yt /102 m\ ¥t S
OAGN = 61 x (W) (m) < 108111) kgm =6.1 x10 kgm
(6.11)

and so the general formula is

ol mp N M N
=61x107 xa 5 (2 —Z NV kgm2. 12
7= 00X (1023kg/s> (108M@) (o7m)  Yem (6.12)
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Finally for the pressure we have from Eq. (5.63)

23 —3/20 8 /8 12 N\ —21/8
pAON = 1.1 x 10* x (Lkg/s> (10 MQ) (10 m) kgm 's %11 x 10°kgm 152

10¥kg/s 1M 108 m
(6.13)
. ~3/20 7/8
_ Mf* M o \-21/8 L
=1.1x10° LA - _ ( ) ko g2 14
De X O X 1023 kg/s ].OSM@ 1012m gm S (6 )
In this case the ratio of radiation pressure and gas pressure is
. 7/20
4 1/8 —3/8
Prad 1/10 Mf M w /
— =12 il _r 1
Pgas e (1023 kg/ S) (IOSM@ (1012 m) (6.15)

Note that this ratio is no longer small. Clearly, effects of the radiative pressure begin to be
important and should be taken into account for more accurate considerations.

Electron scattering becomes important when the Kramer opacity drops below the value
0.04m? kg~!. Rescaling Eq. (5.67) for values relevant for AGNs we have

it NP oM NV w e
K = 82X 1075 x | o) ( ) ( ) m2kg~ 1. (6.16)

108 kg/ s 108 Mg 102 m

Thus, electron scattering is always important. Only for @ > 4 x 10! m does Kramer’s opacity
dominate over electron scattering. Since electron scattering is important in most parts of the
disc we give for this case the solution in the box below.

Accretion disc solution for the case when electron scattering dominates over Kramer’s
opacity:

H— 2.4 % 10° 110 Mf4 /e M “7/20 | 21/20 617
= 24107 x a 105 kg/s (m) () = (617

6, [  Mf* oM N, w y-o/0
T=62x10°xa /5 -——) 2 @ K. 1
02107 > a 108 kg /s (108M®> (108m) (6.18)

7 4/5 My e M N\, @ -3 9
—15x1 —a5 | kg m™2. 1
o =15x10"xa 105 kg/ s <1OSM@) (108m) gm (6.19)

. -1
- M M N\, w32 -
b= Tx10 8% [t T 211, 2
e = T 1077 x (1023kg/s> (108M@) (1012m) ke (6.20)

With this expression, only for @ > 7 x 10'°m does Kramer’s opacity dominate over
electron scattering.

We see that AGN discs are so hot that they must radiate mostly in X-rays.
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Gas Disk in Nucleus of
Active Galaxy M87

Hubble Space Telescope
Wide Field Planetary Camera 2

Figure 6.2: The gas disc of the nucleus of the active galaxy M87 together with its jet. The full press
release that goes with this picture is reproduced in §6.4.

6.4 MS87, an example of

6.4.1 MS87: a nearby active galaxy
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Chapter 7

Jets

It seems that all accretion discs have a jet. Apparently, all discs also have a magnetic field.
There is a mechanism for launching jets that relies on the centrifugal force in the disc. If the
field sticks out of the disc at a suitable angle then the disc material can be tossed away along
the field line. The field lines really act like tubes along which material can flow freely, but not
perpendicular to it. This picture applies only if the conductivity is large (which is practically
always the case) and if the kinetic energy density is weak compared with the magnetic energy
density. In the following section we discuss the angle the field lines must have for the launching
mechanism to work.

7.1 Centrifugal launching

Suppose the field line is anchored at a radius R. At some position (z,z) with w = R + x the
centrifugal force is given by

R+zx 142
Fcentrit = Qg 0 .= Q%R 0 , (7.1)
0 0

where & = z/R. The gravitational force is given by

R+zx
GM
Fgrav = _7‘—3 0 ) (72)
z
but since = R + z to first order' we have
1-2z
GM
Fgrav ~ —W 2 , (73)

so their sum gives (remembering that Q2 = GM/R3)

F = Feentrif + Fgrav = QgR 0 - (74)

!We consider the vicinity of a thin disc here
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*.‘._.,

1000 AU
—_————

Figure 7.1: The object HH30 showing a protostellar accretion disc with a jet emanating along the disc
axis.

To calculate the force along the field line, we have to project the component of F onto the field
vector. Assume that the field line is tilted against the vertical direction by an angle 7, then the
unit vector, B, along the B-field is

sin ¢
B=| 0 (7.5)
COoS 4
and so the force along the field line is
Fp=B-F = Q2Ry(3%sini — 7 cos i) (7.6)
or, since T = Z tanz,
Fp = Q%Ryzcosi [3(tani)? — 1]. (7.7)

Thus, for i = atan(1/+/3) = 30° we have Fg = 0. For opening angles larger than 30° we have
Fp > 0, ie matter will flow away from the disc. In practice the opening angles cannot be too
large, because then the disc will lose its matter too quickly. Recent simulations? show that the
field lines have a tendency to adjust themselves to the critical angle. This shows that the jet is
really centrifugally launched, and that the field line angle is somehow self regulated.

7.2 Magnetic collimation

7.3 Superluminal motion

Jets from AGNs move extremely fast, with gas velocities very close to the speed of light c.
Sometimes they even seem to be ten times faster than light, cf Figure 7.2. The quasar 3C 273
depicted there emits a bright “knot” that has moved over a distance of about 10 light years in
one year’s time.

2See the paper in Nature, 385, p. 409 by R. Ouyed, R. E. Pudritz and J. M. Stone (1997)
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QUASAR 3C 273

62 "

Vre

MAR 1978

Figure 7.2: Superluminal motion of structures (“knots”) in the jet ejected from the quasar 3C 273.
Shown are infrared images obtained at different times. The jet itself is not visible, but the knot moves

along it.

This puzzled researchers for quite some time, but finally they found the following explanation,
illustrated in Figure 7.3: The jet moves almost towards the observer (that is, us), the inclination
of the jet axis relative to the line of sight being only =~ 8°. When the knot is emitted from the
central object, the light showing it at the centre starts traveling at a speed v = ¢ towards the
observer — of course, light propagates in all directions, but only this ray we will eventually see;
let us call it the ‘initial picture’. At the same time, the knot travels with a speed v & ¢ (but still
v < ¢; typical values are 95-99% of c) along the jet axis.

knot
[ ]

Quasar 100 lyr ?

1lyr initial picture

Figure 7.3: Geometry of the Quasar 3C 273 and the observer (®).

This means that the knot almost keeps its initial distance from the ‘“initial picture’, and after
101 years, when the initial picture approached the observer by 101 lyr [light years], the knot has
made 100 lyr in the direction of the observer. Hence, the initial picture is just one light year
ahead of the second picture that shows the knot in the new position. Accordingly we observe
the second picture one year later than the initial one — although in reality is has been emitted
101 years later. Since we can observe only motions in the plane perpendicular to the line of
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sight, we interpret their angular separation as a distance of 14 lyr, apparently gained in just one
year’s time.

It is easy to apply this explanation to a more general geometry: Assume that jet moves
with v = ¢ at a small angle o (NB: 8° = 0.14rad is small) relative to the line of sight. After
a time [/c, both the knot and the initial picture have travelled a distance of | (in Figure 7.3,
I =101 lyr). Thereby, the knot has travelled /|| = [ cos  along the line of sight (/| = 100 lyr in
the example) and [ = Isina ~ la (I, = 14 lyr in the example) perpendicular to it. Hence, the
initial picture is Al = — [ cos @ ~ I /2 ahead of the second picture and we will see a time lag
At =~ Al/c between the two pictures. The apparent velocity is then given by

1 la 2¢

Vapp = ch ~ mc ~ E. (78)

For o = 8° we recover the value v,,, ~ 14c, but obviously for smaller o we can even have much
higher apparent velocities, if the objects can still be separated by the telescope.

There is some analogy between this apparent superluminal motion and the classical example
of the light beam from a lighthouse that can move at superluminal velocity, too. Consider
a lighthouse where the lamp rotates once each 30 s, corresponding to an angular frequency
w ~ 0.2 s1. The bright spot marked by the light on a wall at a distance r will move at a
velocity v = wr. Hence, at a distance r greater than ¢/w = 1.6 million kilometers, the bright
spot will move faster than light. The distance above is about four times the distance between
the lighthouse and the Moon, but with a laser pointer you can easily increase w by more than a
factor of four and can thus make a bright “little” red spot move superluminally over the Moon’s
surface.

If you really try this, you will find that no hand appears in the sky to keep you from violating
nature’s laws. In fact you don’t violate them: Special relativity tells us that matter (energy)
and information cannot move faster than light. But your little red spot does not carry matter,
nor does it represent a signal moving over the Moon’s surface. It is caused by a signal, but
rather one that propagates from the pointer in your hand up to the Moon, and moves at, but
not faster than, the speed of light.

Similarly, in Figure 7.3 the initial picture cannot influence the emission of the second picture
by the knot. Their causal link originates 101 yr back in time and consists in a common cause,
rather than a unidirectional causal influence.
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Appendix

8.1 Disc solution with radiation pressure

The expression for the pressure should, in addition to the gas pressure pg.s = (R/p)To, also
include the additional term for the radiation pressure, p.,q = 4—§iﬁT4. Here we shall only consider
the limiting case prad > Pgas- Thus, Eq. (5.30) has to be replaced by

2 P 40’5]3 T4
_p_ - 8.1
gLt (8.)
and because of Eq. (5.29) we have
dogpg T
QPH? == —=¢. 8.2
cS 3C Qc ( )
Using 0. = 0/H we have
4o T
O°H=——"-< 8.3
3c o (8:3)
So
3c 1/4
T, = Q’H 8.4
= () (8.4)
On the other hand, from Equations (5.31) and (5.33) we have
7152 = 2TR0 ) sop -1 (8.5)
32038
or
97 2/15
T, = (ﬂaami”ff) , (8.6)
2038
Combining this with (8.4) to eliminate T, yields
1/4 9 2/15
¢ 2He) =1 = (205 \os03m) (8.7)
4osR 20sB
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or
3c 15 27ko 8
O’H = 303H 8.8
(40513 ) (32053 ) ( )
Thus
3¢ \P° 27ko \°
Q30H15 15 — 0 8 249241;18 )
(4053) g 3205 > 9 ’ (8.9)
(27r0)%0 _
H = TS%SQ 669, (8.10)

Use aQQH?0 = m to eliminate o we have

H" = K®Q 5 Q918 (8.11)
where
f 27k 8 4osB 10 257 9 =6 K28 — (27"‘30)8 UgB 251 ;=9 g—6 K28 8.12
= $20eg » m~ kg™ s = Bo)is 4—5m g8 (8.12)
is a constant. Thus
H* = Ko 'm Q™15 (8.13)
or
H = 161/25(171/257;”‘9/25973/5 (814)

Using again oQQH?c = 1 to calculate o we obtain

o=ma 1QTH? (8.15)
ie
. 7/25 1/10
Mf4 M w \-3/10
_ 5 —23/25 -2
o=1.1x10° X a (1013 kg/s> (lM@> (108m> kg m~2. (8.16)
3¢ H 1/271/4 _1/4
T, = (40513) Q2 A, (8.17)

ie

. 4/25 11/80
M M @ \~33/80
T,=20x10° x a%% x | ——L K. 1
0> 107 o x (1013kg/s> (1M®) (108111) (8.18)
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8.2 Time-dependent discs

We make use of the continuity equation,

do 1 0
E + ;a—w (wvwa) =0.

Angular momentum conservation (with vertical field):

E(aw Q)+E% (w o) — vow %) = 2w o
9, 19 ) oy OINQ]  _ B.BJ
5 (cw”Q) + g [(wavw) (w”Q) (vo) (w”Q) 8lnw] = 2w o
do 1 0 0
2 b - Y hdl 2
(w*Q) [Bt + - (wvwa)] -I—Uat a)
18, , 19 0y 0INQ] _ B.BJ
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(8.19)

(8.20)

(8.21)

(8.22)

The first term vanishes because of the continuity equation. Assuming now perfectly keplerian

rotation, 2 = Qg, the second term also vanishes, so we have

(wavw) ;% (w QK) ;% |:VO' (w QK)

Qg B,Bj
=2w .
Olnw 1o

Dividing through by = Qx yields the equation in the form

In (WQQK) — 1 9

nw w2 Qr Olnw

[vo (w?Qk) (-3)] = 2w

(wovg)

1/2

(wovg) + %w_1/2 @

P |

N[

Multiply by 2,

B,Bf
WOV = —3w1/2i [WI/QVO'] + 4w £9
Jw poS2K

So the continuity equation becomes

7

90 _ 19 |4 1p @ ( 1pp \_, BBy
ot wiow [313 Ow (w VU) 4WMOQK

or, in terms of logarithmic derivatives,

Olno 3v [, o v ?Ino 4 0 Bng
T 2 (lAa4 4 =2
ot w? (2 A 0lnw? + 0lnw? w 0w w,u()QK ’

where
_ Olnv Olno

~ Olnw  Olnw’

(8.23)

(8.24)

(8.25)

(8.26)

(8.27)

(8.28)

(8.29)
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8.3 Modified iteration scheme for A

Instead of iterating with respect to a solution for the electron scattering opacity used by BC we
now iterate with respect to a Kramer opacity solution. Thus, instead of having (30) in BC we
have now

27TKK I K
T2 = 2280 06308 h (1+ 8Pt 1+ =2 ). 8.30
" S20sn ao h( + FPry, B ) + P ( )

With this we have now instead of (31) in BC
Rt = Kao301C, (8.31)

where

15/2
27/‘5Kr ( 2R > (832)

Mgas

B L 1+5r_1 15/2 s
C=(1+¥Pr,/B7) <1+ﬁ—1) 1+ = (8.33)
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