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Abstract. The stability and conservation properties of a recently proposed polymerization model are
studied. The achiral (racemic) solution is linearly unstable once the relevant control parameter (here
the fidelity of the catalyst) exceeds a critical value. The growth rate is calculated for different fidelity
parameters and cross-inhibition rates. A chirality parameter is defined and shown to be conserved by
the nonlinear terms of the model. Finally, a truncated version of the model is used to derive a set of
two ordinary differential equations and it is argued that these equations are more realistic than those
used in earlier models of that form.
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1. Introduction

The chirality of molecules in living organisms must have been fixed at an early
stage in the development of life. All life that we know is based on RNA and
DNA molecules with dextrarotatory sugars. There is growing evidence that the
RNA world (Woese, 1967; Crick, 1968; Orgel, 1968; see also Wattis and Coveney,
1999) must have been preceded by a simpler pre-RNA world made up of achiral
constituents (Bada, 1995; Nelson et al., 2000). An alternative carrier of genetic code
are peptide nucleic acids or PNA (Nielsen, 1993). These can be rather simple and
are currently discussed in connection with the idea to build artificial life (Rasmussen
et al., 2003). Furthermore, although PNA can still be chiral (Tedeschi et al., 2002),
there are also forms of PNA that are achiral (Pooga et al., 2001), suggesting that
chirality may have developed later when the first RNA molecules formed.

In current proposals to build artificial life, chirality does not seem to be crucial.
The PNA molecules is proposed to act primarily as charge carrier, i.e. a very prim-
itive functionality compared to the genetic code in contemporary cells (Rasmussen
et al., 2003). At this stage, homochirality may have been introduced by chance.
This is also supported by the fact that chiral polymers of the same chirality tend
to have a more stable structure (Pogodina et al., 2001) and would therefore be
genetically preferred.

Since the introduction of chiral molecules is assumed to take place at a stage
when there is already growth and self-replication, it is also plausible to assume
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that the existence of chiral molecules has an autocatalytic effect in producing new
chiral molecules of the same chirality (Kondepudi et al., 1990). This is the basis of
the recently proposed polymerization model of Sandars (2003); see also Wattis and
Coveney (2004). The purpose of the present paper is to reconsider this model (or a
slightly modified version of it) and to analyze its stability behavior and conservation
properties. We also discuss and illustrate some of the salient features of the model
in more detail. The model is then compared with earlier models of homochirality
where the detailed polymerization process is ignored and the dynamics of single
variables representing left- and right-handed polymers are modeled instead (Frank,
1953; Kondepudi and Nelson, 1984; Goldanskii and Kuzmin, 1989; Avetisov and
Goldanskii, 1993; Saito and Hyuga, 2004).

In order to appreciate the nature of the many terms in the model of Sandars,
we begin by discussing first the basic principle of the model in connection with
homochiral polymer growth and then turn to the full set of reactions that are included
in the model.

2. Homochiral Polymer Growth

In this section we discuss the growth of polymers by adding monomers of the same
chirality, i.e. we ignore reactions with monomers of the opposite chirality. This
is conceptually the simplest case, but its equilibrium solution also corresponds to
a solution of the full system discussed below. We write down the equations for
left-handed polymers, but the same applies also to right-handed polymers.

A left-handed polymer of length n is assumed to react with a left-handed
monomer via the reaction

Ln + L1 → Ln+1 (n ≥ 1). (1)

The reaction rate is kS , but since Ln can bind to L1 on either side, the total reac-
tion rate is 2kS and proportional to the product of the concentrations of the two
constituents. We denote the concentration of Ln chains by [Ln], so in a volume
V the number of Ln chains is Nn ≡ [Ln]V . For n ≥ 3 the number of possible
pairs of Ln−1 and L1 is Nn × N1. A special situation arises for n = 2, because
then L1 is interacting with another L1, and the number of possible pairs is only
1
2 N1(N1 − 1) ≈ 1

2 N 2
1 . [This problem is familiar from the physics of nuclear reac-

tions; see, e.g., Kippenhahn and Weigert (1990).] We therefore introduce the factor
σ

(1/2)
n defined by

σ (α)
n =

{
α for n = 2,

1 for n ≥ 3.
(2)
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(Later we shall use this factor also with α = 0 instead of 1/2.) The corresponding
contribution to the evolution of the concentration of Ln is therefore

d[Ln+1]

dt
= · · · + 2kSσ

(1/2)
n+1 [Ln][L1], (3)

where the dots denote the presence of other terms that will be discussed later.
Obviously, the concentrations of Ln and L1 have to decrease at the same rate by

the same amount, so

d[Ln]

dt
= · · · − 2kSσ

(1/2)
n [Ln][L1], (4)

d[L1]

dt
= · · · − 2kSσ

(1/2)
n [Ln−1][L1]. (5)

In the following we regard n as a general index with 2 ≤ n ≤ N , the evolution of
[Ln] is governed by the difference of two terms (gain from Ln−1 chains and loss in
favor of producing Ln+1 chains). The production of each Ln contributes to a loss
of L1 monomers, so the right-hand side of Equation (5) becomes a sum over all n.
The full set of equations is then

d[L1]

dt
= QL − λL [L1], where λL = 2kS

N−1∑
n=1

[Ln], (6)

d[Ln]

dt
= 2kS[L1]

(
σ (1/2)

n [Ln−1] − [Ln]
)
, (7)

where QL denotes the production of new L1 monomers (see below). A correspond-
ing set of equations applies also to right-handed polymers, i.e. R1 and Rn . Note
that Equations (6) and (7) obey the conservation law

d EL

dt
= QL − 2kS[L1][L N ], (8)

where

EL =
N∑

n=1

n[Ln] (9)

is the total number of left-handed building blocks. This number reaches an equilib-
rium if the supply of new left-handed monomers, QL , balances the loss associated
with reactions involving the longest polymers possible for a given value of N .

Equation (7) shows that in the steady state we have [Ln] = 1
2 [L1] for all n ≥ 2.

Using Equation (6), we find λL = kS N [L1], and therefore

2[Ln] = [L1] =
√

QL/kS N (steady state) (10)

is a possible equilibrium solution.
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New left- and right-handed monomers are assumed to be continuously repro-
duced from an achiral (racemic) substrate. The rates of regeneration, QL and Q R ,
depend on the concentration of the substrate, [S], and in some fashion on the relative
concentrations of right- and left-handed polymers. So, in general, we write

QL = kC [S]

{
1

2
(1 + f )CL + 1

2
(1 − f )CR + C0L

}
, (11)

Q R = kC [S]

{
1

2
(1 + f )CR + 1

2
(1 − f )CL + C0R

}
, (12)

where CL and CR are some measures of the catalytic effect of the already existing
right- and left-handed polymers, and the terms C0L and C0R allow for the possibility
of non-catalytic production of left and right handed monomers–possibly at different
rates. (Unless noted otherwise, we keep C0L = C0R = 0.)

The concentration of the substrate is assumed to be maintained by a source Q,
so we have

d[S]

dt
= Q − (QL + Q R) , (13)

where QL + Q R = kC [S](CL + CR + C0L + C0R); see Equations (11) and (12).
In general, we expect CL and CR to be some function of Ln and Rn , respectively.
Sandars (2003) assumed CL = [L N ] and CR = [RN ], i.e. the catalytic effect
depends on the concentrations of the longest possible chains of left- and right-
handed polymers. This assumption imposes a dependence on the cutoff value N ,
a dependence that should preferably be avoided in numerical or other technical
considerations. The model should for example be stable and consistent in the
limit when N is infinite. Another option would be to assume CL = [L M ] and
CR = [RM ], where M < N is a fixed value that is independent of the maximum
chain length. Both alternatives have the disadvantage that [L1] and [R1] can never
grow unless [L M ] or [RM ] are initially also finite. While it is plausible that long
chains carry more catalytic weight than shorter ones, the dependence of the results
on the particular choice of M seems artificial. (The allowance of finite values of
C0L and C0R would remove this problem, although in practice both of these values
should still be quite small.)

One may expect that the catalytic properties of the existing left- and right-handed
polymers depend on the length of the polymer. The exact functional expression for
this dependence is not known. It is therefore important that a model that explains
homochirality is not sensitive to the details of the catalytic properties and hence
the functional form of CL and CR . It turns out that the qualitative behavior of the
model of Sandars is indeed robust in this respect, e.g. a pitchfork bifurcation exists
in both Sandars’ original and in our model. To avoid artificial dependence on the
maximal chain length N , we chose to let the catalytic functions have the following
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form

CL = EL , CR = ER, (14)

where EL is given by Equation (9), and ER is defined analogously. This is similar
to the choice of Wattis and Coveney (2004) who assumed, independently of us,
CL = EL − [L1] and CR = ER − [R1].

We now comment on another aspect of the model of Sandars. He assumed that
in the evolution of [L N ] the loss is not 2kS[L1][L N ], as it would be if Equation (7)
were applied to n = N , but he introduced an explicit linear damping term instead.
This implies that the model behaves discontinuously at the end of the chain. We
feel that an “extrapolating” (continuous) behavior is more reasonable, so we choose
to apply Equation (7) also at n = N .

It is interesting to note that in the continuous limit, Equation (7) becomes

(
∂

∂t
+ 2kS[L1]

∂

∂n

)
[Ln] = 0, (15)

which describes waves traveling toward larger n. This is shown in Figure 1, where
we have perturbed the equilibrium solution (10) by a gaussian and have solved
Equations (6) and (7) numerically. The wave is damped and has a speed that is
proportional to (kS Q)1/2, because for the steady-state background solution [L1] ∼
(kS/Q)1/2. Note that the extrapolating boundary condition at n = N allows the
wave to escape freely.

Figure 1. Wave-like propagation of a finite amplitude perturbation. The initial profile is a gaussian.
Note the undisturbed propagation of the wave out of the chain at n = N . The time difference between
the different curves is 20/(kS Q)1/2. We have shown the first and last times as solid and dashed lines,
and all other times as dotted lines. The parameters are N = 50 and kC/kS = 1.
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In this paper we do not adopt the non-dimensionalization of Sandars. Instead, we
note that there are only two physical dimensions in this problem: time and volume.
Characteristic quantities with the dimensions of time and volume are (kS Q)−1/2

and (kS/Q)1/2, respectively. We therefore present all results by explicitly quoting
these dimensions. In practice this means that from now on we use Q = kS = 1 as
numerical values, but we keep the symbols in the equations for clarity. Throughout
this paper we also assume kC/kS = 1; calculations with different values do not
seem to affect our results in any important way.

The fact that the equilibrium solution is constant for all n ≥ 2 implies that this
value will decrease for longer choices of N . In that sense the solution is never
converged. This situation changes when we allow the ends of the left-handed
polymers to be spoiled by right-handed monomers, as done by Sandars (2003).
This will be discussed in the next section.

3. Enantiomeric Cross-Inhibition

Already 20 years ago, Joyce et al. (1984) showed in an important paper describing
experiments with template-directed polymerization that, once a monomer of the
opposite chirality is bound to one end of the chain, the polymerization terminates
on that end of the chain. Sandars (2003) incorporated this effect in his model and
showed that this can lead to a bifurcation into two possible solutions of opposite
chirality and hence to homochirality.

The full set of reactions included in his model is (for n ≥ 2)

Ln + L1
2kS−→ Ln+1, (16)

Ln + R1
2kI−→ Ln R1, (17)

L1 + Ln R1
kS−→ Ln+1 R1, (18)

R1 + Ln R1
kI−→ R1Ln R1, (19)

and for all four equations we have the complementary reactions obtained by ex-
changing L →← R. Following Sandars (2003), we have introduced the new parameter
kI , which quantifies that rate of enantiomeric cross-inhibition. The special case
kI = 0 corresponds to the case discussed in the previous section.

The most important effect of enantiomeric cross-inhibition is that a certain
fraction of chains becomes spoiled by producing Ln R1 and Rn L1 polymers.
Equation (7) and its complementary equation for right-handed polymers suffer
therefore a loss proportional to 2kI , so we have instead

d[Ln]

dt
= 2kS[L1]

(
σ (1/2)

n [Ln−1] − [Ln]
) − 2kI [Ln][R1], (20)

d[Rn]

dt
= 2kS[R1]

(
σ (1/2)

n [Rn−1] − [Rn]
) − 2kI [Rn][L1]. (21)
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These equations allow us to see what happens in the racemic case with [Rn] = [Ln].
In a steady state we have (for n ≥ 2)

[Ln] = 1

2
a−(n−1)[L1] (racemic solution), (22)

where we have defined a = 1 + kI /kS . In particular, if kI = kS , then [Ln] =
2−n[L1], i.e. [Ln] drops by a factor of 2 from one n to the next, except for n = 1–2,
where it drops by a factor of 4. We should note, however, that this solution can be
unstable (see Section 4).

So far, we have not yet considered the evolution equations for the concentrations
of the mixed terms, Ln R1 and Rn L1. Following Sandars (2003), we abbreviate the
corresponding concentrations by [Ln R] and [Rn L], respectively, i.e. without the
subscript 1 on the terminating end of the chain. The effect of generating these
terms was already manifested in Equations (20) and (21) through the appearance
of the last term proportional to 2kI . Nevertheless, we do need to solve for [Ln R]
and [Rn L] explicitly, because the reactions (18) and (19) consume L1 and R1

monomers, respectively. The evolution equations for [L1] and [R1] are therefore
given by

d[L1]

dt
= QL − λL [L1],

d[R1]

dt
= Q R − λR[R1], (23)

where

λL = 2kS

N−1∑
n=1

[Ln] + 2kI

N∑
n=1

[Rn] + kS

N−1∑
n=2

[Ln R] + kI

N∑
n=2

[Rn L], (24)

λR = 2kS

N−1∑
n=1

[Rn] + 2kI

N∑
n=1

[Ln] + kS

N−1∑
n=2

[Rn L] + kI

N∑
n=2

[Ln R], (25)

are the decay rates that quantify the losses associated with the reactions (16)–(19),
respectively.

In Equations (24) and (25) the concentrations [Ln R] and [Rn L] enter, so we
have to solve their corresponding evolution equations (for n ≥ 2)

d[Ln R]

dt
= kS[L1]

(
σ (0)

n [Ln−1 R] − [Ln R]
) + kI [R1]

(
2[Ln] − [Ln R]

)
, (26)

d[Rn L]

dt
= kS[R1]

(
σ (0)

n [Rn−1L] − [Rn L]
) + kI [L1]

(
2[Rn] − [Rn L]

)
, (27)

where the σ (0)
n factor turns off the first term for n = 2; see Equation 2.

In Equations (26) and (27) the first two terms proportional to kS correspond to
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the homochiral growth on the unspoiled end, i.e. reaction (18). The third term
comes from reaction (17) and the fourth term comes from reaction (19) and enters
here and also in Equation (24) and (25) as a loss term. For completeness, we note
that the corresponding gain enters in the evolution equations

d[RLn R]

dt
= kI [R1][Ln R],

d[L Rn L]

dt
= kI [L1][Rn L], (28)

noindent which are not explicitly required for constructing a solution, because
these polymers no longer react with the monomers. Nevertheless, solving Equa-
tion (28) simultaneously with Equations (20) and (21) and Equations (23)–(27) can
be useful for monitoring the evolution of the net chirality; see Section 5.

Note that, in contrast to the equations given by Sandars (2003), the truncation
levels for the terms [Ln], [Ln R], and [RLn R] are here the same, i.e. n ≤ N for both
terms, whereas in the model of Sandars the longest Ln R1 chain has n = N −1, and
the longest R1Ln R1 chain has only n = N − 2. The reason we need to keep the
same truncation levels for all three types of polymers is that we want to ensure that
the behavior near the end of the chain (n = N ) does not deviate from the behavior
elsewhere (n < N ); see the discussion in Section 2. For example, to ensure
continuous behavior of [Ln] at n = N we need to keep the term −2kI [L N ][R1] in
Equation (20). This term, however, is the loss resulting from the gain of [L N R],
so we have to keep the evolution equation for this term as well. Furthermore, the
evolution equation for this term involves, in turn, the term −kI [R1][L N R], which
is the loss corresponding to the gain of [RL N R]. If one regards the truncation level
N as an unrealistic feature of the model, as we do, then all three polymer types
should be truncated at the same level.

In Figure 2 we show [Ln] and [Ln R] for a number of equilibrium solutions for
different values of f and kI /kS = 1. The corresponding values of [Rn] and [Rn L]
are small and not shown, except when f = 0 in which case the solution is fully

Figure 2. [Ln] (left) and [Ln R] (right) of equilibrium solutions for different values of f . For f = 1
we have [Ln R] = 0, which cannot be seen in the logarithmic representation.
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racemic with [Rn] = [Ln] and [Rn L] = [Ln R] and is simply

[Ln R] = (n − 1)[Ln] = (n − 1)2−n[L1]. (29)

For f = 1 the solution is given by Equation (10).
For kI /kS = 0.1 the results are similar to those for kI /kS = 1 provided f > 0.8.

For f < 0.7, however, the solution is fully racemic and therefore the curves are
independent of f . This racemic solution is similar to the case kI /kS = 1 and
f = 0.8 that is shown in Figure 2.

4. Stability of the Racemic Equilibrium

A realistic model of homochirality must also have an achiral (racemic) equilibrium
solution. It is generally anticipated that this racemic solution can be destabilized in
the presence of catalytic reactions (Frank, 1953; Avetisov and Goldanskii, 1993).
If the probabilities of adding left- and right-handed monomers to a homochiral
polymer are equal, i.e. if kI = kS , the racemic solution given by Equation (29) is
also a possible solution for other values of the fidelity than f = 0, but it may of
course be unstable.

We have carried out a numerical stability analysis by adding a small (10−5)
relative perturbation to the value of [L1] of the racemic solution. It turns out that
for certain values of the fidelity f the departure of [L1] from the racemic equilibrium
solution, δ[L1], growth exponentially in time like eλt . In Figures 3 and 4 we plot λ

obtained from the slope of the graph of ln δ[L1](t) during the exponential growth
phase, i.e. before a new nonlinear equilibrium is attained. In Figures 3 and 4 we

Figure 3. Growth rate (left) and bifurcation diagram showing a classical pitchfork bifurcation
(right) as a function of fidelity for kI /kS = 1, and N = 50. The dashed line indicates an unstable
solution.
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Figure 4. Same as Figure 3, but for kI /kS = 0.1.

also plot the corresponding chiral polarization parameter, η, as a function of f .
Here we have chosen to define η as

η = (ER − EL ) / (ER + EL ) . (30)

It turns out that for kI /kS = 1 the racemic solution is unstable when f > 0.39, and
for kI /kS = 0.1 it is unstable when f > 0.735. The transition from an achiral to
a chiral solution is a typical example of a pitchfork bifurcation; see Figures 3 and
4. This result is in qualitative agreement with Sandars (2003) who found that for
kI /kS = 1 the critical value of f is around 0.21. The differences in the numerical
values are explained by differences in the model (e.g., the coupling to the substrate
and the length of the maximum polymer length).

The growth rate of the instability is important for determining the time it takes
for an almost racemic solution to become homochiral (or at least non-racemic
for f 	= 1). When kI /kS = 1, the growth rate λ is around 0.5, but it becomes
significantly smaller when the value of kI is reduced. This shows explicitly that
homochirality emerges as being due to enantiomeric cross-inhibition.

5. Conservation of Chirality

For homochiral growth the relevant conservation law is given by Equation (8) for
EL , and similarly for ER . In general, however, because of the interaction with left-
and right-handed monomers, there are no longer separate conservation laws for EL

and ER . Instead, the complete set of equations, Equations (20) and (21) together
with Equations (23)–(25), satisfies

d

dt
�Ẽ = �Q − ��, (31)
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where �Q = Q R − QL and �� = �R − �L are the net input and output rates of
chirality, respectively, and �Ẽ = ẼR − ẼL is the total chirality, where

ẼR =
N∑

n=1

n[Rn] +
N∑

n=2

(n − 1)[Rn L] +
N∑

n=3

(n − 2)[L Rn L], (32)

ẼL =
N∑

n=1

n[Ln] +
N∑

n=2

(n − 1)[Ln R] +
N∑

n=3

(n − 2)[RLn R], (33)

denote the total numbers of right- and left-handed building blocks (or enantiomers),
where opposite enantiomers are counted such that they annihilate enantiomers of
the opposite chirality. The loss terms resulting from the finite truncation level, N ,
are denoted by

�R = 2kS N [R1][RN ] + kS(N − 1)[R1][RN L], (34)

�L = 2kS N [L1][L N ] + kS(N − 1)[L1][L N R]. (35)

In order to evaluate the quantities ẼR and ẼL we have to integrate the evolution
equation (28) for the production of terminally spoiled polymers–even though they
undergo no further evolution. In a sense the integration of the terminally spoiled
polymers acts only as counters that keep track of the number of polymers that are
lost during the polymerization process.

The expressions for ẼR and ẼL involve sums over [L Rn L] and [RLn R], but
since these quantities do not occur on the right-hand sides of the governing evolution
equations, their values are not constrained by the dynamics and depend on the initial
conditions and continue to evolve in time even though the system may have reached
an equilibrium. The so defined net chirality can therefore not be used to characterize
a particular solution, and we have to restrict ourselves either to ER and EL , or to
ÊR and ÊL , which are defined by taking only the first two sums in Equations (36)
and (37), i.e.

ÊR =
N∑

n=1

n[Rn] +
N∑

n=2

(n − 1)[Rn L], (36)

ÊL =
N∑

n=1

n[Ln] +
N∑

n=2

(n − 1)[Ln R]. (37)

In Table I we list the resulting values of η, defined in Equation (30), an anal-
ogously defined η̂ = (ÊR − ÊL )/(ÊR + ÊL ), �E = ER − EL , and �Ê =
ÊR − ÊL . We also give the mean polymer lengths, NR = ∑

n[Rn]/
∑

[Rn] and
NL = ∑

n[Ln]/
∑

[Ln], of right- and left-handed polymers.
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TABLE I

Numerical results for η, η̂, �E , and �Ê for different values of f

f ±η ±η̂ ±�E ±�Ê NR NL N

1 1 1 1
4 [N (N + 1) + 2]/N 1/2 1

2 N + 1/(N + 1) – N
0.9 0.999 0.9999 30.61 143.73 19.0 1.0 500
0.8 0.995 0.9986 10.28 45.06 9.0 1.1 200
0.7 0.978 0.993 5.170 20.99 5.6 1.1 100
0.6 0.933 0.975 2.949 11.01 3.9 1.2 100
0.5 0.813 0.907 1.648 5.597 2.8 1.2 50
0.4 0.368 0.482 0.491 1.500 1.9 1.5 50
0.38 0 0 0 0 1.7 1.7 20

Note. The ± indicates that these values can have either sign. The last column gives
the typical value of N necessary for obtaining a converged result representing the limit
N → ∞. For f = 1 the results for �E (= �Ê) and NR do not converge and we give the
analytic expression for arbitrary N instead.

6. Comparison with Other Models

The polymerization model of Sandars (2003) is significantly different from all the
previously proposed models of homochirality that ignore the detailed polymer-
ization process by only describing some scalar quantities, say x and y, that are
representative of the number of left- and right-handed polymers. In the papers by
Saito and Hyuga (2004) it was shown that neither linear nor nonlinear autocatalytic
behavior suffice to produce homochirality, and that a backreaction term is needed.
Their model equations are

ẋ = x2(1 − r ) − εx
ẏ = y2(1 − r ) − εy

(SH model) (38)

where r = x + y and ε is the feedback parameter. For ε = 0 there is a continuous
range of solutions along the line r ≡ x + y = 1, i.e. homochirality does not emerge
unless the initial condition is already homochiral. For finite (but small) values of
ε there are two nontrivial stable fixed points. (The trivial solution, x = y = 0, is
always a stable fixed point in this model.)

The model of Saito and Hyuga (2004), hereafter the SH model, does capture
the expected behavior, but it remains unsatisfactory in that its functional form has
been introduced ad hoc. It is therefore desirable to derive simple model equations
based on the polymerization equations of Sandars (2003). It turns out that, without
changing the basic properties of the model, a minimal version is still meaningful
for N = 2, and that the equations for the semi-spoiled polymers, [L2 R] and [R2L],
can be ignored (as already done by Sandars). Thus, we only solve Equations (20)
and (21) together with Equations (23)–(25). Following Sandars (2003), we also
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assume that CL = [L2] and CR = [R2] (instead of CL = EL and CR = ER ,
which would yield more complicated expressions). A further simplification can be
made by regarding [L2] as a rapidly adjusting variable that is enslaved to [L1] (and
similarly for [R2]). This technique is also known as the adiabatic elimination of
rapidly adjusting variables (e.g., Haken, 1983). Equation (20) becomes

0 = kS[L1]2 − 2[L2](kS[L1] + kI [R1]), (39)

which is solved for [L2] (and similarly for [R2]), which in turn couples back to the
equations for [L1] and [R1] via QL and Q R . Finally, we also treat the substrate
[S] as a rapidly adjusting variable, i.e. we have kC [S] = Q/([L2] + [R2]). We
emphasize that the adiabatic elimination does not affect the accuracy of steady
solutions. It is convenient to introduce new dimensionless variables,

x = [R1](2kS/Q)1/2, y = [L1](2kS/Q)1/2, τ = t(QkS/2)1/2. (40)

In order to compare first with the SH model we restrict ourselves to the special case
kI /kS = f = 1, which leads to the revised model equations

ẋ = x2/r̃2 − r x,

ẏ = y2/r̃2 − r y,
(41)

where dots denote derivatives with respect to τ and r = x + y and r̃2 = x2 + y2

have been introduced for brevity. Equation (41) resemble the equations of the
SH model in that both have a quadratic term proportional to x2 (or y2), which is
quenched either by a 1 − r factor (in the SH model) or by a 1/r̃2 factor in our
model. Furthermore, both models have a backreaction term proportional to −x (or
−y), but the coefficient in front of this term (ε in the SH model) is not constant but
equal to r .

In the general case with kI /kS 	= 1, f 	= 1, as well as finite values of C0x =
C0R(2kS/Q)1/2, and C0y = C0L (2kS/Q)1/2, the equations read

ẋ = (px̃2 + q ỹ2 + C0x )/r̃2 − rx x,

ẏ = (pỹ2 + qx̃2 + C0y)/r̃2 − ry y,
(42)

where we have introduced the abbreviations rx = x + ykI /kS , ry = y + xkI /kS ,
x̃2 = x2/2rx , ỹ2 = y2/2ry , r̃2 = x̃2 + ỹ2 + C0x + C0y , p = (1 + f )/2, and
q = (1 − f )/2.

In Figure 5 we show trajectories of solutions of Equation (42) for two different
values of f in an (x, y) phase diagram. Note that all equilibrium solutions lie on the
line r = 1. This property allows us to calculate equilibrium solutions for general
values of f . Inserting y = 1 − x yields a cubic equation of which one solution is
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Figure 5. Phase diagram showing the trajectories of solutions of Equation (42) for two different
values of f . The starting points of each trajectory are marked by small dots and stable fixed points
are marked by big dots.

always x = 1/2. This reduces the problem to a quadratic equation with the solution

x = 1

2

{
1 ± √

2 f − 1 for f ≥ 1/2,

1 otherwise.
(43)

Linearizing the equations around the racemic solution, x = y = 1/2, yields the
growth rate

λ = 2 f − 1. (44)

In agreement with our numerical results for large values of N , this equation gives
a linear dependence of the growth rate on the fidelity. This result also shows that
for f < 1/2 perturbations decay exponentially.

In the presence of a biased, non-catalytic generation of monomers (finite C0x or
C0y with C0x 	= C0y) there is no longer a perfectly racemic equilibrium solution.
The sign of η for the solution for f = 0 depends on the sign of C0x − C0y . Along
this solution branch η goes further away from zero in a continuous fashion until
f = 1. At some value of f a pair of new solutions emerges, one is stable and the
other unstable, but both have the opposite sign of η; see Figure 6. Among these new
branches, the stable one can only be reached via a finite amplitude perturbation.
This behavior is called an imperfect bifurcation and has long been anticipated in
this context (Kondepudi and Nelson, 1983; Kondepudi et al., 1986; Goldanskii and
Kuzmin, 1989).

The steady solutions shown in Figure 6 have been obtained by solving
Equation (42) using the Newton–Raphson method. This method allows us to find
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Figure 6. Imperfect bifurcation obtained by solving Equation (42) for C0x = 0.001 and C0y = 0
using the Newton-Raphson method.

both stable and unstable solutions. Near the bifurcation point the diagram is ex-
tremely sensitive to the addition of a bias parameter. It is remarkable that for a value
as small as C0x = 10−3 a relatively large gap has been produced in the bifurcation
diagram.

Finite values of C0x and C0y could result from physical influences, for exam-
ple polarized synchrotron radiation from neutron stars (but see Bonner, 1999),
UV radiation in star-forming regions (Bailey, 2001), or the parity violation of the
electroweak force (e.g., Hegstrom, 1984). In all these cases the expected effect is
however very small (Bada, 1995). We emphasize, however, that the main reason for
homochirality is the instability of the racemic (or nearly racemic) solution, which
is hardly modified by a finiteness of C0x or C0y .

7. Conclusions

The origin of homochirality has long been thought to be the result of a bifurcation
process that can vastly amplify a very small random enantiomeric excess which can
then prevail forever. Generic model equations reproducing the expected bifurcation
behavior have so far mostly been proposed on an ad hoc basis. It was therefore
difficult to establish a connection between model and reality. According to the work
of Saito and Hyuga (2004) one expects two effects to be important: nonlinearity
and backreaction. However, the functional form of these terms remained open.
Furthermore, the meaning of non-perfect catalytic fidelity and enantiomeric cross-
inhibition within the framework of the model were not clear. In the present paper
we have established a direct connection between the more detailed polymerization
model of Sandars (2003) and the simpler model equation approach with only two
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ordinary differential equations. In particular, the present work has confirmed that
the relevant nonlinearity is indeed quadratic (as in the SH model), but it is not
quenched like 1 − r , but rather like 1/r̃2, where r and r̃ are measures of the
total concentrations of monomers (both right- and left-handed). Furthermore, the
feedback coefficient is not a small constant, as in the SH model, but it is itself
proportional to r . More importantly, imperfect fidelity and enantiomeric cross-
inhibition, as well as the effects of a weakly biased non-catalytic production of new
monomers, have a quantitative meaning within the framework of the reduced model.

For a more quantitative comparisons of the polymerization process with experi-
ments the full set of equations of Sandars (with the revisions discussed above) is to
be preferred. A number of features that can only be captured by the full model. An
example is the wave-like propagation in the distribution of homochiral polymers.
An experimental confirmation would help to quantify the growth coefficient kS

characterizing the probability that a polymer grows by a monomer of the same chi-
rality. On the other hand, the growth coefficient for enantiomeric cross-inhibition,
kI , determines primarily the minimum fidelity parameter, f , above which bifurca-
tion and hence homochiral growth is at all possible. It is indeed quite remarkable,
that the main reason homochiral growth occurs is that binding with a wrong enan-
tiomer spoils further polymerization on the corresponding end of the chain. This
leads to competition which is always a key feature of natural selection processes
such as these.

Homochirality in living organisms is a singular phenomenon. Non-living chem-
ical systems do in general not have a preferred chirality. In the models presented
in this paper this is reflected in Figures 3 and 6. The region of the phase diagram
displaying homochirality is characterized by high fidelity, i.e. high auto-catalytic
accuracy. The fidelity is expected to be significantly higher in living systems. When
an organism dies the auto-catalytic polymerization stops and as a consequence the
fidelity is sharply decreased. The characteristic behavior of the polymerization
changes from the chiral to the racemic region of the phase diagram. The relax-
ation of the system from the homochiral to the racemic state is often very slow.
It was in fact suggested by Hare and Mitterer (1967) and later by Bada et al.,
(1970) that racemization of amino acids in fossil material could be used as a dating
method. Unfortunately, it has turned out that the rate of racemization is strongly
temperature-dependent, which tends to make this dating method unreliable.
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