! Initial condition (density, magnetic field, velocity) ! for a particular configuration of magnetic tubes. ! ! 12-Oct-28/simon: ! !** AUTOMATIC CPARAM.INC GENERATION **************************** ! Declare (for generation of cparam.inc) the number of f array ! variables and auxiliary variables added by this module ! ! CPARAM logical, parameter :: linitial_condition = .true. ! !*************************************************************** module InitialCondition ! use Cparam use Cdata use General, only: keep_compiler_quiet use Messages ! implicit none ! include '../initial_condition.h' ! ! ampl = amplitude of the magnetic field ! width_ring = width of the flux tubes ! [xyz]scale = scale in each dimension real :: ampl=1.0, width_ring=0.6, minor_axis=1.2, major_axis=2.5 real :: xscale = 1.0, yscale = 1.0, zscale = 1.0 character (len=labellen) :: prof='constant' ! namelist /initial_condition_pars/ & ampl,width_ring,prof,minor_axis,major_axis,xscale,yscale,zscale ! contains !*********************************************************************** subroutine register_initial_condition() ! ! Configure pre-initialised (i.e. before parameter read) variables ! which should be know to be able to evaluate ! ! 07-oct-09/wlad: coded ! ! Identify CVS/SVN version information. ! if (lroot) call svn_id( & "$Id: whitehead_link.f90 19193 2012-06-30 12:55:46Z iomsn $") ! endsubroutine register_initial_condition !*********************************************************************** subroutine initial_condition_uu(f) ! ! Initialize the velocity field. ! ! 07-may-09/wlad: coded ! real, dimension (mx,my,mz,mfarray), intent(inout) :: f ! call keep_compiler_quiet(f) ! endsubroutine initial_condition_uu !*********************************************************************** subroutine initial_condition_lnrho(f) ! ! Initialize logarithmic density. init_lnrho ! will take care of converting it to linear ! density if you use ldensity_nolog ! ! 07-may-09/wlad: coded ! real, dimension (mx,my,mz,mfarray), intent(inout) :: f ! call keep_compiler_quiet(f) ! endsubroutine initial_condition_lnrho !*********************************************************************** subroutine initial_condition_aa(f) ! ! Initialize the magnetic vector potential. ! ! 11-nov-10/simon: coded ! ! Magnetic flux ring which has the form of a n-foil knot. ! NB: Curerently this works only for one CPU. For multi CPU usage ! initialize on one CPU and do the remeshing. ! ! Created 2010-11-11 by Simon Candelaresi (Iomsn) ! use Mpicomm, only: stop_it use Poisson use Sub real, dimension (mx,my,mz,mfarray) :: f real :: ellipse_param, circle_param, circle_radius real :: delta_ellipse_param, delta_circle_param, delta_circle_radius real, dimension(3) :: ellipse_pos, circle_pos, tangent, normal integer :: l, j, ju, ellipse_idx ! The next 2 variables are used for the uncurling. real, dimension (nx,ny,nz,3) :: jj, tmpJ ! This is phi for poisson.f90 ! ! Calculate the minimum step size of the curve parameters ! to avoid discretisation issues, like mesh points without magnetic field ! delta_ellipse_param = min(dx, dy, dz)*max(xscale, yscale, zscale)/Lx/2 delta_circle_param = delta_ellipse_param/(width_ring/2.) delta_circle_radius = delta_circle_param ! ! loop which moves along the ellipse ! do ellipse_idx = 1,2 write(*,*) "ellipse_idx = ", ellipse_idx do if (ellipse_param .gt. 2.*pi) exit if (ellipse_idx == 1) then ellipse_pos(1) = minor_axis*cos(ellipse_param) ellipse_pos(2) = 0 ellipse_pos(3) = major_axis*sin(ellipse_param) tangent(1) = -minor_axis*sin(ellipse_param) tangent(2) = 0 tangent(3) = major_axis*cos(ellipse_param) endif if (ellipse_idx == 2) then ellipse_pos(1) = 2.5*cos(ellipse_param) ellipse_pos(2) = 2*sin(2*ellipse_param) ellipse_pos(3) = sin(ellipse_param) tangent(1) = -2.5*sin(ellipse_param) tangent(2) = 2*2*cos(2*ellipse_param) tangent(3) = cos(ellipse_param) endif tangent = tangent / sqrt(tangent(1)**2+tangent(2)**2+tangent(3)**2) ! ! Find vector which is orthonormal to tangent vector. ! if (abs(tangent(1)) .le. 0.5) then normal(1) = tangent(1)**2 - 1.0 normal(2) = tangent(2)*tangent(1) normal(3) = tangent(3)*tangent(1) elseif (abs(tangent(2)) .le. 0.5) then normal(1) = tangent(1)*tangent(2) normal(2) = tangent(2)**2 - 1.0 normal(3) = tangent(3)*tangent(2) else normal(1) = tangent(1)*tangent(3) normal(2) = tangent(2)*tangent(3) normal(3) = tangent(3)**2 - 1.0 endif ! ! normalize the normal vector ! normal = normal / sqrt(normal(1)**2+normal(2)**2+normal(3)**2) ! circle_radius = 0. ! ! loop which changes the circle's radius ! do if (circle_radius .gt. width_ring/2.) exit circle_param = 0. ! ! loop which goes around the circle ! do if (circle_param .gt. 2.*pi) exit circle_pos(1) = ellipse_pos(1) + circle_radius * & ((tangent(1)*tangent(1)*(1-cos(circle_param))+cos(circle_param))*normal(1) + & (tangent(1)*tangent(2)*(1-cos(circle_param))-tangent(3)*sin(circle_param))*normal(2) + & (tangent(1)*tangent(3)*(1-cos(circle_param))+tangent(2)*sin(circle_param))*normal(3)) circle_pos(2) = ellipse_pos(2) + circle_radius * & ((tangent(1)*tangent(2)*(1-cos(circle_param))+tangent(3)*sin(circle_param))*normal(1) + & (tangent(2)*tangent(2)*(1-cos(circle_param))+cos(circle_param))*normal(2) + & (tangent(2)*tangent(3)*(1-cos(circle_param))-tangent(1)*sin(circle_param))*normal(3)) circle_pos(3) = ellipse_pos(3) + circle_radius * & ((tangent(1)*tangent(3)*(1-cos(circle_param))-tangent(2)*sin(circle_param))*normal(1) + & (tangent(2)*tangent(3)*(1-cos(circle_param))+tangent(1)*sin(circle_param))*normal(2) + & (tangent(3)*tangent(3)*(1-cos(circle_param))+cos(circle_param))*normal(3)) ! ! Find the corresponding mesh point to this position. ! l = nint((circle_pos(1)*xscale - x(1))/dx) + 1 m = nint((circle_pos(2)*yscale - y(1))/dy) + 1 n = nint((circle_pos(3)*zscale - z(1))/dz) + 1 ! ! Write the magnetic field B. ! Note that B is written in the f-array where A is stored. This is ! corrected further in the code. ! if ((l > mx .or. m > my .or. n > mz .or. l < 1 .or. m < 1 .or. n < 1) .eqv. .false.) then if (prof == 'gaussian') then f(l,m,n,iax:iaz) = tangent*ampl*(exp(-(2*circle_radius/width_ring)**2)-exp(-1.)) / (1-exp(-1.)) else if (prof == 'constant') then f(l,m,n,iax:iaz) = tangent*ampl endif endif circle_param = circle_param + delta_circle_param enddo circle_radius = circle_radius + delta_circle_radius enddo ellipse_param = ellipse_param + delta_ellipse_param enddo ellipse_param = 0. enddo ! ! Transform the magnetic field into a vector potential ! ! Compute curl(B) = J for the Poisson solver do m=m1,m2 do n=n1,n2 call curl(f,iaa,jj(:,m-nghost,n-nghost,:)) enddo enddo tmpJ = -jj ! Use the Poisson solver to solve \nabla^2 A = -J for A do j=1,3 call inverse_laplacian(tmpJ(:,:,:,j)) enddo ! Overwrite the f-array with the correct vector potential A do j=1,3 ju=iaa-1+j f(l1:l2,m1:m2,n1:n2,ju) = tmpJ(:,:,:,j) enddo ! endsubroutine initial_condition_aa !*********************************************************************** subroutine read_initial_condition_pars(iostat) ! use File_io, only: parallel_unit ! integer, intent(out) :: iostat ! read(parallel_unit, NML=initial_condition_pars, IOSTAT=iostat) ! endsubroutine read_initial_condition_pars !*********************************************************************** subroutine write_initial_condition_pars(unit) ! integer, intent(in) :: unit ! write(unit, NML=initial_condition_pars) ! endsubroutine write_initial_condition_pars !*********************************************************************** !******************************************************************** !************ DO NOT DELETE THE FOLLOWING ************** !******************************************************************** !** This is an automatically generated include file that creates ** !** copies dummy routines from noinitial_condition.f90 for any ** !** InitialCondition routines not implemented in this file ** !** ** include '../initial_condition_dummies.inc' !******************************************************************** endmodule InitialCondition