! Initial condition (density, magnetic field, velocity) ! for a particular configuration of a magnetic tube. ! ! 17-jan-11/simon: created from nfoil.f90 ! !** AUTOMATIC CPARAM.INC GENERATION **************************** ! Declare (for generation of cparam.inc) the number of f array ! variables and auxiliary variables added by this module ! ! CPARAM logical, parameter :: linitial_condition = .true. ! !*************************************************************** module InitialCondition ! use Cparam use Cdata use General, only: keep_compiler_quiet use Messages ! implicit none ! include '../initial_condition.h' ! ! ampl = amplitude of the magnetic field ! width_ring = width of the flux tube ! C = offset from the center of the knot, should be > 1 ! D = extention coefficient for the z direction ! phase = relative phase of the z-variation ! twist = internal twist of the flux tube ! [xyz]scale = scale in each dimension ! [xyz]shift = shift in each dimension in a 2*pi box real :: ampl=1.0, width_ring=0.3, C=2.0, D=1.5, phase=4./3., twist=0 real :: xscale=1.0, yscale=1.0, zscale=1.0 real :: xshift=0.0, yshift=0.0, zshift=0.0 character (len=labellen) :: prof='constant' ! namelist /initial_condition_pars/ & ampl,width_ring,prof,C,D,xscale,yscale,zscale,xshift,yshift,zshift,phase,twist ! contains !*********************************************************************** subroutine register_initial_condition() ! ! Configure pre-initialised (i.e. before parameter read) variables ! which should be know to be able to evaluate ! ! 07-oct-09/wlad: coded ! ! Identify CVS/SVN version information. ! if (lroot) call svn_id( & "$Id$") ! endsubroutine register_initial_condition !*********************************************************************** subroutine initial_condition_uu(f) ! ! Initialize the velocity field. ! ! 07-may-09/wlad: coded ! real, dimension (mx,my,mz,mfarray), intent(inout) :: f ! call keep_compiler_quiet(f) ! endsubroutine initial_condition_uu !*********************************************************************** subroutine initial_condition_lnrho(f) ! ! Initialize logarithmic density. init_lnrho ! will take care of converting it to linear ! density if you use ldensity_nolog ! ! 07-may-09/wlad: coded ! real, dimension (mx,my,mz,mfarray), intent(inout) :: f ! call keep_compiler_quiet(f) ! endsubroutine initial_condition_lnrho !*********************************************************************** subroutine initial_condition_aa(f) ! ! Initialize the magnetic vector potential. ! ! 04-aug-10/simon: coded ! ! Magnetic flux ring which has the form of a n-foil knot. ! use Mpicomm, only: stop_it use Poisson use Sub real, dimension (mx,my,mz,mfarray) :: f real :: knot_param, circle_param, circle_radius real :: delta_knot_param, delta_circle_param, delta_circle_radius real, dimension(3) :: knot_pos, circle_pos, tangent, normal, twist_vector integer :: domain_width, domain_depth, domain_height integer :: l, j, ju real :: dist ! The next 2 variables are used for the uncurling. real, dimension (nx,ny,nz,3) :: jj, tmpJ ! This is phi for poisson.f90 ! ! initialize the magnetic flux tube ! domain_width = l2-l1; domain_depth = m2-m1; domain_height = n2-n1 ! ! Calculate the minimum step size of the curve parameters ! to avoid discretation issues, like mesh points without magnetic field ! delta_knot_param = .5/max(domain_width,domain_depth,domain_height) delta_circle_param = delta_knot_param/(width_ring/2.) delta_circle_radius = delta_circle_param ! knot_param = 0. ! ! loop which moves along the n-foil knot ! do if (knot_param .gt. 2.*pi) exit knot_pos(1) = (C+sin(knot_param*4))*sin(knot_param*3) knot_pos(2) = (C+sin(knot_param*4))*cos(knot_param*3) knot_pos(3) = D*cos(8.*knot_param-phase*pi) tangent(1) = 4*cos(knot_param*4)*sin(knot_param*3)+& 3*(C+sin(knot_param*4))*cos(knot_param*(4-1)) tangent(2) = 4*cos(knot_param*4)*cos(knot_param*3)-& 3*(C+sin(knot_param*4))*sin(knot_param*3) tangent(3) = -8*D*sin(8*(knot_param-pi/6)) tangent = tangent / sqrt(tangent(1)**2+tangent(2)**2+tangent(3)**2) ! ! Find vector which is orthonormal to tangent vector. ! if (abs(tangent(1)) .le. 0.5) then normal(1) = tangent(1)**2 - 1.0 normal(2) = tangent(2)*tangent(1) normal(3) = tangent(3)*tangent(1) elseif (abs(tangent(2)) .le. 0.5) then normal(1) = tangent(1)*tangent(2) normal(2) = tangent(2)**2 - 1.0 normal(3) = tangent(3)*tangent(2) else normal(1) = tangent(1)*tangent(3) normal(2) = tangent(2)*tangent(3) normal(3) = tangent(3)**2 - 1.0 endif ! ! normalize the normal vector ! normal = normal / sqrt(normal(1)**2+normal(2)**2+normal(3)**2) circle_radius = 0. ! ! loop which changes the circle's radius ! do if (circle_radius .gt. width_ring/2.) exit circle_param = 0. ! ! loop which goes around the circle ! do if (circle_param .gt. 2.*pi) exit ! ! Compute the position on the finite size flux tube. ! circle_pos(1) = knot_pos(1) + circle_radius * & ((tangent(1)*tangent(1)*(1-cos(circle_param))+cos(circle_param))*normal(1) + & (tangent(1)*tangent(2)*(1-cos(circle_param))-tangent(3)*sin(circle_param))*normal(2) + & (tangent(1)*tangent(3)*(1-cos(circle_param))+tangent(2)*sin(circle_param))*normal(3)) circle_pos(2) = knot_pos(2) + circle_radius * & ((tangent(1)*tangent(2)*(1-cos(circle_param))+tangent(3)*sin(circle_param))*normal(1) + & (tangent(2)*tangent(2)*(1-cos(circle_param))+cos(circle_param))*normal(2) + & (tangent(2)*tangent(3)*(1-cos(circle_param))-tangent(1)*sin(circle_param))*normal(3)) circle_pos(3) = knot_pos(3) + circle_radius * & ((tangent(1)*tangent(3)*(1-cos(circle_param))-tangent(2)*sin(circle_param))*normal(1) + & (tangent(2)*tangent(3)*(1-cos(circle_param))+tangent(1)*sin(circle_param))*normal(2) + & (tangent(3)*tangent(3)*(1-cos(circle_param))+cos(circle_param))*normal(3)) ! ! Compute the twist vector for the magnetic field. twist_vector(1) = tangent(2)*(circle_pos(3)-knot_pos(3)) - tangent(3)*(circle_pos(2)-knot_pos(2)) twist_vector(2) = tangent(3)*(circle_pos(1)-knot_pos(1)) - tangent(1)*(circle_pos(3)-knot_pos(3)) twist_vector(3) = tangent(1)*(circle_pos(3)-knot_pos(3)) - tangent(2)*(circle_pos(1)-knot_pos(1)) twist_vector = twist_vector*circle_radius*twist if (sqrt((circle_pos(1)-knot_pos(1))**2 + (circle_pos(2)-knot_pos(2))**2 + & (circle_pos(3)-knot_pos(3))**2) > 0) then twist_vector = twist_vector/sqrt((circle_pos(1)-knot_pos(1))**2 + & (circle_pos(2)-knot_pos(2))**2 + & (circle_pos(3)-knot_pos(3))**2) endif ! ! ! Scale and shift the circle position. ! circle_pos(1) = circle_pos(1)*xscale + xshift circle_pos(2) = circle_pos(2)*yscale + yshift circle_pos(3) = circle_pos(3)*zscale + zshift ! ! Find the corresponding mesh point to this position. ! dist = x(l2+nghost) - x(1) do l = 1, l2+nghost if (abs(x(l) - circle_pos(1)) > dist) exit dist = abs(x(l) - circle_pos(1)) end do dist = y(m2+nghost) - y(1) do m = 1, m2+nghost if (abs(y(m) - circle_pos(2)) > dist) exit dist = abs(y(m) - circle_pos(2)) end do dist = z(n2+nghost) - z(1) do n = 1, n2+nghost if (abs(z(n) - circle_pos(3)) > dist) exit dist = abs(z(n) - circle_pos(3)) end do ! ! Write the magnetic field B. ! Note that B is written in the f-array where A is stored. This is ! corrected further in the code. ! ! f(l,m,n,iax:iaz) = tangent*ampl if (l >= 1 .and. l <= l2+nghost .and. m >= 1 .and. m <= m2+nghost .and. n >= 1 .and. n <= n2+nghost) then if (prof == 'const') then f(l,m,n,iax:iaz) = (tangent + twist_vector)*ampl else if (prof == 'smooth') then f(l,m,n,iax:iaz) = (tangent+twist_vector)*ampl*(1-(circle_radius/(width_ring/2.))**4)**4 endif endif circle_param = circle_param + delta_circle_param enddo circle_radius = circle_radius + delta_circle_radius enddo knot_param = knot_param + delta_knot_param enddo ! ! Transform the magnetic field into a vector potential ! ! Compute curl(B) = J for the Poisson solver do m=m1,m2 do n=n1,n2 call curl(f,iaa,jj(:,m-nghost,n-nghost,:)) enddo enddo tmpJ = -jj ! Use the Poisson solver to solve \nabla^2 A = -J for A do j=1,3 call inverse_laplacian(tmpJ(:,:,:,j)) enddo ! Overwrite the f-array with the correct vector potential A do j=1,3 ju=iaa-1+j f(l1:l2,m1:m2,n1:n2,ju) = tmpJ(:,:,:,j) enddo ! endsubroutine initial_condition_aa !*********************************************************************** subroutine read_initial_condition_pars(iostat) ! use File_io, only: parallel_unit ! integer, intent(out) :: iostat ! read(parallel_unit, NML=initial_condition_pars, IOSTAT=iostat) ! endsubroutine read_initial_condition_pars !*********************************************************************** subroutine write_initial_condition_pars(unit) ! integer, intent(in) :: unit ! write(unit, NML=initial_condition_pars) ! endsubroutine write_initial_condition_pars !*********************************************************************** !******************************************************************** !************ DO NOT DELETE THE FOLLOWING ************** !******************************************************************** !** This is an automatically generated include file that creates ** !** copies dummy routines from noinitial_condition.f90 for any ** !** InitialCondition routines not implemented in this file ** !** ** include '../initial_condition_dummies.inc' !******************************************************************** endmodule InitialCondition