! $Id$
!
!  This module add solid (as in no-fluid) cells in the domain.
!  This can be used e.g. in order to simulate a cylinder in a cross flow.
!
!** AUTOMATIC CPARAM.INC GENERATION ****************************
! Declare (for generation of cparam.inc) the number of f array
! variables and auxiliary variables added by this module
!
! CPARAM logical, parameter :: lsolid_cells = .true.
! CPARAM logical, parameter :: lsolid_ogrid = .false.
!
!***************************************************************
module Solid_Cells
!
  use Cparam
  use Cdata
  use General, only: keep_compiler_quiet
  use Messages
!
  implicit none
!
  include 'solid_cells.h'
!
  integer, parameter            :: max_items=5
  integer                       :: ncylinders=0, nrectangles, nspheres=0, dummy
  integer                       :: nobjects, nlong, nlat
  integer                       :: nforcepoints=200
  integer                       :: close_interpolation_method=1
  real, dimension(max_items)    :: cylinder_radius=0.
  real, dimension(max_items)    :: cylinder_temp=703.0
  real, dimension(max_items)    :: cylinder_xpos=0., cylinder_ypos=0., cylinder_zpos=0.
  real, dimension(max_items)    :: sphere_radius=0.
  real, dimension(max_items)    :: sphere_temp=703.0
  real, dimension(max_items)    :: sphere_xpos=0., sphere_ypos=0., sphere_zpos=0.
  integer, dimension(mx,my,mz,4):: ba, ba_shift
  real :: skin_depth=0., init_uu=0., ampl_noise=0., object_skin=0.
  character(len=labellen), dimension(ninit) :: initsolid_cells='nothing'
  character(len=labellen) :: interpolation_method='staircase'
  logical :: lclose_interpolation=.false., lclose_linear=.false.
  logical :: lnointerception=.false., lcheck_ba=.false.
  logical :: lclose_quad_rad_inter=.true.
  logical :: lset_flow_dir=.false.
  real                          :: rhosum, flow_dir=0., T0, flow_dir_set=0.
  integer                       :: irhocount
  real                          :: theta_shift=1e-2
  real                          :: limit_close_linear=0.5
  real                          :: ineargridshift=1
!
  type solid_object
    character(len=10) :: form
    real :: r,T
    real, dimension(3) :: x
  endtype solid_object
!
  type (solid_object), dimension(max_items) :: objects
!
  namelist /solid_cells_init_pars/ &
      cylinder_temp, ncylinders, cylinder_radius, cylinder_xpos, &
      cylinder_ypos, cylinder_zpos, initsolid_cells, skin_depth, init_uu, &
      ampl_noise,interpolation_method, nforcepoints,object_skin, &
      lclose_interpolation,lclose_linear,limit_close_linear,lnointerception, &
      nspheres,sphere_radius,sphere_xpos,sphere_ypos,sphere_zpos,sphere_temp, &
      lclose_quad_rad_inter,ineargridshift,lset_flow_dir,flow_dir_set, &
      close_interpolation_method
!
  namelist /solid_cells_run_pars/  &
      interpolation_method,object_skin,lclose_interpolation,lclose_linear, &
      limit_close_linear,lnointerception,nforcepoints,lcheck_ba, &
      lclose_quad_rad_inter,ineargridshift,close_interpolation_method
!
!  Diagnostic variables (need to be consistent with reset list below).
!
  integer :: idiag_c_dragx=0
  integer :: idiag_c_dragy=0
  integer :: idiag_c_dragz=0
  integer :: idiag_c_dragx_p=0
  integer :: idiag_c_dragy_p=0
  integer :: idiag_c_dragz_p=0
  integer :: idiag_Nusselt=0
!
  integer, allocatable :: fpnearestgrid(:,:,:)
  real, allocatable    :: c_dragx(:), c_dragy(:), c_dragz(:), Nusselt(:)
  real, allocatable    :: c_dragx_p(:), c_dragy_p(:), c_dragz_p(:)
!  Dummy variables
  real :: r_ogrid
  real :: r_int_outer
  real, dimension(3) :: xorigo_ogrid
!
  contains
!***********************************************************************
    subroutine register_solid_cells
!
!  Dummy routine
!
    end subroutine register_solid_cells
!***********************************************************************
    subroutine initialize_solid_cells(f)
!
!  Define the geometry of the solids.
!  There might be many separate solid objects of different geometries (currently
!  only cylinders and spheres are implemented however).
!
!  19-nov-2008/nils: coded
!  28-sep-2010/nils: added spheres
!  nov-2010/kragset: updated allocations related to drag calculations
!
      real, dimension(mx,my,mz,mfarray), intent(inout) :: f
      integer :: icyl, isph,i
!
!  Define the geometry of the solid object.
!  For more complex geometries (i.e. for objects different than cylinders,
!  spheres or rectangles) this shold probably be included as a geometry.local
!  file such that
!  one can define complex geometries on a case to case basis.
!  Alternatively one will here end up with a terribly long series
!  of case checks.
!
!  Loop over all cylinders
!
      do icyl = 1,ncylinders
        if (cylinder_radius(icyl) > 0) then
          objects(icyl)%r    = cylinder_radius(icyl)
          objects(icyl)%x(1) = cylinder_xpos(icyl)
          objects(icyl)%x(2) = cylinder_ypos(icyl)
          objects(icyl)%x(3) = cylinder_zpos(icyl)
          objects(icyl)%T    = cylinder_temp(icyl)
          objects(icyl)%form = 'cylinder'
        else
          call fatal_error('initialize_solid_cells', &
              'All cylinders must have non-zero radii!')
        endif
      enddo
!
!  Loop over all spheres
!
      do isph = 1,nspheres
        if (sphere_radius(isph) > 0) then
          objects(isph+ncylinders)%r   = sphere_radius(isph)
          objects(isph+ncylinders)%x(1) = sphere_xpos(isph)
          objects(isph+ncylinders)%x(2) = sphere_ypos(isph)
          objects(isph+ncylinders)%x(3) = sphere_zpos(isph)
          objects(isph+ncylinders)%T   = sphere_temp(isph)
          objects(isph+ncylinders)%form = 'sphere'
        else
          call fatal_error('initialize_solid_cells', &
              'All spheres must have non-zero radii!')
        endif
      enddo
      nobjects = ncylinders+nspheres
!
!  In order to avoid problems with how namelists are written not all
!  slots of an array which should be stored in the namelist can be zero
!
      if (nspheres == 0) then
        sphere_radius(1) = impossible
        sphere_xpos(1) = impossible
        sphere_ypos(1) = impossible
        sphere_zpos(1) = impossible
        sphere_temp(1) = impossible
      else
!
! Find number of lines of longitude and latitude such that
! nforcepoints=nlong*(nlat+1) and nlat=nlong/2-1
!
        nlong = int(sqrt(2.*nforcepoints))
        nlat = int(.5*nlong)-1
        if (nlong*(nlat+1) /= nforcepoints) then
          print*, "Warning: 2*nforcepoints should be square"
          print*,'nforcepoints=',nforcepoints
          print*,'nlong,nlat=',nlong,nlat
        endif
      endif
      if (ncylinders == 0) then
        cylinder_radius(1) = impossible
        cylinder_xpos(1) = impossible
        cylinder_ypos(1) = impossible
        cylinder_zpos(1) = impossible
        cylinder_temp(1) = impossible
      endif
!
!  Prepare the solid geometry
!
      call find_solid_cell_boundaries(f)
      if (interpolation_method == 'staircase') call calculate_shift_matrix
!
! Find nearest grid point of the "forcepoints" on all cylinders. Arrays
! are only allocated if c_dragx, c_dragy or c_dragz is set in print.in.
! This must be changed if drag force is required for other purposes,
! e.g. if solid object is allowed to move.
!
      if (idiag_c_dragx /= 0 .or. idiag_c_dragy /= 0 .or. &
          idiag_c_dragz /= 0 .or. idiag_Nusselt /= 0 .or. &
          idiag_c_dragx_p /= 0 .or. idiag_c_dragy_p /= 0 .or. &
          idiag_c_dragz_p /= 0 ) then
        if (.not.allocated(fpnearestgrid)) &              ! for reloading
          allocate(fpnearestgrid(nobjects,nforcepoints,3))
        call fp_nearest_grid
        rhosum    = 0.0
        irhocount = 0
      endif
      if (idiag_c_dragx /= 0 .or. idiag_c_dragy /= 0 .or. &
          idiag_c_dragz /= 0 .or. idiag_c_dragx_p /= 0 .or. &
          idiag_c_dragy_p /= 0 .or. idiag_c_dragz_p /= 0) then
        if (.not.allocated(c_dragx)) then              ! for reloading
          allocate(c_dragx(nobjects))
          allocate(c_dragy(nobjects))
          allocate(c_dragz(nobjects))
          allocate(c_dragx_p(nobjects))
          allocate(c_dragy_p(nobjects))
          allocate(c_dragz_p(nobjects))
        endif
      endif
      if (idiag_Nusselt /= 0.and..not.allocated(Nusselt)) allocate(Nusselt(nobjects))
!
! Try to find flow direction
!
      flow_dir = 0
      if (fbcx(1,1) > 0) flow_dir = 1
      if (fbcx(1,2) < 0) flow_dir = -1
      if (fbcy(2,1) > 0) flow_dir = 2
      if (fbcy(2,2) < 0) flow_dir = -2
      if (fbcz(3,1) > 0) flow_dir = 3
      if (fbcz(3,2) < 0) flow_dir = -3
      if (flow_dir > 0) then
        if (lroot) then
          print*,'By using fbc[x,y,z] I found the flow direction to be in the ', &
              flow_dir,' direction.'
        endif
      else
        do i = 1,3
          if (lperi(i)) then
            if (.not. lperi(mod(i,3)+1) .and. .not. lperi(mod(i+1,3)+1)) then
              flow_dir = i
              if (lroot) then
                print*,'By using lperi I found the flow direction to be in the ', &
                    flow_dir,' direction.'
              endif
            endif
          endif
        enddo
        if (lset_flow_dir) flow_dir = flow_dir_set
        if (flow_dir == 0) then
          call fatal_error('initialize_solid_cells', &
              'I was not able to determine the flow direction!')
        endif
      endif
!
! Find inlet temperature
!
      if (ilnTT /= 0) then
        if (flow_dir == 1) T0 = fbcx(ilnTT,1)
        if (flow_dir == -1) T0 = fbcx(ilnTT,2)
        if (flow_dir == 2) T0 = fbcy(ilnTT,1)
        if (flow_dir == -2) T0 = fbcy(ilnTT,2)
        if (flow_dir == 3) T0 = fbcz(ilnTT,1)
        if (flow_dir == -3) T0 = fbcz(ilnTT,2)
        if (.not. ltemperature_nolog) T0 = exp(T0)
      endif
!
    endsubroutine initialize_solid_cells
!***********************************************************************
    subroutine init_solid_cells(f)
!
!  Initial conditions for cases where we have solid structures in the domain.
!  Typically the flow field is set such that we have no-slip conditions
!  at the solid structure surface.
!
!  28-nov-2008/nils: coded
!
      use Initcond, only: gaunoise
      use InitialCondition, only: initial_condition_solid_cells
!
      real, dimension(mx,my,mz,mfarray), intent(inout) :: f
      real :: a2, rr2, wall_smoothing, rr2_low, rr2_high, shiftx, shifty
      real :: wall_smoothing_temp, xr, yr
      integer i,j,k,cyl,jj,icyl
!
      do jj = 1,ninit
        select case (initsolid_cells(jj))
!
!  This overrides any initial conditions set in the Hydro module.
!
        case ('nothing')
          if (lroot) print*,'init_solid_cells: nothing'
        case ('cylinder')
!  Initial condition for cyilinder in quiecent medium
          call gaunoise(ampl_noise,f,iux,iuz)
          shiftx = 0
          do i = l1,l2
            do j = m1,m2
              do k = n1,n2
!
!  Loop over all cylinders
!
                do icyl = 1,nobjects
                  a2 = objects(icyl)%r**2
                  xr = x(i)-objects(icyl)%x(1)
                  yr = y(j)-objects(icyl)%x(2)
                  rr2 = xr**2+yr**2
                  if (rr2 > a2) then
                    if (ilnTT /= 0) then
                      wall_smoothing_temp = 1-exp(-(rr2-a2)/(sqrt(a2))**2)
                      f(i,j,k,ilnTT) = wall_smoothing_temp*f(i,j,k,ilnTT) &
                          +objects(icyl)%T*(1-wall_smoothing_temp)
                      f(i,j,k,ilnrho) = f(l2,m2,n2,ilnrho) &
                          *f(l2,m2,n2,ilnTT)/f(i,j,k,ilnTT)
                    endif
                  else
                    if (ilnTT /= 0) then
                      f(i,j,k,ilnTT) = objects(icyl)%T
                      f(i,j,k,ilnrho) = f(l2,m2,n2,ilnrho) &
                          *f(l2,m2,n2,ilnTT)/objects(icyl)%T
                    endif
                  endif
                enddo
              enddo
            enddo
          enddo
        case ('cylinderstream_x')
!  Stream functions for flow around a cylinder as initial condition.
          call gaunoise(ampl_noise,f,iux,iuz)
          f(:,:,:,iux) = f(:,:,:,iux)+init_uu
          shiftx = 0
          do i = l1,l2
            do j = m1,m2
              do k = n1,n2
!
!  Loop over all cylinders
!
                do icyl = 1,nobjects
                  a2 = objects(icyl)%r**2
                  xr = x(i)-objects(icyl)%x(1)
                  if (objects(icyl)%x(2) /= 0) then
                    print*,'When using cylinderstream_x all cylinders must have'
                    print*,'zero offset in y-direction!'
                    call fatal_error('init_solid_cells:','')
                  endif
                  yr = y(j)
                  rr2 = xr**2+yr**2
                  if (rr2 > a2) then
                    do cyl = 0,100
                      if (cyl == 0) then
                        wall_smoothing = 1-exp(-(rr2-a2)/skin_depth**2)
                        f(i,j,k,iuy) = f(i,j,k,iuy)-init_uu* &
                            2*xr*yr*a2/rr2**2*wall_smoothing
                        f(i,j,k,iux) = f(i,j,k,iux)+init_uu* &
                            (0. - a2/rr2 + 2*yr**2*a2/rr2**2) &
                            *wall_smoothing
                        if (ilnTT /= 0) then
                          wall_smoothing_temp = 1-exp(-(rr2-a2)/(sqrt(a2))**2)
                          f(i,j,k,ilnTT) = wall_smoothing_temp*f(i,j,k,ilnTT) &
                              +objects(icyl)%T*(1-wall_smoothing_temp)
                          f(i,j,k,ilnrho) = f(l2,m2,n2,ilnrho) &
                              *f(l2,m2,n2,ilnTT)/f(i,j,k,ilnTT)
                        endif
                      else
                        shifty = cyl*Lxyz(2)
                        rr2_low = (xr+shiftx)**2+(yr+shifty)**2
                        rr2_high = (xr-shiftx)**2+(yr-shifty)**2
                        f(i,j,k,iux) = f(i,j,k,iux)+init_uu*( &
                            +2*(yr-shifty)**2*a2/rr2_high**2-a2/rr2_high &
                            +2*(yr+shifty)**2*a2/rr2_low**2 -a2/rr2_low)
                        f(i,j,k,iuy) = f(i,j,k,iuy)-init_uu*( &
                            +2*(xr-shiftx)*(yr-shifty) &
                            *a2/rr2_high**2 &
                            +2*(xr+shiftx)*(yr+shifty) &
                            *a2/rr2_low**2)
                      endif
                    enddo
                  else
                    if (ilnTT /= 0) then
                      f(i,j,k,ilnTT) = objects(icyl)%T
                      f(i,j,k,ilnrho) = f(l2,m2,n2,ilnrho) &
                          *f(l2,m2,n2,ilnTT)/objects(icyl)%T
                    endif
                  endif
                enddo
              enddo
            enddo
          enddo
        case ('cylinderstream_y')
!  Stream functions for flow around a cylinder as initial condition.
          call gaunoise(ampl_noise,f,iux,iuz)
          f(:,:,:,iuy) = f(:,:,:,iuy)+init_uu
          shifty = 0
          do i = l1,l2
            do j = m1,m2
              do k = n1,n2
                do icyl = 1,ncylinders
                  a2 = objects(icyl)%r**2
                  yr = y(j)-objects(icyl)%x(2)
                  if (objects(icyl)%x(1) /= 0) then
!              write(*,*) 'DM',objects(icyl)%x(1),icyl
                    print*,'When using cylinderstream_y all cylinders must have'
                    print*,'zero offset in x-direction!'
                    call fatal_error('init_solid_cells:','')
                  endif
                  xr = x(i)
                  rr2 = xr**2+yr**2
                  if (rr2 > a2) then
                    do cyl = 0,100
                      if (cyl == 0) then
                        wall_smoothing = 1-exp(-(rr2-a2)/skin_depth**2)
                        f(i,j,k,iux) = f(i,j,k,iux)-init_uu* &
                            2*xr*yr*a2/rr2**2*wall_smoothing
                        f(i,j,k,iuy) = f(i,j,k,iuy)+init_uu* &
                            (0. - a2/rr2 + 2*xr**2*a2/rr2**2) &
                            *wall_smoothing
                        if (ilnTT /= 0) then
                          wall_smoothing_temp = 1-exp(-(rr2-a2)/(sqrt(a2))**2)
                          f(i,j,k,ilnTT) = wall_smoothing_temp*f(i,j,k,ilnTT) &
                              +objects(icyl)%T*(1-wall_smoothing_temp)
                          f(i,j,k,ilnrho) = f(l2,m2,n2,ilnrho) &
                              *f(l2,m2,n2,ilnTT)/f(i,j,k,ilnTT)
                        endif
                      else
                        shiftx = cyl*Lxyz(1)
                        rr2_low = (xr+shiftx)**2+(yr+shifty)**2
                        rr2_high = (xr-shiftx)**2+(yr-shifty)**2
                        f(i,j,k,iuy) = f(i,j,k,iuy)+init_uu*( &
                            +2*(xr-shiftx)**2*a2/rr2_high**2-a2/rr2_high &
                            +2*(xr+shiftx)**2*a2/rr2_low**2 -a2/rr2_low)
                        f(i,j,k,iux) = f(i,j,k,iux)-init_uu*( &
                            +2*(xr-shiftx)*(y(j)-shifty) &
                            *a2/rr2_high**2 &
                            +2*(xr+shiftx)*(y(j)+shifty) &
                            *a2/rr2_low**2)
                      endif
                    enddo
                  else
                    if (ilnTT /= 0) then
                      f(i,j,k,ilnTT) = objects(icyl)%T
                      f(i,j,k,ilnrho) = f(l2,m2,n2,ilnrho) &
                          *f(l2,m2,n2,ilnTT)/objects(icyl)%T
                    endif
                  endif
                enddo
              enddo
            enddo
          enddo
          if (llast_proc_y) f(:,m2-5:m2,:,iux) = 0
        case default
!
!  Catch unknown values
!
          if (lroot) print*,'No such value for init_solid_cells:', &
              trim(initsolid_cells(jj))
          call fatal_error('init_solid_cells','')
        endselect
      enddo
!
!  Interface for user's own initial condition
!
      if (linitial_condition) call initial_condition_solid_cells(f)
!
    endsubroutine init_solid_cells
!***********************************************************************
    subroutine fp_nearest_grid
!
!  Find coordinates for nearest grid point of all the
!  "forcepoints" (fp) for each object (assume object with axis
!  parallel to the z direction. Assign values to fpnearestgrid.
!
!  mar-2009/kragset: coded
!  nov-2010/kragset: updated to include spheres
!
      integer           :: iobj, iforcepoint, ipoint, inearest, icoord(8,3)
      integer           :: ilong, ilat
      integer           :: ixl, iyl, izl, ixu, iyu, izu, ju, jl, jm
      real              :: robj, xobj, yobj, zobj, fpx, fpy, fpz
      real              :: dx1, dy1, dz1, longitude, latitude
      real              :: dist_to_fp2(8), dist_to_cent2(8), twopi, dlong, dlat
      logical           :: interiorpoint
      character(len=10) :: objectform
!
      dx1 = 1/dx
      dy1 = 1/dy
      dz1 = 1/dz
!
      twopi = 2.*pi
!
!  Loop over all objects
      do iobj = 1,nobjects
        robj = objects(iobj)%r
        xobj = objects(iobj)%x(1)
        yobj = objects(iobj)%x(2)
        objectform = objects(iobj)%form
        if (objectform == 'cylinder') then
          zobj = z(n1)
          dlong = twopi/nforcepoints
        elseif (objectform == 'sphere') then
          zobj  = objects(iobj)%x(3)
          dlong = twopi/nlong
          dlat  = pi/(nlat+1)
!  Assume a minimum radius for the forcepoints
          robj = robj+dxmin*ineargridshift
        else
          print*, "Warning: Subroutine fp_nearest_grid not implemented ", &
              "for this objectform."
        endif
!
!
!  Loop over all forcepoints on each object, iobj
        do iforcepoint = 1,nforcepoints
!
!  Marking whether fp is within this processor's domain or not
          interiorpoint = .true.
!
!  Fp coordinates
!  Shifting the location of the forcpoints in the theta direction
!  in order to avoid problems with autotesting
          if (objectform == 'cylinder') then
            longitude = (iforcepoint-theta_shift)*dlong
            fpx = xobj - robj * sin(longitude)
            fpy = yobj - robj * cos(longitude)
            fpz = z(n1)
          elseif (objectform == 'sphere') then
!  Note definition of lines of longitude: ilong = [0,..,nlong-1]
            ilong  = mod(iforcepoint-1,nlong)
!  Note definition of lines of latitude: ilat  = [0,..,nlat]
            ilat   = int((iforcepoint-1)/nlong)
            longitude = (ilong+.5-theta_shift)*dlong
            latitude  = (ilat+.5)*dlat
            fpx = xobj - robj*sin(longitude)*sin(latitude)
            fpy = yobj - robj*cos(longitude)*sin(latitude)
            fpz = zobj + robj*cos(latitude)
          endif
!
!  Find nearest grid point in x-direction
!
          if (nxgrid /= 1) then
            if (fpx >= x(l1-1) .and. fpx <= x(l2+1)) then
              if (lequidist(1)) then
                ixl = int((fpx-x(1))*dx1) + 1
                ixu = ixl+1
              else
!
!  Find nearest grid point by bisection if grid is not equidistant
!
                ju = l2+1
                jl = l1-1
                do while((ju-jl) > 1)
                  jm = (ju+jl)/2
                  if (fpx > x(jm)) then
                    jl = jm
                  else
                    ju = jm
                  endif
                enddo
                ixl = jl
                ixu = ju
              endif
            else
              interiorpoint = .false.
            endif
          else
            print*,"WARNING: Solid cells need nxgrid > 1."
          endif
!
!  Find nearest grid point in y-direction
!
          if (nygrid /= 1) then
            if (fpy >= y(m1-1) .and. fpy <= y(m2+1)) then
              if (lequidist(2)) then
                iyl = int((fpy-y(1))*dy1) + 1
                iyu = iyl+1
              else
!
!  Find nearest grid point by bisection if grid is not equidistant
!
                ju = m2
                jl = m1
                do while((ju-jl) > 1)
                  jm = (ju+jl)/2
                  if (fpy > y(jm)) then
                    jl = jm
                  else
                    ju = jm
                  endif
                enddo
                iyl = jl
                iyu = ju
              endif
            else
              interiorpoint = .false.
            endif
          else
            print*,"WARNING: Solid cells need nygrid > 1."
          endif
!
!  Find nearest grid point in z-direction
!
          if (nzgrid /= 1) then
            if (fpz >= z(n1-1) .and. fpz <= z(n2+1)) then
              if (lequidist(3)) then
                izl = int((fpz-z(1))*dz1) + 1
                izu = izl+1
              else
!
!  Find nearest grid point by bisection if grid is not equidistant
!
                ju = n2
                jl = n1
                do while((ju-jl) > 1)
                  jm = (ju+jl)/2
                  if (fpz > z(jm)) then
                    jl = jm
                  else
                    ju = jm
                  endif
                enddo
                izl = jl
                izu = ju
              endif
            else
              interiorpoint = .false.
            endif
          else
!  z direction is irrelevant when in 2D
            izl = n1
            izu = n1
          endif
!
!  Now, we have the upper and lower (x,y,z)-coordinates:
!  ixl, ixu, iyl, iyu, izl, izu,
!  i.e. the eight corners of the grid cell containing the forcepoint (fp).
!  Decide which ones are outside the object, and which one of these
!  is the closest one to fp:
!
!  Check if fp is within this processor's local domain
          if (interiorpoint) then
            dist_to_fp2(1) = (x(ixl)-fpx)**2+(y(iyl)-fpy)**2+(z(izl)-fpz)**2
            dist_to_fp2(2) = (x(ixu)-fpx)**2+(y(iyl)-fpy)**2+(z(izl)-fpz)**2
            dist_to_fp2(3) = (x(ixu)-fpx)**2+(y(iyu)-fpy)**2+(z(izl)-fpz)**2
            dist_to_fp2(4) = (x(ixl)-fpx)**2+(y(iyu)-fpy)**2+(z(izl)-fpz)**2
            dist_to_fp2(5) = (x(ixl)-fpx)**2+(y(iyl)-fpy)**2+(z(izu)-fpz)**2
            dist_to_fp2(6) = (x(ixu)-fpx)**2+(y(iyl)-fpy)**2+(z(izu)-fpz)**2
            dist_to_fp2(7) = (x(ixu)-fpx)**2+(y(iyu)-fpy)**2+(z(izu)-fpz)**2
            dist_to_fp2(8) = (x(ixl)-fpx)**2+(y(iyu)-fpy)**2+(z(izu)-fpz)**2
            dist_to_cent2(1) = (x(ixl)-xobj)**2+(y(iyl)-yobj)**2+(z(izl)-zobj)**2
            dist_to_cent2(2) = (x(ixu)-xobj)**2+(y(iyl)-yobj)**2+(z(izl)-zobj)**2
            dist_to_cent2(3) = (x(ixu)-xobj)**2+(y(iyu)-yobj)**2+(z(izl)-zobj)**2
            dist_to_cent2(4) = (x(ixl)-xobj)**2+(y(iyu)-yobj)**2+(z(izl)-zobj)**2
            dist_to_cent2(5) = (x(ixl)-xobj)**2+(y(iyl)-yobj)**2+(z(izu)-zobj)**2
            dist_to_cent2(6) = (x(ixu)-xobj)**2+(y(iyl)-yobj)**2+(z(izu)-zobj)**2
            dist_to_cent2(7) = (x(ixu)-xobj)**2+(y(iyu)-yobj)**2+(z(izu)-zobj)**2
            dist_to_cent2(8) = (x(ixl)-xobj)**2+(y(iyu)-yobj)**2+(z(izu)-zobj)**2
            icoord(1,:) = (/ixl,iyl,izl/)
            icoord(2,:) = (/ixu,iyl,izl/)
            icoord(3,:) = (/ixu,iyu,izl/)
            icoord(4,:) = (/ixl,iyu,izl/)
            icoord(5,:) = (/ixl,iyl,izu/)
            icoord(6,:) = (/ixu,iyl,izu/)
            icoord(7,:) = (/ixu,iyu,izu/)
            icoord(8,:) = (/ixl,iyu,izu/)
            inearest = 0
            do ipoint = 1,8
!  Test if we are in a fluid cell, i.e.
!  that forcepoints are outside robj.
              if (dist_to_cent2(ipoint) > robj**2 .and. inearest == 0) then
                inearest = ipoint
              elseif (dist_to_cent2(ipoint) > robj**2) then
                if (dist_to_fp2(ipoint) <= dist_to_fp2(inearest)) then
                  inearest = ipoint
                endif
              endif
            enddo
!
!  Coordinates of nearest grid point. Zero if outside local domain.
            if (inearest > 0) then
              fpnearestgrid(iobj,iforcepoint,:) = icoord(inearest,:)
            else
              print*, "WARNING: Could not find fpnearestgrid!"
            endif
!
          else
!
! fp is outside local domain and fpnearestgrid shouldn't exist
            fpnearestgrid(iobj,iforcepoint,:) = 0
          endif
        enddo
      enddo
!
    endsubroutine fp_nearest_grid
!***********************************************************************
    subroutine dsolid_dt(f,df,p)
!
!  Find pressure and stress in all the forcepoints (fp) positioned on
!  object surface, based on values in nearest grid point.
!
!  mar-2009/kragset: coded
!  okt-2009/kragset: updated to include multiple objects
!  nov-2010/kragset: updated to include spheres
!
      use Sub, only: dot
      use Viscosity, only: getnu
!
      real, dimension(mx,my,mz,mfarray), intent(in):: f
      real, dimension(mx,my,mz,mvar), intent(in)   :: df
      type (pencil_case), intent(in)                :: p
!
      real    :: fp_pressure, fp_gradT
      real    :: fp_stress(3,3)
      integer :: iobj, ifp, ix0, iy0, iz0, i, ilong, ilat
      real    :: longitude, latitude, dlong, dlat, robj, rforce
      real, dimension(nx) :: nu, twonu
      real    :: force_x, force_y, force_z, loc_Nus
      real    :: twopi, nvec(3), surfaceelement, surfacecoeff
      real    :: deltaT, Tobj, drag_norm, nusselt_norm
      character(len=10) :: objectform
!
      if (ldiagnos) then
        if (idiag_c_dragx /= 0 .or. idiag_c_dragy /= 0 .or. &
            idiag_c_dragz /= 0 .or. idiag_Nusselt /= 0 .or. &
            idiag_c_dragx_p /= 0 .or. idiag_c_dragy_p /= 0 .or. &
            idiag_c_dragz_p /= 0) then
!
!  Reset cumulating quantities before calculations in first pencil
!
          if (imn == 1) then
            if (idiag_c_dragx /= 0 .or. idiag_c_dragy /= 0 .or. &
                idiag_c_dragz /= 0) then
              c_dragx = 0.
              c_dragy = 0.
              c_dragz = 0.
            endif
            if (idiag_Nusselt /= 0) Nusselt = 0.
            if (idiag_c_dragx_p /= 0 .or. idiag_c_dragy_p /= 0 .or. &
                idiag_c_dragz_p /= 0) then
              c_dragx_p = 0.
              c_dragy_p = 0.
              c_dragz_p = 0.
            endif
            rhosum = 0
            irhocount = 0
          endif
!
          call getnu(nu_pencil=nu,p=p)
          twopi = 2.*pi
          twonu = 2.*nu
!
          do iobj = 1,nobjects
            robj = objects(iobj)%r
!  Integrating at radius rforce (for spheres)
            rforce = robj+dxmin*ineargridshift
            objectform = objects(iobj)%form
            if (objectform == 'cylinder') then
              dlong = twopi/nforcepoints
              surfaceelement = dlong*rforce/nzgrid
              drag_norm = 1./(2*robj)
            elseif (objectform == 'sphere') then
              dlong = twopi/nlong
              dlat  = pi/(nlat+1)
!  Surface term, normalized by the squared radius of the object.
!  Additional normalizing factors can be found in subroutine
!  dsolid_dt_integrate.
              surfacecoeff = dlong*dlat*rforce**2
              drag_norm = 1./(pi*robj**2)
              nusselt_norm = 1./(4*pi*robj**2)
            else
              print*, "Warning: Subroutine dsolid_dt not implemented ", &
                  "for this objectform."
            endif
            do ifp = 1,nforcepoints
              iy0 = fpnearestgrid(iobj,ifp,2)
              iz0 = fpnearestgrid(iobj,ifp,3)
              if (objectform == 'cylinder') iz0 = n
!
!  Test: Use this pencil for force calculation?
!
              if (iy0 == m .and. iz0 == n) then
                ix0 = fpnearestgrid(iobj,ifp,1)
! Test: ix0 in local domain?
                if (ix0 >= l1 .and. ix0 <= l2) then
!
!  Acquire pressure and stress from grid point (ix0,iy0,iz0).
!  Shifting the location of the forcpoints in the theta direction
!  in order to avoid problems with autotesting
!
                  if (objectform == 'cylinder') then
                    longitude = (ifp-theta_shift)*dlong
                    nvec(1) = -sin(longitude)
                    nvec(2) = -cos(longitude)
                    nvec(3) = 0
                  elseif (objectform == 'sphere') then
                    ilong  = mod(ifp-1,nlong)
                    ilat   = int((ifp-1)/nlong)
                    longitude = (ilong+.5-theta_shift)*dlong
                    latitude  = (ilat+.5)*dlat
                    nvec(1) = -sin(longitude)*sin(latitude)
                    nvec(2) = -cos(longitude)*sin(latitude)
                    nvec(3) = cos(latitude)
                    surfaceelement = surfacecoeff*sin(latitude)
                  else
                    call fatal_error('dsolid_dt','No such objectform!')
                    call keep_compiler_quiet(nvec)
                  endif
!
! Find force in x,y and z direction
!
                  if (idiag_c_dragx /= 0 .or. idiag_c_dragy /= 0 .or. &
                      idiag_c_dragz /= 0 .or. idiag_c_dragx_p /= 0 .or. &
                      idiag_c_dragy_p /= 0 .or. idiag_c_dragz_p /= 0) then
                    fp_pressure = p%pp(ix0-nghost)
                    fp_stress(:,:) = twonu(ix0-nghost)*p%rho(ix0-nghost) &
                        *p%sij(ix0-nghost,:,:)
!
!  Force in x-,y-, and z-directions
!
                    force_x = (-fp_pressure*nvec(1) &
                        + fp_stress(1,1)*nvec(1) &
                        + fp_stress(1,2)*nvec(2) &
                        + fp_stress(1,3)*nvec(3)) * surfaceelement
!
                    force_y = (-fp_pressure*nvec(2) &
                        + fp_stress(2,1)*nvec(1) &
                        + fp_stress(2,2)*nvec(2) &
                        + fp_stress(2,3)*nvec(3)) * surfaceelement
!
                    force_z = (-fp_pressure*nvec(3) &
                        + fp_stress(3,1)*nvec(1) &
                        + fp_stress(3,2)*nvec(2) &
                        + fp_stress(3,3)*nvec(3)) * surfaceelement
!
                  endif
!
!  Local Nusselt number
!
                  if (idiag_Nusselt /= 0) then
                    call dot(p%gTT(ix0-nghost,:),-nvec,fp_gradT)
                    Tobj = objects(iobj)%T
                    if (.not. ltemperature_nolog) Tobj = exp(Tobj)
                    deltaT = Tobj-T0
                    loc_Nus = fp_gradT*robj*2./deltaT * surfaceelement
                  endif
!
                  if (idiag_c_dragx /= 0 .or. idiag_c_dragy /= 0 .or. &
                      idiag_c_dragz /= 0 .or. idiag_c_dragx_p /= 0 .or. &
                      idiag_c_dragy_p /= 0 .or. idiag_c_dragz_p /= 0) then
                    c_dragx(iobj) = c_dragx(iobj) + force_x * drag_norm
                    c_dragy(iobj) = c_dragy(iobj) + force_y * drag_norm
                    c_dragz(iobj) = c_dragz(iobj) + force_z * drag_norm
                    c_dragx_p(iobj) = c_dragx_p(iobj) - &
                        fp_pressure*nvec(1) * drag_norm * surfaceelement
                    c_dragy_p(iobj) = c_dragy_p(iobj) - &
                        fp_pressure*nvec(2) * drag_norm * surfaceelement
                    c_dragz_p(iobj) = c_dragz_p(iobj) - &
                        fp_pressure*nvec(3) * drag_norm * surfaceelement
                  endif
                  if (idiag_Nusselt /= 0) Nusselt(iobj) = Nusselt(iobj) &
                      + loc_Nus * nusselt_norm
                endif
              endif
            enddo
          enddo
!
!  Calculate average density of the domain, solid cell regions excluded:
!
          do i = l1,l2
            if (mod(ba(i,m,n,1),10) == 0) then
              rhosum = rhosum + p%rho(i-nghost)
              irhocount = irhocount+1
            endif
          enddo
        endif
      endif
!
      call keep_compiler_quiet(df,f)
!
    endsubroutine dsolid_dt
!***********************************************************************
    subroutine dsolid_dt_integrate
!
!  Calculate drag- and lift-coefficients for solid cell objects
!  by integrating fluid force on object surface.
!
!  mar-2009/kragset: coded
!  okt-2009/kragset: updated to include multiple objects
!  nov-2010/kragset: updated to include spheres
!
      use General, only: safe_character_append
      use Mpicomm, only: mpireduce_sum, mpireduce_sum_int
!
      real    :: rhosum_all, c_dragx_all(nobjects), c_dragy_all(nobjects)
      real    :: c_dragz_all(nobjects), Nusselt_all(nobjects)
      real    :: c_dragx_p_all(nobjects), c_dragy_p_all(nobjects)
      real    :: c_dragz_p_all(nobjects)
      integer :: irhocount_all, iobj
      real    :: norm, refrho0
      character(len=100) :: numberstring
      character(len=500) :: solid_cell_drag
!
      if (ldiagnos) then
        if (idiag_c_dragx /= 0 .or. idiag_c_dragy /= 0 &
            .or. idiag_c_dragz /= 0 .or. idiag_Nusselt /= 0 &
            .or. idiag_c_dragx_p /= 0 .or. idiag_c_dragy_p /= 0 &
            .or. idiag_c_dragz_p /= 0) then
!
!  Collect and sum rhosum, irhocount, c_dragx, c_dragz, and c_dragy.
          call mpireduce_sum(rhosum,rhosum_all)
          call mpireduce_sum_int(irhocount,irhocount_all)
          if (idiag_c_dragx /= 0 .or. idiag_c_dragy /= 0 .or. &
              idiag_c_dragz /= 0 .or. idiag_c_dragx_p /= 0 .or. &
              idiag_c_dragy_p /= 0 .or. idiag_c_dragz_p /= 0) then
            call mpireduce_sum(c_dragx,c_dragx_all,nobjects)
            call mpireduce_sum(c_dragy,c_dragy_all,nobjects)
            call mpireduce_sum(c_dragz,c_dragz_all,nobjects)
            call mpireduce_sum(c_dragx_p,c_dragx_p_all,nobjects)
            call mpireduce_sum(c_dragy_p,c_dragy_p_all,nobjects)
            call mpireduce_sum(c_dragz_p,c_dragz_p_all,nobjects)
          endif
          if (idiag_Nusselt /= 0) call mpireduce_sum(Nusselt,Nusselt_all,nobjects)
!
          if (lroot) then
            refrho0 = rhosum_all / irhocount_all
!
!  Find drag and lift
!
            if (idiag_c_dragx /= 0 .or. idiag_c_dragy /= 0 .or. &
                idiag_c_dragz /= 0 .or. idiag_c_dragx_p /= 0 .or. &
                idiag_c_dragy_p /= 0 .or. idiag_c_dragz_p /= 0) then
!  Normalizing factor. Additional factors was included in subroutine dsolid_dt.
              norm = 2. / (refrho0*init_uu**2)
              c_dragx = c_dragx_all * norm
              c_dragy = c_dragy_all * norm
              c_dragz = c_dragz_all * norm
              c_dragx_p = c_dragx_p_all * norm
              c_dragy_p = c_dragy_p_all * norm
              c_dragz_p = c_dragz_p_all * norm
!
!  Write drag coefficients for all objects
!  (may need to expand solid_cell_drag to more
!  characters if large number of objects).
!
              open (unit=81,file='data/dragcoeffs.dat',position='APPEND')
              write (solid_cell_drag,84) it-1, t
              do iobj = 1,nobjects
                write (numberstring,82) c_dragx(iobj), c_dragy(iobj),c_dragz(iobj), &
                    c_dragx_p(iobj), c_dragy_p(iobj),c_dragz_p(iobj)
                call safe_character_append(solid_cell_drag,numberstring)
              enddo
              write (81,*) trim(solid_cell_drag)
              close (81)
84            format(1I8,1F15.8)
82            format(6F15.8)
            endif
!
!  Find Nusselt number
!
            if (idiag_Nusselt /= 0) then
              Nusselt = Nusselt_all
            endif
          endif
        endif
        if (idiag_c_dragx /= 0) fname(idiag_c_dragx) = c_dragx(1)
        if (idiag_c_dragy /= 0) fname(idiag_c_dragy) = c_dragy(1)
        if (idiag_c_dragz /= 0) fname(idiag_c_dragz) = c_dragz(1)
        if (idiag_c_dragx_p /= 0) fname(idiag_c_dragx_p) = c_dragx_p(1)
        if (idiag_c_dragy_p /= 0) fname(idiag_c_dragy_p) = c_dragy_p(1)
        if (idiag_c_dragz_p /= 0) fname(idiag_c_dragz_p) = c_dragz_p(1)
        if (idiag_Nusselt /= 0) fname(idiag_Nusselt) = Nusselt(1)
      endif
!
    endsubroutine dsolid_dt_integrate
!***********************************************************************
    subroutine rprint_solid_cells(lreset,lwrite)
!
!  Reads and registers print parameters relevant for solid cells
!
!   mar-2009/kragset: coded
!   nov-2010/kragset: generalized to include drag in z-direction
!
      use Diagnostics, only: parse_name
      use Sub
!
      integer :: iname
      logical :: lreset, lwr
      logical, optional :: lwrite
!
      lwr = .false.
      if (present(lwrite)) lwr = lwrite
!
!  Reset everything in case of reset
!
      if (lreset) then
        idiag_c_dragx = 0
        idiag_c_dragy = 0
        idiag_c_dragz = 0
        idiag_c_dragx_p = 0
        idiag_c_dragy_p = 0
        idiag_c_dragz_p = 0
        idiag_Nusselt = 0
      endif
!
!  check for those quantities that we want to evaluate online
!
      do iname = 1,nname
        call parse_name(iname,cname(iname),cform(iname),'c_dragx',idiag_c_dragx)
        call parse_name(iname,cname(iname),cform(iname),'c_dragy',idiag_c_dragy)
        call parse_name(iname,cname(iname),cform(iname),'c_dragz',idiag_c_dragz)
        call parse_name(iname,cname(iname),cform(iname),'c_dragx_p',idiag_c_dragx_p)
        call parse_name(iname,cname(iname),cform(iname),'c_dragy_p',idiag_c_dragy_p)
        call parse_name(iname,cname(iname),cform(iname),'c_dragz_p',idiag_c_dragz_p)
        call parse_name(iname,cname(iname),cform(iname),'Nusselt',idiag_Nusselt)
      enddo
!
!  write column, idiag_XYZ, where our variable XYZ is stored
!
      if (lwr) then
!
      endif
!
    endsubroutine rprint_solid_cells
!***********************************************************************
    subroutine update_solid_cells(f)
!
!  Set the boundary values of the solid area such that we get a
!  correct fluid-solid interface.
!
!  19-nov-2008/nils: coded
!
      real, dimension(mx,my,mz,mfarray) :: f
      real, dimension(mvar) :: f_tmp
      integer :: i, j, k, idir, xind, yind, zind, iobj
!
      real :: z_obj, y_obj, x_obj, r_obj, r_new, r_point, sin_theta, cos_theta
      real :: xmirror, ymirror, zmirror, dr, mirror_temperature
      integer :: lower_i, upper_i, lower_j, upper_j, ii, jj, kk
      integer :: lower_k, upper_k, ndims
      logical :: bax, bay, baz
      real, dimension(3) :: xxp, phi, ppp
      character(len=10) :: form
!
!  For fluid points very close to the solid surface the velocity and temperature
!  is set from interpolation between the value at the closest grid line
!  and the value at the solid surface.
!
      if (lclose_linear) then
        if (interpolation_method == 'mirror' .or. &
            interpolation_method == 'line_mirror') then
          do i = l1,l2
            do j = m1,m2
              do k = n1,n2
                if (ba(i,j,k,1) == 10) then
                  iobj = ba(i,j,k,4)
                  x_obj = objects(iobj)%x(1)
                  y_obj = objects(iobj)%x(2)
                  z_obj = objects(iobj)%x(3)
                  r_obj = objects(iobj)%r
                  if (objects(iobj)%form == 'cylinder') then
                    r_point = sqrt(((x(i)-x_obj)**2+(y(j)-y_obj)**2))
                  elseif (objects(iobj)%form == 'sphere') then
                    r_point = sqrt((x(i)-x_obj)**2+(y(j)-y_obj)**2+&
                        (z(k)-z_obj)**2)
                  endif
                  dr = r_point-r_obj
                  if ((dr > 0) .and. (dr < dxmin*limit_close_linear)) then
                    xxp = (/x(i),y(j),z(k)/)
                    call close_interpolation(f,i,j,k,iobj,xxp,f_tmp,.true.)
                    f(i,j,k,iux:iuz) = f_tmp(iux:iuz)
                    if (ilnTT > 0) f(i,j,k,ilnTT) = f_tmp(ilnTT)
                  endif
                endif
              enddo
            enddo
          enddo
        endif              
      endif
!
!  Find ghost points based on the mirror interpolation method
!
      if (interpolation_method == 'mirror' &
          .or. interpolation_method == 'line_mirror') then
        do i = l1,l2
          do j = m1,m2
            do k = n1,n2
              iobj = ba(i,j,k,4)
              if (iobj > 0) then
                form = objects(iobj)%form
                bax = (ba(i,j,k,1) /= 0).and.(ba(i,j,k,1) /= 9).and.&
                    (ba(i,j,k,1) /= 10)
                bay = (ba(i,j,k,2) /= 0).and.(ba(i,j,k,2) /= 9).and.&
                    (ba(i,j,k,2) /= 10)
                if (form == 'sphere') then
                  baz = (ba(i,j,k,3) /= 0).and.(ba(i,j,k,3) /= 9).and.&
                      (ba(i,j,k,3) /= 10)
                else
                  baz = .false.
                endif
!
!  Check if we are in a point which must be interpolated, i.e. we are inside
!  a solid geometry AND we are not more than three grid points from the
!  closest solid-fluid interface
!
                if (bax .or. bay .or. baz) then
!
!  Find x, y and z values of mirror point
!
                  iobj = ba(i,j,k,4)
                  x_obj = objects(iobj)%x(1)
                  y_obj = objects(iobj)%x(2)
                  z_obj = objects(iobj)%x(3)
                  r_obj = objects(iobj)%r
                  form = objects(iobj)%form
                  if (form == 'cylinder') then
                    r_point = sqrt((x(i)-x_obj)**2+(y(j)-y_obj)**2)
                    r_new = r_obj+(r_obj-r_point)
                    sin_theta = (y(j)-y_obj)/r_point
                    cos_theta = (x(i)-x_obj)/r_point
                    xmirror = cos_theta*r_new+x_obj
                    ymirror = sin_theta*r_new+y_obj
                    zmirror = z(k)
                  elseif (form == 'sphere') then
                    r_point = sqrt((x(i)-x_obj)**2+(y(j)-y_obj)**2+(z(k)-z_obj)**2)
                    r_new = r_obj+(r_obj-r_point)
                    xmirror = (x(i)-x_obj)*r_new/r_point+x_obj
                    ymirror = (y(j)-y_obj)*r_new/r_point+y_obj
                    zmirror = (z(k)-z_obj)*r_new/r_point+z_obj
!
! Check if mirror point is inside domain
!
                    if (xmirror < xyz0(1) .and. lperi(1)) xmirror = xmirror+Lxyz(1)
                    if (ymirror < xyz0(2) .and. lperi(2)) ymirror = ymirror+Lxyz(2)
                    if (zmirror < xyz0(3) .and. lperi(3)) zmirror = zmirror+Lxyz(3)
                    if (xmirror > xyz1(1) .and. lperi(1)) xmirror = xmirror-Lxyz(1)
                    if (ymirror > xyz1(2) .and. lperi(2)) ymirror = ymirror-Lxyz(2)
                    if (zmirror > xyz1(3) .and. lperi(3)) zmirror = zmirror-Lxyz(3)
                  endif
!
!  Check that we are indeed inside the solid geometry
!
                  if (r_point > r_obj) then
                    print*,'i,j,k=',i,j,k
                    print*,'x(i),x_obj=',x(i),x_obj
                    print*,'y(j),y_obj=',y(j),y_obj
                    print*,'z(k),z_obj=',z(k),z_obj
                    print*,'r_point,r_new,r_obj=',r_point,r_new,r_obj
                    call fatal_error('update_solid_cells:','r_point>r_obj')
                  endif
!
!  Find i, j and k indeces for points to be used during interpolation
!
                  ppp(1) = xmirror
                  ppp(2) = ymirror
                  ppp(3) = zmirror
                  call find_near_indeces( &
                      lower_i,upper_i, &
                      lower_j,upper_j, &
                      lower_k,upper_k,x,y,z,ppp)
!
!  Issue with domain borders: A mirror point can be outside a
!  processor's local domain (including ghost points). Some sort
!  communication has to be implemented!
!
                  if (lower_i == 0 .or. upper_i == 0) then
                    call fatal_error('update_solid_cells:','lower_i==0 or upper_i==0')
                  endif
                  if (lower_j == 0 .or. upper_j == 0) then
                    call fatal_error('update_solid_cells:','lower_j==0 or upper_j==0')
                  endif
                  if (form == 'sphere') then
                    if (lower_k == 0 .or. upper_k == 0) then
                      call fatal_error('update_solid_cells:','lower_k==0 or upper_k==0')
                    endif
                  endif
!
!  First we use interpolations to find the value of the mirror point.
!  Then we use the interpolated value to find the value of the ghost point
!  by empoying either Dirichlet or Neuman boundary conditions.
!
                  if (objects(iobj)%form == 'cylinder') then
                    ndims = 2
                  elseif (objects(iobj)%form == 'sphere') then
                    ndims = 3
                  endif
                  if (close_interpolation_method  >=  2) then
                    call interpolate_point_new(f,f_tmp,lower_i,upper_i,lower_j, &
                        upper_j,lower_k,upper_k,iobj,xmirror,ymirror,zmirror,ndims)
                    f(i,j,k,1:mvar) = f_tmp
                  elseif (close_interpolation_method == 1) then
!
!  Set zero velocity at the solid surface
!
                    if (interpolation_method == 'mirror') then
                      call interpolate_point(f,phi,iux,lower_i,upper_i,lower_j, &
                          upper_j,lower_k,upper_k,iobj,xmirror,ymirror,zmirror,ndims)
                      f(i,j,k,iux) = -phi(1)
                      call interpolate_point(f,phi,iuy,lower_i,upper_i,lower_j, &
                          upper_j,lower_k,upper_k,iobj,xmirror,ymirror,zmirror,ndims)
                      f(i,j,k,iuy) = -phi(1)
                      call interpolate_point(f,phi,iuz,lower_i,upper_i,lower_j, &
                          upper_j,lower_k,upper_k,iobj,xmirror,ymirror,zmirror,ndims)
                      f(i,j,k,iuz) = -phi(1)
                    endif
!
!  Set constant temperature, equal to the solid temperature, at the solid surface
!
                    if (ilnTT > 0) then
                      call interpolate_point(f,phi,ilnTT,lower_i,upper_i, &
                          lower_j,upper_j,lower_k,upper_k,iobj,xmirror,ymirror, &
                          zmirror,ndims)
                      f(i,j,k,ilnTT) = 2*objects(iobj)%T-phi(1)
                      mirror_temperature = phi(1)
                    endif
!
!  Set pressure gradient to zero at the solid surface
!
                    if (ilnrho > 0) then
                      call interpolate_point(f,phi,ilnrho,lower_i,upper_i, &
                          lower_j,upper_j,lower_k,upper_k,iobj,xmirror,ymirror, &
                          zmirror,ndims)
                      f(i,j,k,ilnrho) = phi(1)
                      if (ilnTT > 0 .or. iTT > 0) then
                        if (ltemperature_nolog) then
                          f(i,j,k,ilnrho) = phi(1) &
                              *mirror_temperature/f(i,j,k,ilnTT)
                        else
                          f(i,j,k,ilnrho) = phi(1) &
                              *exp(mirror_temperature-f(i,j,k,ilnTT))
                        endif
                      else
                        f(i,j,k,ilnrho) = phi(1)
                      endif
                    endif
                  else
                    call fatal_error('update_solid_cells', &
                        'No such interpolation method!')
                  endif
                endif
              endif
            enddo
          enddo
        enddo
!
!  Find ghost points based on the staircase interpolation method
!
      elseif (interpolation_method == 'staircase') then
        do i = l1,l2
          do j = m1,m2
            do k = n1,n2
              do idir = 1,3
                if (ba_shift(i,j,k,idir) /= 0) then
                  xind = i
                  yind = j
                  zind = k
                  if (idir == 1) then
                    xind = i-ba_shift(i,j,k,idir)
                  elseif (idir == 2) then
                    yind = j-ba_shift(i,j,k,idir)
                  elseif (idir == 3) then
                    zind = k-ba_shift(i,j,k,idir)
                  else
                    print*,'No such idir!...exiting!'
                    call fatal_error('update_solid_cells','No such idir!')
                  endif
!
!  Only update the solid cell "ghost points" if all indeces are non-zero.
!  In this way we might loose the innermost "ghost point" if the processor
!  border is two grid cells inside the solid structure, but this will
!  probably just have a very minor effect.
!
                  if (xind /= 0 .and. yind /= 0 .and. zind /= 0) then
                    iobj = ba_shift(i,j,k,4)
!
!  Set zero velocity at the solid surface
!
                    f(i,j,k,iux:iuz) = -f(xind,yind,zind,iux:iuz)
!
!  Set constant temperature, equal to the solid temperature, at the solid surface
!
                    if (ilnTT > 0) f(i,j,k,ilnTT) = &
                        2*objects(iobj)%T-f(xind,yind,zind,ilnTT)
!
!  Set pressure gradient to zero at the solid surface
!
                    if (ilnrho > 0 .or. irho > 0) then
                      if (ilnTT > 0 .or. iTT > 0) then
                        if (ltemperature_nolog) then
                          f(i,j,k,ilnrho) = f(xind,yind,zind,ilnrho) &
                              *f(xind,yind,zind,ilnTT)/f(i,j,k,ilnTT)
                        else
                          f(i,j,k,ilnrho) = f(xind,yind,zind,ilnrho) &
                              *exp(f(xind,yind,zind,ilnTT)-f(i,j,k,ilnTT))
                        endif
                      else
                        f(i,j,k,ilnrho) = f(xind,yind,zind,ilnrho)
                      endif
                    endif
                  endif
                endif
              enddo
            enddo
          enddo
        enddo
      else
        call fatal_error('update_solid_cells','No such interpolation_method')
      endif
!
    endsubroutine update_solid_cells
!***********************************************************************
    subroutine update_solid_cells_pencil(f)
!
!  Set the boundary values of the solid area such that we get a
!  correct fluid-solid interface.
!
!  30-mar-15/Jørgen+nils: coded
!
      real, dimension(mx,my,mz,mfarray) :: f
      logical :: bax, bay, baz
      character(len=10) :: form
      real :: xs, xp, x0, x1, x2, x3, lag0, lag1, lag2, lag3, f0, f1, f2, f3
      real :: ys, yp, y0, y1, y2, y3
      real :: zs, zp, z0, z1, z2, z3
      real :: deltax_surf, deltay_surf, deltaz_surf
      integer :: sign_ba, ivar, i, j, k, iobj
      real :: x_obj, y_obj, z_obj, r_obj
      integer :: lower_i, upper_i, ii
      integer :: lower_j, upper_j, jj
      integer :: lower_k, upper_k, kk
!
!  Do this only for the line_mirror interpolation method
!
      if (interpolation_method == 'line_mirror') then
!
!  find ghost points to be modified for this pencil
!
        do i = l1,l2
          bax = ((ba(i,m,n,1) /= 0).and.(ba(i,m,n,1) /= 9).and.&
              (ba(i,m,n,1) /= 10))
!
!  set ghost points in x-direction first
!
          if (bax) then
            iobj = ba(i,m,n,4)
            r_obj = objects(iobj)%r
            x_obj = objects(iobj)%x(1)
            y_obj = objects(iobj)%x(2)
            z_obj = objects(iobj)%x(3)
            form = objects(iobj)%form
!
!  find x-position of the surface of the object for the y and z values of
!  this pencil
!
            sign_ba = sign(1,ba(i,m,n,1))
            if (form == 'sphere') then
              xs = x_obj -sign_ba*sqrt(r_obj**2-(y(m)-y_obj)**2-(z(n)-z_obj)**2)
            else
              xs = x_obj -sign_ba*sqrt(r_obj**2-(y(m)-y_obj)**2)
            endif
!
! Find mirror point
!
            deltax_surf = xs-x(i)
            xp = xs+deltax_surf
!
! Find neighbouring grid points to the mirror point (xp)
! NILS & JORGEN: This should be made more efficient.
!
            lower_i = 0
            upper_i = 0
            do ii = 1,mx
              if (x(ii) > xp) then
                lower_i = ii-1
                upper_i = ii
                exit
              endif
            enddo
!
! Coorrection for mirror poitns very close to the surface to avoid 
! using ghost point in the interpolation
!
            if (upper_i == i) then
              lower_i = lower_i-1
              upper_i = upper_i-1
            elseif (lower_i == i) then
              lower_i = lower_i+1
              upper_i = upper_i+1
            endif
!
!  prepare lagrange polynomials for interpolation
!
            x2 = x(upper_i)
            x1 = x(lower_i)
            x0 = xs
!
            lag0 = (xp-x1)/(x0-x1) * (xp-x2)/(x0-x2)
            lag1 = (xp-x0)/(x1-x0) * (xp-x2)/(x1-x2)
            lag2 = (xp-x0)/(x2-x0) * (xp-x1)/(x2-x1)
!
            do ivar = 1,mvar
              if (ivar  <=  iuz) then
!
! After interpolation the value in the ghost point is set equal to
! the negative of the value in the mirror point
!
                f2 = f(upper_i,m,n,ivar)
                f1 = f(lower_i,m,n,ivar)
                f0 = 0.
                f(i,m,n,ivar) = -(lag0*f0+lag1*f1+lag2*f2)
              elseif (ivar == irho) then
!
!  Do nothing, this is done in update_solid_cells
!
              else
                call fatal_error('update_solid_cells_pencil','no such ivar')
              endif
            enddo
          endif
!
!  loop over all relevant ghost points in y-direction
!
          do j = -3,3
            if (j /= 0) then
              bay = (ba(i,m+j,n,2) /= 0).and.(ba(i,m+j,n,2) /= 9).and. &
                  (ba(i,m+j,n,2) /= 10).and. &
                  (ba(i,m,n,2)==0 .or. ba(i,m,n,2)==10)
              if (bay) then
                iobj = ba(i,m+j,n,4)
                r_obj = objects(iobj)%r
                x_obj = objects(iobj)%x(1)
                y_obj = objects(iobj)%x(2)
                z_obj = objects(iobj)%x(3)
                form = objects(iobj)%form
!
!  find y-position of the surface of the object for the x and z values of
!  this point
!
                sign_ba = sign(1,ba(i,m+j,n,2))
                if (form == 'sphere') then
                  ys = y_obj &
                      -sign_ba*sqrt(r_obj**2-(x(i)-x_obj)**2-(z(n)-z_obj)**2)
                else
                  ys = y_obj -sign_ba*sqrt(r_obj**2-(x(i)-x_obj)**2)
                endif
!
! Find mirror point
!
                deltay_surf = ys-y(m+j)
                yp = ys+deltay_surf
!
! Find neighbouring grid points to the mirror point (yp)
! NILS & JORGEN: This should be made more efficient.
!
                lower_j = 0
                upper_j = 0
                do jj = 1,my
                  if (y(jj) > yp) then
                    lower_j = jj-1
                    upper_j = jj
                    exit
                  endif
                enddo
!
! Coorrection for mirror points very close to the surface to avoid 
! using ghost point in the interpolation
!
                if (upper_j == (m+j)) then
                  lower_j = lower_j-1
                  upper_j = upper_j-1
                elseif (lower_j == (m+j)) then
                  lower_j = lower_j+1
                  upper_j = upper_j+1
                endif
!
!  prepare lagrange polynomials for interpolation
!
                y2 = y(upper_j)
                y1 = y(lower_j)
                y0 = ys
!
                lag0 = (yp-y1)/(y0-y1) * (yp-y2)/(y0-y2)
                lag1 = (yp-y0)/(y1-y0) * (yp-y2)/(y1-y2)
                lag2 = (yp-y0)/(y2-y0) * (yp-y1)/(y2-y1)
                do ivar = 1,mvar
                  if (ivar  <=  iuz) then
!
! After interpolation the value in the ghost point is set equal to
! the negative of the value in the mirror point
!
                    f2 = f(i,upper_j,n,ivar)
                    f1 = f(i,lower_j,n,ivar)
                    f0 = 0.
                    f(i,m+j,n,ivar) = -(lag0*f0+lag1*f1+lag2*f2)
                  elseif (ivar == irho) then
!
!  Do nothing, this is done in update_solid_cells
!
                  else
                    call fatal_error('update_solid_cells_pencil','no such ivar')
                  endif
                enddo
              endif
            endif
          enddo
!
!  loop over all relevant ghost points in z-direction
!
          do k = -3,3
            if (k /= 0) then
              iobj = ba(i,m,n+k,4)
              if (iobj > 0) then
                if (objects(iobj)%form == 'sphere') then
                  baz = (ba(i,m,k+n,3) /= 0).and.(ba(i,m,k+n,3) /= 9).and. &
                      (ba(i,m,k+n,3) /= 10).and.&
                      (ba(i,m,n,3)==0 .or. ba(i,m,n,3)==10)
                else
                  baz = .false.
                endif
              else
                baz = .false.
              endif
              if (baz) then
                r_obj = objects(iobj)%r
                x_obj = objects(iobj)%x(1)
                y_obj = objects(iobj)%x(2)
                z_obj = objects(iobj)%x(3)
!
!  find z-position of the surface of the object for the x and y values of
!  this point
!
                sign_ba = sign(1,ba(i,m,n+k,3))
                zs = z_obj &
                    -sign_ba*sqrt(r_obj**2-(x(i)-x_obj)**2-(y(m)-y_obj)**2)
!
! Find mirror point
!
                deltaz_surf = zs-z(n+k)
                zp = zs+deltaz_surf
!
! Find neighbouring grid points to the mirror point (zp)
! NILS & JORGEN: This should be made more efficient.
!
                lower_k = 0
                upper_k = 0
                do kk = 1,mz
                  if (z(kk) > zp) then
                    lower_k = kk-1
                    upper_k = kk
                    exit
                  endif
                enddo
!
! Coorrection for mirror poitns very close to the surface to avoid 
! using ghost point in the interpolation
!
                if (upper_k == (n+k)) then
                  lower_k = lower_k-1
                  upper_k = upper_k-1
                elseif (lower_j == (m+j)) then
                  lower_k = lower_k+1
                  upper_k = upper_k+1
                endif
!
!  prepare lagrange polynomials for interpolation
!
                z2 = z(upper_k)
                z1 = z(lower_k)
                z0 = zs
!
                lag0 = (zp-z1)/(z0-z1) * (zp-z2)/(z0-z2)
                lag1 = (zp-z0)/(z1-z0) * (zp-z2)/(z1-z2)
                lag2 = (zp-z0)/(z2-z0) * (zp-z1)/(z2-z1)
!
                do ivar = 1,mvar
                  if (ivar  <=  iuz) then
!
! After interpolation the value in the ghost point is set equal to
! the negative of the value in the mirror point
!
                    f2 = f(i,m,upper_k,ivar)
                    f1 = f(i,m,lower_k,ivar)
                    f0 = 0.
                    f(i,m,n+k,ivar) = -(lag0*f0+lag1*f1+lag2*f2)
                  elseif (ivar == irho) then
!
!  Do nothing, this is done in update_solid_cells
!
                  else
                    call fatal_error('update_solid_cells_pencil','No such ivar')
                  endif
                enddo
              endif
            endif
          enddo
!
        enddo
!
!
      endif
!
    endsubroutine update_solid_cells_pencil
!***********************************************************************
    subroutine find_near_indeces(lower_i,upper_i,lower_j,upper_j, &
        lower_k,upper_k,x,y,z,ppp)
!
!  Find i, j and k indeces for all neighbouring grid points
!
      integer :: ii, jj, kk
      integer, intent(out) :: lower_i, upper_i, lower_j, upper_j, lower_k, upper_k
      real, intent(in), dimension(mx) :: x
      real, intent(in), dimension(my) :: y
      real, intent(in), dimension(mz) :: z
      real, intent(in), dimension(3)  :: ppp
!
      lower_i = 0
      upper_i = 0
      do ii = 1,mx
        if (x(ii) > ppp(1)) then
          lower_i = ii-1
          upper_i = ii
          exit
        endif
      enddo
!
      lower_j = 0
      upper_j = 0
      do jj = 1,my
        if (y(jj) > ppp(2)) then
          lower_j = jj-1
          upper_j = jj
          exit
        endif
      enddo
!
      if (nzgrid == 1) then
        lower_k = n1
        upper_k = n1
      else
        lower_k = 0
        upper_k = 0
        do kk = 1,mz
          if (z(kk) > ppp(3)) then
            lower_k = kk-1
            upper_k = kk
            exit
          endif
        enddo
      endif
!
    endsubroutine find_near_indeces
!***********************************************************************
    subroutine interpolate_point(f,phi_,ivar,lower_i,upper_i,lower_j, &
        upper_j,lower_k,upper_k,iobj,xmirror,ymirror,zmirror,ndims)
!
!  Interpolate value in a mirror point from the eight corner values
!  Call only if close_interpolation_method is the default value 1.
!  If close_interpolation_method >= 2, use interpolate_point_new()
!
!  23-dec-2008/nils: coded
!  22-apr-2009/nils: added special treatment close to the solid surface
!  20-apr-2011/MR: adapted calls to linear_interpolate, added corresp. calls to fatal_error
!  27-apr-2016/Jorgen: removed outdated conditional statements. Routine only called for 
!                      close interpolate_method=1
!
      use General, only: linear_interpolate
      use Messages, only: fatal_error
!
      real, dimension(mx,my,mz,mfarray), intent(in) :: f
      real, dimension(mvar) :: f_tmp
      integer, intent(in) :: iobj, ndims
      integer, intent(in) :: lower_i, upper_i, lower_j, upper_j, ivar
      integer, intent(in) :: lower_k, upper_k
      real, intent(in) :: xmirror, ymirror, zmirror
      real, dimension(3), intent(out):: phi_
!
      real, dimension(3) :: xxp
      real, dimension(3) :: gp
      integer, dimension(3) :: inear
!
      call keep_compiler_quiet(upper_i)
      call keep_compiler_quiet(upper_j)
      call keep_compiler_quiet(upper_k)
      call keep_compiler_quiet(ndims)
!
      xxp = (/xmirror,ymirror,zmirror/)
      inear = (/lower_i,lower_j,lower_k/)
      if ( .not. linear_interpolate(f,ivar,ivar,xxp,gp(1),inear,.false.) ) then
        call fatal_error('linear_interpolate','')
      endif
      phi_(1) = gp(1)
!
!  If the mirror point is very close to the surface of the object
!  some special treatment is required.
!
      if (lclose_interpolation .and. (ivar < 4 .or. ivar == ilnTT)) then
        f_tmp(ivar) = phi_(1)
        call close_interpolation(f,lower_i,lower_j,lower_k,iobj,xxp, &
            f_tmp,.false.)
        phi_(1) = f_tmp(ivar)
      endif
!
    endsubroutine interpolate_point
!***********************************************************************
    subroutine interpolate_point_new(f,f_tmp,lower_i,upper_i,lower_j, &
        upper_j,lower_k,upper_k,iobj,xmirror,ymirror,zmirror,ndims)
!
!  Interpolate value in a mirror point from the eight corner values
!
!  23-dec-2008/nils: coded
!  22-apr-2009/nils: added special treatment close to the solid surface
!
      use General, only: linear_interpolate
      use Messages, only: fatal_error
      use sub
!
      real, dimension(mx,my,mz,mfarray), intent(in) :: f
      real, dimension(mvar), intent(out) :: f_tmp
      integer, intent(in) :: iobj, ndims
      integer, intent(in) :: lower_i, upper_i, lower_j, upper_j
      integer, intent(in) :: lower_k, upper_k
      real, intent(in) :: xmirror, ymirror, zmirror
!
      real, dimension(3) :: xxp, o_global, ntheta_hat, nphi_hat, nr_hat, xxp_local
      real :: rp, rs, r_sp, vp_r, vp_phi, vp_theta
      integer, dimension(3) :: inear
      real :: rho_ghost_point, rho_fluid_point, T_fluid_point, T_ghost_point
      integer :: itest_method
!
      call keep_compiler_quiet(upper_i)
      call keep_compiler_quiet(upper_j)
      call keep_compiler_quiet(upper_k)
      call keep_compiler_quiet(ndims)
!
      xxp = (/xmirror,ymirror,zmirror/)
      inear = (/lower_i,lower_j,lower_k/)
!
!  Find velocity in given point by one of two different methods:
!   1) Linear interploation (use the eight corner points of the cube), same
!      method as used in the particle module
!   2) Quadratic interpolation of the radial velocity and linear
!      interpolation of the tangential velocities (itest_method>0)
!
      itest_method = 0
      if (close_interpolation_method == 4) itest_method = 1
      if ( .not. linear_interpolate(f,iux,mvar,xxp,f_tmp,inear,.false.) ) &
          call fatal_error('linear_interpolate','')
!
      if (itest_method > 0) then
        o_global = objects(iobj)%x
        xxp_local = xxp-o_global
        if (objects(iobj)%form == 'cylinder') then
          rp = sqrt( (xxp(1)-o_global(1))**2 + (xxp(2)-o_global(2))**2 )
        elseif (objects(iobj)%form == 'sphere') then
          rp = sqrt( &
              (xxp(1)-o_global(1))**2 + &
              (xxp(2)-o_global(2))**2 + &
              (xxp(3)-o_global(3))**2   )
        endif
        rs = objects(iobj)%r
        r_sp = rp-rs
        call r_theta_phi_velocity_in_point(f,xxp,inear,iobj, &
            o_global,rs,r_sp,vp_r,vp_theta,vp_phi)
        call find_unit_vectors(xxp_local,rp,iobj,nr_hat,nphi_hat,ntheta_hat)
        f_tmp(iux:iuz) = vp_r*nr_hat+vp_theta*ntheta_hat+vp_phi*nphi_hat
        if (lclose_interpolation) then
          call close_interpolation(f,lower_i,lower_j,lower_k,iobj,xxp, &
              f_tmp,.false.)
        endif
!
!  What is the boundary conditions at the surface
!  For itest_method=1 antisymmetric boundaries are used for velocity
!  For itest_method=2 antisymmetric boundaries are used for tangential
!  velocity components while symmetric boundaries are used for radial velocity
!
        if (interpolation_method  /=  'line_mirror') then
          if (itest_method == 1) then
            f_tmp(1:3) = -f_tmp(1:3)
          else
            call dot(nr_hat,f_tmp(iux:iuz),vp_r)
            call dot(nphi_hat,f_tmp(iux:iuz),vp_phi)
            call dot(ntheta_hat,f_tmp(iux:iuz),vp_theta)
            f_tmp(iux:iuz) = vp_r*nr_hat-vp_theta*ntheta_hat-vp_phi*nphi_hat
          endif
        endif
      endif
!
      if (itest_method == 0) then
!
!  If the mirror point is very close to the surface of the object
!  some special treatment is required.
!
        if (lclose_interpolation) then
          call close_interpolation(f,lower_i,lower_j,lower_k,iobj,xxp, &
              f_tmp,.false.)
        endif
!
!  Antisymmetric boundaries are used for the velocity vector
!
        f_tmp(1:3) = -f_tmp(1:3)
      endif
!
!  For the temperature boundaries being antisymmetric relative to the
!  object temperature are used
!
      if (ilnTT > 0) then
        T_fluid_point = f_tmp(ilnTT)
        if (.not. ltemperature_nolog) T_fluid_point = exp(T_fluid_point)
        T_ghost_point = 2*objects(iobj)%T-T_fluid_point
        if (.not. ltemperature_nolog) then
          f_tmp(ilnTT) = log(T_ghost_point)
        else
          f_tmp(ilnTT) = T_ghost_point
        endif
      endif
!
!  The gradient of the pressure should be zero at the fluid-solid intereface.
!  For isothermal cases this means that the density gradient is zero
!
      rho_fluid_point = f_tmp(ilnrho)
      if (.not. ldensity_nolog) rho_fluid_point = exp(rho_fluid_point)
      if (ilnTT > 0) then
        rho_ghost_point = rho_fluid_point*T_fluid_point/T_ghost_point
      else
        rho_ghost_point = rho_fluid_point
      endif
      if (.not. ldensity_nolog) then
        f_tmp(ilnrho) = log(rho_ghost_point)
      else
        f_tmp(ilnrho) = rho_ghost_point
      endif
!
    endsubroutine interpolate_point_new
!***********************************************************************
    subroutine close_interpolation(f,ix0_,iy0_,iz0_,iobj,xxp,f_tmp, fluid_point)
!
!  20-mar-2009/nils: coded
!
!  If fluid_point=.true. this means that we are handling a grid point.
!  For fluid points very close to the solid surface the value of the point
!  is found from interpolation between the value at "g"
!  and the value at the solid surface "s".
!  The point "g" may be defined in two different ways:
!    1) the closest grid line which the normal from "s" to "p" cross
!    2) the point which is a normal from "s" and a given distance from "s"
!  Method number 2) is chosen if "close_interpolation_method=3" where
!  "limit_close_linear" give the number of grid sizes which "g" is
!  away from "s".
!
!  If fluid_point=.false. we are handling a point which is NOT a grid point,
!  i.e. the point we are interested in are somewhere between the grid points.
!  This situation typically appears for mirror points used
!  to find the value of the ghost points INSIDE the solid geometry, or when
!  a particle is very close to the surface.
!  If fluid_point=.false. the routine check if any of the neighbouring
!  grid points, used for interpolation, are inside the solid geometry.
!  If so the routine use the value at the surface
!  of the solid geometry together with the interpolated value at the nearest
!  grid line in the direction away from the solid geometry to set a value
!  at a grid point which is very close to the solid geometry.
!
!  The point we intend to find the value of, the interpolation point
!  (lfluid_point=false) or grid point (lfluid_point=true), is called "p".
!  Define a straight line "l" which pass through the point "p" and is normal
!  to the surface of the object.
!  The point where "l" cross the surface of the object is called "s"
!  The point "g" is the point where "l" cross the first grid plane (line in 2D)
!  outside of "p".
!  The point "object" is the center point of the solid object.
!  The variable "bv" give the x,y and z values of the neighbouring grid points
!  to "p".
!
!
!---------------------------------------------------------------------------
! Point   Description               Global coord. sys.    Local coord. syst.
!                                                         (origo in center
!                                                         of object)
!---------------------------------------------------------------------------
! p       The interpolated point    p_global(3)           p_local(3)
! s       "l" cross surface         -                     -
! g       "l" cross grid plane      g_global(3)           -
! object  Object center             o_global(3)           -
! bv      Border value              cornervalue(3*2)      -
!---------------------------------------------------------------------------
!
      use Messages, only: fatal_error
!
      real, dimension(mx,my,mz,mfarray), intent(in) :: f
      integer, intent(in) :: ix0_, iy0_, iz0_, iobj
      real, dimension(mvar), intent(inout) :: f_tmp
      real, dimension(3), intent(in) :: xxp
      logical, intent(in) :: fluid_point
!
      real, dimension(3) :: p_local, p_global, o_global, gpp
      real :: rs, rp
      real, dimension(2,2,2) :: rij
      real, dimension(3,2) :: cornervalue
      integer, dimension(3,2) :: cornerindex
      integer :: itop_bot, jtop_bot, ktop_bot
!
!  Check if we really want special treatment close to the fluid-solid
!  interface
!
      if ((.not. fluid_point .and. lclose_interpolation) &
          .or. ( fluid_point .and. lclose_linear)) then
!
!  Define some help variables
!
        o_global = objects(iobj)%x
        rs = objects(iobj)%r
        p_global = xxp
!
!  Find the corner points of the grid cell we are in based on one of the
!  corner points (given by ix0_,iy0_,iz0_)
!
        call find_corner_points(fluid_point,cornervalue,cornerindex, &
            ix0_,iy0_,iz0_,p_global,o_global)
!
!  Find the x, y and z coordinates of "p" in a coordiante system with origin
!  in the center of the object
!
        p_local = p_global-o_global
!
!  Find the distance from the center of the object to "p"
!
        if (objects(iobj)%form == 'cylinder') then
          rp = sqrt(p_local(1)**2+p_local(2)**2)
          p_local(3) = 0
        elseif (objects(iobj)%form == 'sphere') then
          rp = sqrt(p_local(1)**2+p_local(2)**2+p_local(3)**2)
        endif
!
!  Find the distance rij from all eight corner points to the object center
!
        do itop_bot = 1,2
          do jtop_bot = 1,2
            do ktop_bot = 1,2
              rij(itop_bot,jtop_bot,ktop_bot) = sqrt( &
                  (cornervalue(1,itop_bot)-o_global(1))**2+ &
                  (cornervalue(2,jtop_bot)-o_global(2))**2+ &
                  (cornervalue(3,ktop_bot)-o_global(3))**2)
            enddo
          enddo
        enddo
!
!  We want special treatment if:
!    1)  at least one of the corner points are inside the solid geometry
!    2)  the distance from the surface is less than
!        limit_close_linear*dxmin
!    3)  this is a fluid point.
!
        if ((minval(rij) < rs) .or. &
            (rp < rs+limit_close_linear*dxmin) .or. &
            fluid_point) then
!
!  The routine for close interpolation works for cylinders and spheres only if 
!  close_interpolation_method is larger or equal to 2. For this parmeter
!  set to 1 only cylinders can be used, but it has the advantage of working
!  for the cases where one of the corner points of "gridplane" is inside
!  the solid geometry. This is important for particle simulations, and it
!  is therefore recommended to use close_interpolation_method=1 for 
!  simulations with particles.
!
!  Due to the relatively small gradients of density close
!  to the boundary, and, even more importantly, the small effect of
!  density on particle transport, the close interpolation
!  does not treat density.
!
            call close_inter_new(f,f_tmp,p_local,o_global,rs,rp, &
                cornervalue,cornerindex,fluid_point,iobj)
        endif
      endif
!
    endsubroutine close_interpolation
!***********************************************************************
    subroutine find_g_global_circle(g_global,inear,rg,p_local,o_global,rs,rp)
!
! Find g_global on a circle a distance limit_close_linear away
! from the solid surface.
!
      real, dimension(3) :: g_global, g_local, p_local, o_global
      integer, dimension(3) :: inear
      real :: rg, rs, rp
      integer :: lower_i, lower_j, lower_k, upper_i, upper_j, upper_k
!
      intent(in)  :: p_local, o_global, rs, rp
      intent(out) :: g_global, inear, rg
!
      rg = rs+(limit_close_linear)*dxmin
      g_local = p_local*rg/rp
      g_global = g_local+o_global
      call find_near_indeces(lower_i,upper_i,lower_j,upper_j, &
          lower_k,upper_k,x,y,z,g_global)
      inear = (/lower_i,lower_j,lower_k/)
!
    endsubroutine find_g_global_circle
!***********************************************************************
    subroutine close_inter_new(f,f_tmp,p_local,o_global,rs,rp, &
        cornervalue,cornerindex,fluid_point,iobj)
!
      use General, only: linear_interpolate
      use Messages, only: fatal_error
      use Sub
!
      real, dimension(mx,my,mz,mfarray), intent(in) :: f
      real, dimension(mvar) :: fvar, f_tmp
      real, dimension(3) :: o_global, p_local, g_global
      integer, dimension(3) :: ngrids, inear
      real :: rp, rs, verylarge=1e9, rlmin, rl, rg, r_pg, r_sg, r_sp, surf_val
      integer :: ndir, ndims, dir, vardir1, vardir2, constdir, topbot_tmp
      integer :: topbot, iobj, i, j,k
      real, dimension(3,2) :: cornervalue
      integer, dimension(3,2) :: cornerindex
      logical :: fluid_point
      integer :: lower_i, lower_j, lower_k, upper_i, upper_j, upper_k
      real :: phi, theta, rpp, drr
      real, dimension(3) :: nr_hat, ntheta_hat, nphi_hat, xc, A_g, xc_local
      real, dimension(3) :: nrc_hat, nthetac_hat, nphic_hat
      real, dimension(2,2,2,3) :: x_corners, A_corners
      real :: vg_r, vg_phi, vg_theta
      real :: vp_r, vp_phi, vp_theta
!
      intent(out) :: f_tmp
      intent(in) ::  iobj
!
!  The point "g" may be defined in two different ways:
!    1) the closest grid line which the normal from "s" to "p" cross
!    2) the point which is a normal from "s" and a given distance from "s"
!  Method number 2) is chosen if "close_interpolation_method=3" where
!  "limit_close_linear" give the number of grid sizes which "g" is
!  away from "s".
!
      if (close_interpolation_method <= 2) then
        call find_g_global_closest_gridplane(g_global,inear,rg,p_local, &
          o_global,rs,rp,cornervalue,cornerindex,constdir)
      elseif (close_interpolation_method == 3) then
        call find_g_global_circle(g_global,inear,rg,p_local,o_global,rs,rp)
      elseif (close_interpolation_method == 4) then
        call find_g_global_circle(g_global,inear,rg,p_local,o_global,rs,rp)
      else
        call fatal_error('close_inter_new', &
            'No such close_interpolation_method!')
      endif
!
!  For quadratic interpolation the unit vectors in "p" is needed.
!
      if (lclose_quad_rad_inter) then
        call find_unit_vectors(p_local,rp,iobj,nr_hat,nphi_hat,ntheta_hat)
      endif
!
!  Find some auxiallary distances.
!
      r_pg = rg-rp
      r_sg = rg-rs
      r_sp = rp-rs
!
!  Let "fvar" be the physical value of the variables of interest on "gridplane".
!  The value of "fvar" is then found by interpolation between the four corner
!  points of "gridplane". 
!  For lclose_interpolation_method==1, ensure that the corners of the gridplane
!  is outside the solid, and adjust if necessary. Currently this implementation 
!  only works for cylinders.
!  For lclose_interpolation_method==4 the r, phi and theta velocities
!  must be found already for the points used for interpolation such that
!  the interpolation used to find "g" is also done correctly. (This essentially
!  means that the radial veolcity is found using the quadratic interplation.)
!
      if (close_interpolation_method == 1) then
        if (gridplane_need_adjust(inear,constdir,rs,o_global)) then
!
!  Adjust gridpoint and perform interpolation with using more than one surface
!  point. This requires an extraordinary interpolation routine, as linear_interpolate
!  from general.f90 requires all points used in the interpolation to be gridpoints.
!
          call interpolate_g_extraordinary(f,fvar,g_global,o_global, &
          nr_hat,ntheta_hat,nphi_hat,inear,constdir,rs,vg_r,vg_phi,vg_theta)
        else
          call interpolate_g_ordinary(f,fvar,g_global,nr_hat,ntheta_hat,nphi_hat, &
            inear,vg_r,vg_phi,vg_theta)
        endif
      elseif (close_interpolation_method == 4 .and. lclose_quad_rad_inter) then
        if (ilnTT > 0) then
          if ( .not. linear_interpolate(f,ilnTT,ilnTT,g_global,fvar(ilnTT), &
              inear,.false.) ) call fatal_error('close_inter_new','')
        endif
        call r_theta_phi_velocity_in_point(f,g_global,inear,iobj,o_global, &
            rs,r_sg,vg_r,vg_theta,vg_phi)
      else
        call interpolate_g_ordinary(f,fvar,g_global,nr_hat,ntheta_hat,nphi_hat, &
          inear,vg_r,vg_phi,vg_theta)
      endif
!
!  Now we know the value associated with any variable in the point "g",
!  given by "fvar" or "vg_r", "vg_phi" and "vg_theta".
!  Furthermore we know the value associated with any variable in point "s"
!  on the object surface to be zero for any of the velocities and equal to
!  the solid temperature for the temperature. This value is given by "surf_val".
!  By interpolation it is now straight forward to find the value also in "p".
!
!  Find temperature
!
      if (ilnTT > 0) then
        if (.not. ltemperature_nolog) then
          call fatal_error('close_inter_new', &
              'Due to interpolation it is not correc to use lnTT!')
        endif
        surf_val = objects(iobj)%T
        f_tmp(ilnTT) = (fvar(ilnTT)*r_sp+surf_val*r_pg)/r_sg
      endif
!
!  Find velocity.
!  If lclose_quad_rad_inter = true we must use the
!  velocities in the r, theta and phi
!  directions at the point "g" to set up a
!  linear interpolation for v_theta and v_phi and a quadratic interpolation
!  for v_r.
!
      surf_val = 0
      if (lclose_quad_rad_inter) then
!
!  Now it is time to use linear and quadratic interpolation to find the
!  velocities in point "p".
!
        vp_phi  = (vg_phi  *r_sp+surf_val*r_pg)/r_sg
        vp_theta = (vg_theta*r_sp+surf_val*r_pg)/r_sg
        vp_r    = (vg_r    *(r_sp/r_sg)**2)
!
!  Finally the velocities found in the spherical coordinate system can
!  now be transfered back to the cartesian coordinate system.
!
        if (objects(iobj)%form == 'cylinder') then
          f_tmp(iux:iuz) = vp_r*nr_hat+vp_theta*ntheta_hat+vp_phi*nphi_hat
!f_tmp(iuz)=(fvar(iuz)*r_sp+surf_val*r_pg)/r_sg
        else
          f_tmp(iux:iuz) = vp_r*nr_hat+vp_theta*ntheta_hat+vp_phi*nphi_hat
        endif
      else
        f_tmp(iux:iuz) = (fvar(iux:iuz)*r_sp+surf_val*r_pg)/r_sg
      endif
!
    endsubroutine close_inter_new
    !***********************************************************************
    subroutine find_unit_vectors(p_local,rp,iobj,nr_hat,nphi_hat,ntheta_hat)
!
!  The unity vector "nr_hat" is normal to the solid surface, while
!  "nphi_hat" and "ntheta_hat" are the unit vectors in the two angular
!  directions. The angle "theta" is zero in the positive x-direction,
!  while "phi" is zero in the positive z-direction.
!
      real, dimension(3) :: p_local
      integer :: iobj
      real :: phi, theta, rp
      real, dimension(3) :: nr_hat, ntheta_hat, nphi_hat
!
      intent(in) :: p_local, rp, iobj
!
      phi = acos(p_local(3)/rp)
      theta = atan(p_local(2)/p_local(1))
      if (p_local(2) < 0) then
        if (theta > 0) then
          theta = theta+pi
        else
          theta = theta+2*pi
        endif
      else
        if (theta < 0) then
          theta = theta+pi
        endif
      endif
!
      if (objects(iobj)%form == 'cylinder') then
        nr_hat    = (/cos(theta),sin(theta),0./)
        nphi_hat  = (/0.,0.,1./)
        ntheta_hat = (/-sin(theta),cos(theta),0./)
      else
        nr_hat    = (/cos(theta)*sin(phi),sin(theta)*sin(phi),cos(phi)/)
        nphi_hat  = (/-cos(phi)*cos(theta),-cos(phi)*sin(theta),sin(phi)/)
        ntheta_hat = (/-sin(theta),cos(theta),0./)
      endif
!
    endsubroutine find_unit_vectors
!***********************************************************************
    subroutine find_g_global_closest_gridplane(g_global,inear,rg,p_local, &
        o_global,rs,rp,cornervalue,cornerindex,constdir)
!
! Find g_global based on the gridplane which is first crossed by the normal
! from the surface.
!
      use Messages, only: fatal_error
      use Sub
!
      real, dimension(3) :: o_global, p_local, g_global
      integer, dimension(3) :: ngrids, inear
      real :: rp, rs, verylarge=1e9, rlmin, rl, rg
      integer :: ndir, ndims, dir, vardir1, vardir2, constdir, topbot_tmp
      integer :: topbot, iobj
      real, dimension(3,2) :: cornervalue
      integer, dimension(3,2) :: cornerindex
      integer :: lower_i, lower_j, lower_k, upper_i, upper_j, upper_k
!
!  Find which grid line is the closest one in the direction
!  away from the object surface
!
!  Check the distance to all the six (four in 2D) possible
!  surface planes (lines in 2D).
!  Define a straight line "l" which pass through the point "p" and is normal
!  to the surface of the object.
!  Pick the grid plane, OUTSIDE the point "p", that the line "l" cross first,
!  call this plane "gridplane".
!
      ngrids(1) = nxgrid
      ngrids(2) = nygrid
      ngrids(3) = nzgrid
      ndir = 3
      ndims = 0
      rlmin = verylarge
      do dir = 1,ndir
!
!  Loop through all directions "dir" and find which grid plane, outside of "p",
!  that is crossed by the line "l" first. Lets call this plane "gridplane".
!  If "dir" for the first crossing is 1 then "gridplane" is the 'yz' plane
!  and so on.....
!
        if (ngrids(dir) > 1) then
          ndims = ndims+1
          do topbot_tmp = 1,2
!
!  Find the variable "rl" such that
!  rl*p_local(dir)+o_global(dir)=cornervalue(dir)
!
            rl = (cornervalue(dir,topbot_tmp)-o_global(dir))/p_local(dir)
!
!  If "rl" is larger than unity the line "l" cross the grid plane
!  outside of "p". If in addition "rl" is smaller than the smallest "rl" so
!  far (rlmin) this state must be stored since it might be the plane
!  ("gridplane") which we are looking for. In addition we must
!  find the distance, rg, from the center of the object
!  to the point where the normal cross the "gridplane".
!  The point where "l" cross "gridplane" is called "g".
!
            if (rl > 1.0 .and. rl < rlmin) then
              constdir = dir
              vardir1 = mod(constdir+0,3)+1
              vardir2 = mod(constdir+1,3)+1
              rlmin = rl
              topbot = topbot_tmp
              rg = rl*sqrt(p_local(1)**2+p_local(2)**2+p_local(3)**2)
              g_global(constdir) = cornervalue(constdir,topbot)
              g_global(vardir1) = rl*p_local(vardir1)+o_global(vardir1)
              g_global(vardir2) = rl*p_local(vardir2)+o_global(vardir2)
            endif
          enddo
        endif
      enddo
!
!  The direction of the normal to "gridplane", called "N_grid", is either
!  in the x, y or z direction since the grid is Cartesian. See table below
!  for values of constdir, vardir1, and vardir2 for different "N_grid" directions.
!
!  N_grid  constdir  vardir1  vardir2
!--------------------------------------------------
!     x        1        2        3
!     y        2        3        1
!     z        3        1        2
!
!  Check that we have found a valid distance
!
      if (rlmin == verylarge) then
        print*,'lclose_interpolation=',lclose_interpolation
        print*,'lclose_linear=',lclose_linear
        print*,'o_global=',o_global
        print*,'cornerindex=',cornerindex
        print*,'cornervalue=',cornervalue
        print*,'rg,rs,rp=',rg,rs,rp
        print*,'rs=',rs
        call fatal_error('close_interpolation', 'A valid radius is not found!')
      endif
!
!  Due to roundoff errors the value of g_global might end up outside the
!  grid cell - in that case put it back in where it belongs
!
      if ( &
          (cornervalue(1,1) <= g_global(1).and. &
          cornervalue(1,2) >= g_global(1).or. nxgrid == 1).and. &
          (cornervalue(2,1) <= g_global(2).and. &
          cornervalue(2,2) >= g_global(2).or. nygrid == 1).and. &
          (cornervalue(3,1) <= g_global(3).and. &
          cornervalue(3,2) >= g_global(3).or. nzgrid == 1)) then
        ! Everything okay
      else
        if (g_global(1) > cornervalue(1,2)) g_global(1) = cornervalue(1,2)
        if (g_global(1) < cornervalue(1,1)) g_global(1) = cornervalue(1,1)
        if (g_global(2) > cornervalue(2,2)) g_global(2) = cornervalue(2,2)
        if (g_global(2) < cornervalue(2,1)) g_global(2) = cornervalue(2,1)
        if (g_global(3) > cornervalue(3,2)) g_global(3) = cornervalue(3,2)
        if (g_global(3) < cornervalue(3,1)) g_global(3) = cornervalue(3,1)
      endif
!
!  Depending on the value of constdir the indeces of the corner points
!  specifying "gridplane" is given by lower_i, upper_i, lower_j ........
!
      if (constdir == 1) then
        lower_i = cornerindex(constdir,topbot)
        upper_i = cornerindex(constdir,topbot)
        lower_j = cornerindex(vardir1,1)
        upper_j = cornerindex(vardir1,2)
        lower_k = cornerindex(vardir2,1)
        upper_k = cornerindex(vardir2,2)
      elseif (constdir == 2) then
        lower_j = cornerindex(constdir,topbot)
        upper_j = cornerindex(constdir,topbot)
        lower_k = cornerindex(vardir1,1)
        upper_k = cornerindex(vardir1,2)
        lower_i = cornerindex(vardir2,1)
        upper_i = cornerindex(vardir2,2)
      elseif (constdir == 3) then
        lower_k = cornerindex(constdir,topbot)
        upper_k = cornerindex(constdir,topbot)
        lower_i = cornerindex(vardir1,1)
        upper_i = cornerindex(vardir1,2)
        lower_j = cornerindex(vardir2,1)
        upper_j = cornerindex(vardir2,2)
      endif
!
      inear = (/lower_i,lower_j,lower_k/)
!
    endsubroutine find_g_global_closest_gridplane
!***********************************************************************
    subroutine find_corner_points(fluid_point,cornervalue,cornerindex, &
        ix0_,iy0_,iz0_,p_global,o_global)
!
!  8-dec-10: coded (nils)
!
!  Based on one of the corner points this routine find all corner points
!  of the fluid cell inwhich we are.
!  Furthermore; if we are at a fluid point p_global is shifted slightly
!  inside the domain.
!
      logical, intent(in) :: fluid_point
      integer, intent(in) :: ix0_, iy0_, iz0_
      real, dimension(3), intent(inout) :: p_global
      real, dimension(3), intent(in) :: o_global
      real, dimension(3,2), intent(out) :: cornervalue
      integer, dimension(3,2), intent(out) :: cornerindex
      real :: smallx
      integer :: ix0, iy0, iz0, ix1, iy1, iz1
!
      if (fluid_point) then
        smallx = dx*1e-5
        iz0 = iz0_
        if (p_global(1) < o_global(1)) then
          ix0 = ix0_-1
          p_global(1) = p_global(1)-smallx
        else
          ix0 = ix0_
          p_global(1) = p_global(1)+smallx
        endif
        if (p_global(2) < o_global(2)) then
          iy0 = iy0_-1
          p_global(2) = p_global(2)-smallx
        else
          iy0 = iy0_
          p_global(2) = p_global(2)+smallx
        endif
        if (p_global(3) < o_global(3)) then
          iz0 = iz0_-1
          p_global(3) = p_global(3)-smallx
        else
          iz0 = iz0_
          p_global(3) = p_global(3)+smallx
        endif
      else
        ix0 = ix0_
        iy0 = iy0_
        iz0 = iz0_
      endif
      ix1 = ix0+1
      iy1 = iy0+1
      iz1 = iz0+1
!
!  Put help variables into arrays
!
      cornervalue(1,1) = x(ix0)
      cornervalue(2,1) = y(iy0)
      cornervalue(3,1) = z(iz0)
      cornervalue(1,2) = x(ix1)
      cornervalue(2,2) = y(iy1)
      cornervalue(3,2) = z(iz1)
      cornerindex(1,1) = ix0
      cornerindex(2,1) = iy0
      cornerindex(3,1) = iz0
      cornerindex(1,2) = ix1
      cornerindex(2,2) = iy1
      cornerindex(3,2) = iz1
!
    endsubroutine find_corner_points
!***********************************************************************
    function in_solid_cell(part_pos,part_rad)
!
!  Check if the position px,py,pz is within a solid cell
!
!  02-dec-2008/nils: coded
!
      logical :: in_solid_cell
      real, dimension(3) :: obj_pos, part_pos
      real :: obj_rad, distance2, part_rad, rad_part
      integer :: iobj, i, ndims
!
      in_solid_cell = .false.
!
      do iobj = 1,nobjects
        obj_rad = objects(iobj)%r
        obj_pos = objects(iobj)%x(1:3)
        distance2 = 0
!
!  Loop only over the number of dimensions required
!
        ndims = 2
        if (objects(iobj)%form == 'sphere') ndims = 3
        do i = 1,ndims
          distance2 = distance2+(obj_pos(i)-part_pos(i))**2
        enddo
!
!  Check if we want to include interception or not
!
        if (lnointerception) then
          rad_part = 0
        else
          rad_part = part_rad
        endif
!
!  The object_skin is the closest a particle can get to the solid
!  cell before it is captured (this variable is normally zero).
!
        if (sqrt(distance2) < obj_rad+rad_part+object_skin) then
          in_solid_cell = .true.
        endif
      enddo
!
    endfunction in_solid_cell
!***********************************************************************
    subroutine freeze_solid_cells(df)
!
!  If we are in a solid cell (or in a cell where the value of the variables are
!  found from interpolation) set df=0 for all variables
!
!  19-nov-2008/nils: coded
!
      real, dimension(mx,my,mz,mvar) :: df
      integer :: i
!
      do i = l1,l2
        if (any(ba(i,m,n,1:3)/= 0)) then
!
!  If this is a fluid point that has to be interpolated because it is very
!  close to the solid geometry (i.e. ba(i,m,n,1) == 10) then only the
!  temperature and the velocity components should be frozen.
!
          if (ba(i,m,n,1) == 10) then
            df(i,m,n,iux:iuz) = 0
            if (ilnTT > 0) df(i,m,n,ilnTT) = 0
          else
            df(i,m,n,:) = 0
          endif
        endif
      enddo
!
    endsubroutine freeze_solid_cells
!***********************************************************************
    subroutine read_solid_cells_init_pars(iostat)
!
      use File_io, only: parallel_unit
!
      integer, intent(out) :: iostat
!
      !read(parallel_unit, NML=solid_cells_init_pars, IOSTAT=iostat)
      iostat = 0
      read(parallel_unit, NML=solid_cells_init_pars)
!
    endsubroutine read_solid_cells_init_pars
!***********************************************************************
    subroutine write_solid_cells_init_pars(unit)
!
      integer, intent(in) :: unit
!
      write(unit, NML=solid_cells_init_pars)
!
    endsubroutine write_solid_cells_init_pars
!***********************************************************************
    subroutine read_solid_cells_run_pars(iostat)
!
      use File_io, only: parallel_unit
!
      integer, intent(out) :: iostat
!
      read(parallel_unit, NML=solid_cells_run_pars, IOSTAT=iostat)
!
    endsubroutine read_solid_cells_run_pars
!***********************************************************************
    subroutine write_solid_cells_run_pars(unit)
!
      integer, intent(in) :: unit
!
      write(unit, NML=solid_cells_run_pars)
!
    endsubroutine write_solid_cells_run_pars
!***********************************************************************
    subroutine find_solid_cell_boundaries(f)
!
!  Find the boundaries of the geometries such that we can set the
!  ghost points inside the solid geometry in order to achieve the
!  correct no-slip boundaries.
!
!  Store data in the ba array.
!  If ba(ip,jp,kp,1)= 0 we are in a fluid cell (i.e. NOT inside a solid geometry)
!  If ba(ip,jp,kp,1)=10 we are in a fluid cell which are so close to the
!                       surface of the solid geometry that we must set the
!                       value of this point by some special method
!  If ba(ip,jp,kp,1)= 9 we are inside a solid geometry, but far from the boundary
!  If ba(ip,jp,kp,1)=-1 we are inside a solid geometry, and the point at ip+1
!                       is outside the geometry.
!  If ba(ip,jp,kp,1)=-3 we are inside a solid geometry, and the point at ip+3
!                       is outside the geometry.
!  If ba(ip,jp,kp,2)=-3 we are inside a solid geometry, and the point at jp+3
!                       is outside the geometry.
!  If ba(ip,jp,kp,2)=11 we are inside a solid geometry, either close to or far
!                       from the boundary, but the position (ip,jp,kp) is a ghost
!                       point at the current processor.
!
!  The number stored in ba(ip,jp,kp,4) is the number of the object
!
!  19-nov-2008/nils: coded
!
      real, dimension(mx,my,mz,mfarray), intent(inout) :: f

      integer :: i, j, k, iobj, cw
      real :: x2, y2, z2, xval_p, xval_m, yval_p, yval_m, zval_p, zval_m
      real :: dr, r_point, x_obj, y_obj, z_obj, r_obj
      character(len=10) :: form
!
!  Initialize ba
!
      ba = 0
!
!  Loop over all objects
!
      do iobj = 1,nobjects
        x_obj = objects(iobj)%x(1)
        y_obj = objects(iobj)%x(2)
        z_obj = objects(iobj)%x(3)
        r_obj = objects(iobj)%r
        form = objects(iobj)%form
!
!  First we look in x-direction
!
        do k = n1,n2
          do j = m1,m2
!
!  Check if we are inside the object for y(j) and z(k) (i.e. if x2>0)
!  This depens on the form of the solid geometry
!
            if (form == 'cylinder') then
              x2 = objects(iobj)%r**2 -(y(j)-objects(iobj)%x(2))**2
            elseif (form == 'sphere') then
              x2 &
                  = objects(iobj)%r**2 &
                  -(y(j)-objects(iobj)%x(2))**2 &
                  -(z(k)-objects(iobj)%x(3))**2
            else
              call fatal_error('find_solid_cell_boundaries','No such form!')
            endif
            if (x2 > 0) then
!
!  Find upper and lower x-values for the surface of the object for y(j) and z(k)
!
              xval_p = objects(iobj)%x(1)+sqrt(x2)
              xval_m = objects(iobj)%x(1)-sqrt(x2)
              do i = l1,l2
                if (x(i) < xval_p .and. x(i) > xval_m) then
!
                  if (x(i+1) > xval_p) then
                    if (.not. ba_defined(i,j,k)) then
                      ba(i,j,k,1) = -1
                      ba(i,j,k,4) = iobj
                    else
                      call find_closest_wall(i,j,k,iobj,cw)
                      if (cw == 1) ba(i,j,k,1) = -1
                    endif
                  endif
!
                  if (x(i+2) > xval_p .and. x(i+1) < xval_p) then
                    if (.not. ba_defined(i,j,k)) then
                      ba(i,j,k,1) = -2
                      ba(i,j,k,4) = iobj
                    else
                      call find_closest_wall(i,j,k,iobj,cw)
                      if (cw == 1) ba(i,j,k,1) = -2
                    endif
                  endif
!
                  if (x(i+3) > xval_p .and. x(i+2) < xval_p) then
                    if (.not. ba_defined(i,j,k)) then
                      ba(i,j,k,1) = -3
                      ba(i,j,k,4) = iobj
                    else
                      call find_closest_wall(i,j,k,iobj,cw)
                      if (cw == 1) ba(i,j,k,1) = -3
                    endif
                  endif
!
                  if (x(i+4) > xval_p .and. x(i+3) < xval_p) then
                    if (.not. ba_defined(i,j,k)) then
                      ba(i,j,k,1) = -4
                      ba(i,j,k,4) = iobj
                    else
                      call find_closest_wall(i,j,k,iobj,cw)
                      if (cw == 1) ba(i,j,k,1) = -4
                    endif
                  endif
!
                  if (x(i-1) < xval_m) then
                    if (.not. ba_defined(i,j,k)) then
                      ba(i,j,k,1) = 1
                      ba(i,j,k,4) = iobj
                    else
                      call find_closest_wall(i,j,k,iobj,cw)
                      if (cw == -1) ba(i,j,k,1) = 1
                    endif
                  endif
!
                  if (x(i-2) < xval_m .and. x(i-1) > xval_m) then
                    if (.not. ba_defined(i,j,k)) then
                      ba(i,j,k,1) = 2
                      ba(i,j,k,4) = iobj
                    else
                      call find_closest_wall(i,j,k,iobj,cw)
                      if (cw == -1) ba(i,j,k,1) = 2
                    endif
                  endif
!
                  if (x(i-3) < xval_m .and. x(i-2) > xval_m) then
                    if (.not. ba_defined(i,j,k)) then
                      ba(i,j,k,1) = 3
                      ba(i,j,k,4) = iobj
                    else
                      call find_closest_wall(i,j,k,iobj,cw)
                      if (cw == -1) ba(i,j,k,1) = 3
                    endif
                  endif
!
                  if (x(i-4) < xval_m .and. x(i-3) > xval_m) then
                    if (.not. ba_defined(i,j,k)) then
                      ba(i,j,k,1) = 4
                      ba(i,j,k,4) = iobj
                    else
                      call find_closest_wall(i,j,k,iobj,cw)
                      if (cw == -1) ba(i,j,k,1) = 4
                    endif
                  endif
!
                  if (ba(i,j,k,1) == 0) then
                    ba(i,j,k,1) = 9
                    ba(i,j,k,4) = iobj
                  endif
!
                endif
              enddo
            endif
          enddo
        enddo
!
!  Then we look in y-direction
!
        do k = n1,n2
          do i = l1,l2
!
!  Check if we are inside the object for x(i) (i.e. if y2>0)
!  This depens on the form of the solid geometry
!
            if (form == 'cylinder') then
              y2 = objects(iobj)%r**2 -(x(i)-objects(iobj)%x(1))**2
            elseif (form == 'sphere') then
              y2 &
                  = objects(iobj)%r**2 &
                  -(x(i)-objects(iobj)%x(1))**2 &
                  -(z(k)-objects(iobj)%x(3))**2
            else
              call fatal_error('find_solid_cell_boundaries','No such form!')
            endif
            if (y2 > 0) then
!
!  Find upper and lower y-values for the surface of the object for x(i)
!
              yval_p = objects(iobj)%x(2)+sqrt(y2)
              yval_m = objects(iobj)%x(2)-sqrt(y2)
              do j = m1,m2
                if (y(j) < yval_p .and. y(j) > yval_m) then
                  if (y(j+1) > yval_p) then
                    if (.not. ba_defined(i,j,k)) then
                      ba(i,j,k,2) = -1
                      ba(i,j,k,4) = iobj
                    else
                      call find_closest_wall(i,j,k,iobj,cw)
                      if (cw == 2) ba(i,j,k,2) = -1
                    endif
                  endif
!
                  if (y(j+2) > yval_p .and. y(j+1) < yval_p) then
                    if (.not. ba_defined(i,j,k)) then
                      ba(i,j,k,2) = -2
                      ba(i,j,k,4) = iobj
                    else
                      call find_closest_wall(i,j,k,iobj,cw)
                      if (cw == 2) ba(i,j,k,2) = -2
                    endif
                  endif
!
                  if (y(j+3) > yval_p .and. y(j+2) < yval_p) then
                    if (.not. ba_defined(i,j,k)) then
                      ba(i,j,k,2) = -3
                      ba(i,j,k,4) = iobj
                    else
                      call find_closest_wall(i,j,k,iobj,cw)
                      if (cw == 2) ba(i,j,k,2) = -3
                    endif
                  endif
!
                  if (y(j+4) > yval_p .and. y(j+3) < yval_p) then
                    if (.not. ba_defined(i,j,k)) then
                      ba(i,j,k,2) = -4
                      ba(i,j,k,4) = iobj
                    else
                      call find_closest_wall(i,j,k,iobj,cw)
                      if (cw == 2) ba(i,j,k,2) = -4
                    endif
                  endif
!
                  if (y(j-1) < yval_m) then
                    if (.not. ba_defined(i,j,k)) then
                      ba(i,j,k,2) = 1
                      ba(i,j,k,4) = iobj
                    else
                      call find_closest_wall(i,j,k,iobj,cw)
                      if (cw == -2) ba(i,j,k,2) = 1
                    endif
                  endif
!
                  if (y(j-2) < yval_m .and. y(j-1) > yval_m) then
                    if (.not. ba_defined(i,j,k)) then
                      ba(i,j,k,2) = 2
                      ba(i,j,k,4) = iobj
                    else
                      call find_closest_wall(i,j,k,iobj,cw)
                      if (cw == -2) ba(i,j,k,2) = 2
                    endif
                  endif
!
                  if (y(j-3) < yval_m .and. y(j-2) > yval_m) then
                    if (.not. ba_defined(i,j,k)) then
                      ba(i,j,k,2) = 3
                      ba(i,j,k,4) = iobj
                    else
                      call find_closest_wall(i,j,k,iobj,cw)
                      if (cw == -2) ba(i,j,k,2) = 3
                    endif
                  endif
!
                  if (y(j-4) < yval_m .and. y(j-3) > yval_m) then
                    if (.not. ba_defined(i,j,k)) then
                      ba(i,j,k,2) = 4
                      ba(i,j,k,4) = iobj
                    else
                      call find_closest_wall(i,j,k,iobj,cw)
                      if (cw == -2) ba(i,j,k,2) = 4
                    endif
                  endif
!
                  if (ba(i,j,k,2) == 0) then
                    ba(i,j,k,2) = 9
                    ba(i,j,k,4) = iobj
                  endif
                endif
              enddo
            endif
          enddo
        enddo
!
!  If form='sphere' we must also look in the z-direction
!
        if (form /= 'cylinder') then
          do i = l1,l2
            do j = m1,m2
!
!  Check if we are inside the object for y(j) and x(i) (i.e. if z2>0)
!
              if (form == 'cylinder') then
                call fatal_error('find_solid_cell_boundaries', &
                    'no cylinders when variable z')
              elseif (form == 'sphere') then
                z2 &
                    = objects(iobj)%r**2 &
                    -(y(j)-objects(iobj)%x(2))**2 &
                    -(x(i)-objects(iobj)%x(1))**2
              else
                call fatal_error('find_solid_cell_boundaries','No such form!')
              endif
              if (z2 > 0) then
!
!  Find upper and lower x-values for the surface of the object for y(j) and z(k)
!
                zval_p = objects(iobj)%x(3)+sqrt(z2)
                zval_m = objects(iobj)%x(3)-sqrt(z2)
                do k = n1,n2
                  if (z(k) < zval_p .and. z(k) > zval_m) then
!
                    if (z(k+1) > zval_p) then
                      if (.not. ba_defined(i,j,k)) then
                        ba(i,j,k,3) = -1
                        ba(i,j,k,4) = iobj
                      else
                        call find_closest_wall(i,j,k,iobj,cw)
                        if (cw == 1) ba(i,j,k,3) = -1
                      endif
                    endif
!
                    if (z(k+2) > zval_p .and. z(k+1) < zval_p) then
                      if (.not. ba_defined(i,j,k)) then
                        ba(i,j,k,3) = -2
                        ba(i,j,k,4) = iobj
                      else
                        call find_closest_wall(i,j,k,iobj,cw)
                        if (cw == 1) ba(i,j,k,3) = -2
                      endif
                    endif
!
                    if (z(k+3) > zval_p .and. z(k+2) < zval_p) then
                      if (.not. ba_defined(i,j,k)) then
                        ba(i,j,k,3) = -3
                        ba(i,j,k,4) = iobj
                      else
                        call find_closest_wall(i,j,k,iobj,cw)
                        if (cw == 1) ba(i,j,k,3) = -3
                      endif
                    endif
!
                    if (z(k+4) > zval_p .and. z(k+3) < zval_p) then
                      if (.not. ba_defined(i,j,k)) then
                        ba(i,j,k,3) = -4
                        ba(i,j,k,4) = iobj
                      else
                        call find_closest_wall(i,j,k,iobj,cw)
                        if (cw == 1) ba(i,j,k,3) = -4
                      endif
                    endif
!
                    if (z(k-1) < zval_m) then
                      if (.not. ba_defined(i,j,k)) then
                        ba(i,j,k,3) = 1
                        ba(i,j,k,4) = iobj
                      else
                        call find_closest_wall(i,j,k,iobj,cw)
                        if (cw == -1) ba(i,j,k,3) = 1
                      endif
                    endif
!
                    if (z(k-2) < zval_m .and. z(k-1) > zval_m) then
                      if (.not. ba_defined(i,j,k)) then
                        ba(i,j,k,3) = 2
                        ba(i,j,k,4) = iobj
                      else
                        call find_closest_wall(i,j,k,iobj,cw)
                        if (cw == -1) ba(i,j,k,3) = 2
                      endif
                    endif
!
                    if (z(k-3) < zval_m .and. z(k-2) > zval_m) then
                      if (.not. ba_defined(i,j,k)) then
                        ba(i,j,k,3) = 3
                        ba(i,j,k,4) = iobj
                      else
                        call find_closest_wall(i,j,k,iobj,cw)
                        if (cw == -1) ba(i,j,k,3) = 3
                      endif
                    endif
!
                    if (z(k-4) < zval_m .and. z(k-3) > zval_m) then
                      if (.not. ba_defined(i,j,k)) then
                        ba(i,j,k,3) = 4
                        ba(i,j,k,4) = iobj
                      else
                        call find_closest_wall(i,j,k,iobj,cw)
                        if (cw == -1) ba(i,j,k,3) = 4
                      endif
                    endif
!
                    if (ba(i,j,k,3) == 0) then
                      ba(i,j,k,3) = 9
                      ba(i,j,k,4) = iobj
                    endif
!
                  endif
                enddo
              endif
            enddo
          enddo
        else
!
!  If the object is a cylinder then every point inside the cylinder will
!  be infinetly far from the surface in the z-direction.
!
          do i = l1,l2
            do j = m1,m2
              do k = n1,n2
                if ((ba(i,j,k,1) /= 0) .and. (ba(i,j,k,1) /= 10)) then
                  ba(i,j,k,3) = 9
                endif
              enddo
            enddo
          enddo
        endif
!
!  If we want to interpolate points which are very close to the solid surface
!  these points have to be "marked" for later use.
!
        if (lclose_linear) then
!
!  Loop over all points
!
          do i = l1,l2
            do j = m1,m2
              do k = n1,n2
                if (form == 'cylinder') then
                  r_point = sqrt((x(i)-x_obj)**2+(y(j)-y_obj)**2)
                elseif (form == 'sphere') then
                  r_point = sqrt((x(i)-x_obj)**2+(y(j)-y_obj)**2+(z(k)-z_obj)**2)
                else
                  call fatal_error('find_solid_cell_boundaries','No such form!')
                endif
                dr = r_point-r_obj
                if ((dr >= 0) .and. (dr < limit_close_linear*dxmin)) then
                  ba(i,j,k,1:3) = 10
                  ba(i,j,k,4) = iobj
                endif
              enddo
            enddo
          enddo
        endif
!
!  Fill ba array also for ghost points - need only know whether
!  we are actually inside object (then ba = 11), not how close we are to
!  the border.
!
! Lower and upper ghost points in z direction
!
        do i = 1,mx
          do j = 1,my
            do k = 1,nghost
!  Lower (left) ghost points
              if (form == 'cylinder') then
                r_point = sqrt((x(i)-x_obj)**2+(y(j)-y_obj)**2)
              elseif (form == 'sphere') then
                r_point = sqrt((x(i)-x_obj)**2+(y(j)-y_obj)**2+(z(k)-z_obj)**2)
              else
                call fatal_error('find_solid_cell_boundaries','No such form!')
              endif
              if (r_point < r_obj) then
                ba(i,j,k,1:3) = 11
                ba(i,j,k,4) = iobj
              endif
!  Upper (right) ghost points
              if (form == 'cylinder') then
                r_point = sqrt((x(i)-x_obj)**2+(y(j)-y_obj)**2)
              elseif (form == 'sphere') then
                r_point = sqrt((x(i)-x_obj)**2+(y(j)-y_obj)**2 &
                    +(z(mz-nghost+k)-z_obj)**2)
              else
                call fatal_error('find_solid_cell_boundaries','No such form!')
              endif
              if (r_point < r_obj) then
                ba(i,j,mz-nghost+k,1:3) = 11
                ba(i,j,mz-nghost+k,4) = iobj
              endif
            enddo
          enddo
        enddo
!
!  Lower and upper ghost points in y direction
!
        do j = 1,nghost
          do k = 1,mz
            do i = 1,mx
!  Lower ghost points
              if (form == 'cylinder') then
                r_point = sqrt((x(i)-x_obj)**2+(y(j)-y_obj)**2)
              elseif (form == 'sphere') then
                r_point = sqrt((x(i)-x_obj)**2+(y(j)-y_obj)**2+(z(k)-z_obj)**2)
              else
                call fatal_error('find_solid_cell_boundaries','No such form!')
              endif
              if (r_point < r_obj) then
                ba(i,j,k,1:3) = 11
                ba(i,j,k,4) = iobj
              endif
!  Upper ghost points
              if (form == 'cylinder') then
                r_point = sqrt((x(i)-x_obj)**2+(y(my-nghost+j)-y_obj)**2)
              elseif (form == 'sphere') then
                r_point = sqrt((x(i)-x_obj)**2+(y(my-nghost+j)-y_obj)**2 &
                    +(z(k)-z_obj)**2)
              else
                call fatal_error('find_solid_cell_boundaries','No such form!')
              endif
              if (r_point < r_obj) then
                ba(i,my-nghost+j,k,1:3) = 11
                ba(i,my-nghost+j,k,4) = iobj
              endif
            enddo
          enddo
        enddo
!
! Lower and upper ghost points in x direction
!
        do k = 1,mz
          do j = 1,my
            do i = 1,nghost
!  Lower (left) ghost points
              if (form == 'cylinder') then
                r_point = sqrt((x(i)-x_obj)**2+(y(j)-y_obj)**2)
              elseif (form == 'sphere') then
                r_point = sqrt((x(i)-x_obj)**2+(y(j)-y_obj)**2+(z(k)-z_obj)**2)
              else
                call fatal_error('find_solid_cell_boundaries','No such form!')
              endif
              if (r_point < r_obj) then
                ba(i,j,k,1:3) = 11
                ba(i,j,k,4) = iobj
              endif
!  Upper (right) ghost points
              if (form == 'cylinder') then
                r_point = sqrt((x(mx-nghost+i)-x_obj)**2+(y(j)-y_obj)**2)
              elseif (form == 'sphere') then
                r_point = sqrt((x(mx-nghost+i)-x_obj)**2+(y(j)-y_obj)**2 &
                    +(z(k)-z_obj)**2)
              else
                call fatal_error('find_solid_cell_boundaries','No such form!')
              endif
!
              if (r_point < r_obj) then
                ba(mx-nghost+i,j,k,1:3) = 11
                ba(mx-nghost+i,j,k,4) = iobj
              endif
            enddo
          enddo
        enddo
!
! Finalize loop over all objects
!
      enddo
!
!  Set zero value of all variables inside the solid geometry far from
!  all interfaces. This is done for more easy interpretation of postprocessing.
!
      if (.not.lreloading) then
        do i = 1,mx
          do j = 1,my
            do k = 1,mz
              if (all(ba(i,j,k,1:3) == 9)) f(i,j,k,iux:iuz) = 0
            enddo
          enddo
        enddo
      endif
!
!  Check that a fluid point is really outside a solid geometry
!
      if (lcheck_ba) then
        do iobj = 1,nobjects
          x_obj = objects(iobj)%x(1)
          y_obj = objects(iobj)%x(2)
          z_obj = objects(iobj)%x(3)
          r_obj = objects(iobj)%r
          form = objects(iobj)%form
          do i = 1,mx
            do j = 1,my
              do k = 1,mz
                if (form == 'cylinder') then
                  r_point = sqrt((x(i)-x_obj)**2+(y(j)-y_obj)**2)
                elseif (form == 'sphere') then
                  r_point = sqrt((x(i)-x_obj)**2+(y(j)-y_obj)**2+(z(k)-z_obj)**2)
                else
                  call fatal_error('find_solid_cell_boundaries','No such form!')
                endif
                if (r_point > r_obj) then
                  if ((ba(i,j,k,1) /= 0 ) .and. (ba(i,j,k,1) /= 10)) then
                    print*,'i,j,k=',i,j,k
                    print*,'ba(i,j,k,1)=',ba(i,j,k,1)
                    print*,'r_point,r_obj=',r_point,r_obj
                    print*,'x(i),y(j),z(k)=',x(i),y(j),z(k)
                    call fatal_error('find_solid_cell_boundaries', &
                        'Point marked as fluid point but seems not to be...')
                  endif
                else
                  if ((ba(i,j,k,1) == 0).or.(ba(i,j,k,1) == 10).or. &
                      (ba(i,j,k,2) == 0).or.(ba(i,j,k,2) == 10).or. &
                      (ba(i,j,k,3) == 0).or.(ba(i,j,k,3) == 10)) then
                    print*,'i,j,k=',i,j,k
                    print*,'ba(i,j,k,1)=',ba(i,j,k,1)
                    print*,'ba(i,j,k,2)=',ba(i,j,k,2)
                    print*,'ba(i,j,k,3)=',ba(i,j,k,3)
                    print*,'r_point,r_obj=',r_point,r_obj
                    print*,'x(i),y(j),z(k)=',x(i),y(j),z(k)
                    call fatal_error('find_solid_cell_boundaries', &
                        'Point marked as a solid point but seems not to be...')
                  endif
                endif
              enddo
            enddo
          enddo
        enddo
      endif
!
    endsubroutine find_solid_cell_boundaries
!***********************************************************************
    subroutine calculate_shift_matrix
!
!  Set up the shift matrix
!
!  19-nov-2008/nils: coded
!
      integer :: i, j, k, idir
      integer :: sgn
!
      ba_shift = 0
!
      do i = l1,l2
        do j = m1,m2
          do k = n1,n2
            do idir = 1,3
!
!  If ba is non-zero find the shift matrix
!
              if (ba(i,j,k,idir) /= 0 .and. ba(i,j,k,idir) /= 9.) then
                sgn = -ba(i,j,k,idir)/abs(ba(i,j,k,idir))
                ba_shift(i,j,k,idir) = 2*ba(i,j,k,idir)+sgn
                ba_shift(i,j,k,4) = ba(i,j,k,4)
              endif
            enddo
          enddo
        enddo
      enddo
!
    endsubroutine calculate_shift_matrix
!***********************************************************************
    subroutine find_closest_wall(i,j,k,iobj,cw)
!
!  Find the direction of the closest wall for given grid point and object
!
!  28-nov-2008/nils: coded
!
      integer :: i, j, k, cw, iobj
      real :: xval_p, xval_m, yval_p, yval_m, x2, y2, z2, minval, dist
      real :: zval_p, zval_m
!
      if (objects(iobj)%form == 'cylinder') then
        x2 = objects(iobj)%r**2-(y(j)-objects(iobj)%x(2))**2
        y2 = objects(iobj)%r**2-(x(i)-objects(iobj)%x(1))**2
      elseif (objects(iobj)%form == 'sphere') then
        x2 = objects(iobj)%r**2 &
            -(y(j)-objects(iobj)%x(2))**2 &
            -(z(k)-objects(iobj)%x(3))**2
        y2 = objects(iobj)%r**2 &
            -(x(i)-objects(iobj)%x(1))**2 &
            -(z(k)-objects(iobj)%x(3))**2
        z2 = objects(iobj)%r**2 &
            -(x(i)-objects(iobj)%x(1))**2 &
            -(y(j)-objects(iobj)%x(2))**2
        zval_p = objects(iobj)%x(3)+sqrt(z2)
        zval_m = objects(iobj)%x(3)-sqrt(z2)
      endif
      xval_p = objects(iobj)%x(1)+sqrt(x2)
      xval_m = objects(iobj)%x(1)-sqrt(x2)
      yval_p = objects(iobj)%x(2)+sqrt(y2)
      yval_m = objects(iobj)%x(2)-sqrt(y2)
!
      minval = impossible
      cw = 0
!
      dist = xval_p-x(i)
      if (dist < minval) then
        minval = dist
        cw = 1
      endif
!
      dist = x(i)-xval_m
      if (dist < minval) then
        minval = dist
        cw = -1
      endif
!
      dist = yval_p-y(j)
      if (dist < minval) then
        minval = dist
        cw = 2
      endif
!
      dist = y(j)-yval_m
      if (dist < minval) then
        minval = dist
        cw = -2
      endif
!
      if (objects(iobj)%form == 'sphere') then
        dist = zval_p-z(k)
        if (dist < minval) then
          minval = dist
          cw = 3
        endif
!
        dist = z(k)-zval_m
        if (dist < minval) then
          minval = dist
          cw = -3
        endif
      endif
!
      call keep_compiler_quiet(k)
!
    endsubroutine find_closest_wall
!***********************************************************************
    function ba_defined(i,j,k)
!
!  28-nov-2008/nils: coded
!
!  Check if ba for the point of interest has been defined for another direction.
!  This is only interesting if interpolation_method=='staircase',
!  otherwise this function always return .false.
!
      integer, intent(in) :: i, j,k
      logical :: lba1=.true., lba2=.true.
      logical :: ba_defined
!
      if (interpolation_method == 'staircase') then
        if (ba(i,j,k,1) == 0 .or. ba(i,j,k,1) == 9) then
          lba1 = .false.
        endif
!
        if (ba(i,j,k,2) == 0 .or. ba(i,j,k,2) == 9) then
          lba2 = .false.
        endif
!
        if (lba1 .or. lba2) then
          ba_defined = .true.
        else
          ba_defined = .false.
        endif
      else
        ba_defined = .false.
      endif
!
    endfunction ba_defined
!***********************************************************************
    subroutine find_point(rij,rs,f,yin,xout,xmin,xmax,min,fout,x0,surf_val)
!
!  20-mar-2009/nils: coded
!
!  Check if a grid line has any of it ends inside a solid cell - if so
!  find the point where the grid line enters the solid cell.
!
      integer, intent(in) :: min
      real, intent(in) :: xmin, xmax, rij, rs, f, yin, x0, surf_val
      real, intent(out) :: fout, xout
      real :: xvar, xout0
!
      if (min == 1) then
        xvar = xmin
      else
        xvar = xmax
      endif
!
      if (rij > rs) then
        xout = xvar
        fout = f
      else
        xout0 = sqrt(rs**2-yin**2)
        xout = xout0+x0
        if ((xout > xmax) .or. (xout < xmin)) then
          xout = x0-xout0
        endif
        fout = surf_val
      endif
!
    endsubroutine find_point
!***********************************************************************
    subroutine pencil_criteria_solid_cells
!
!  All pencils that the Solid_Cells module depends on are specified here.
!
!  mar-2009/kragset: coded
!
!  Request p and sij-pencils here
!  Request rho-pencil
      lpenc_requested(i_pp) = .true.
      lpenc_requested(i_sij) = .true.
      lpenc_requested(i_rho) = .true.
      if (idiag_Nusselt /= 0) lpenc_requested(i_gTT) = .true.
!
    endsubroutine pencil_criteria_solid_cells
!***********************************************************************
    subroutine solid_cells_clean_up
!
!  Deallocate the variables allocated in solid_cells
!
!  7-oct-2010/dhruba: adeped from hydro_kinematic
!  21-jul-2011/bing: fixed, only deallocate variable if allocted
!
      print*, 'Deallocating some solid_cells variables ...'
      if (allocated(fpnearestgrid)) deallocate(fpnearestgrid)
      if (allocated(c_dragx)) deallocate(c_dragx)
      if (allocated(c_dragy)) deallocate(c_dragy)
      if (allocated(c_dragz)) deallocate(c_dragz)
      if (allocated(c_dragx_p)) deallocate(c_dragx_p)
      if (allocated(c_dragy_p)) deallocate(c_dragy_p)
      if (allocated(c_dragz_p)) deallocate(c_dragz_p)
      if (allocated(Nusselt)) deallocate(Nusselt)
      print*, '..Done.'
!
    endsubroutine solid_cells_clean_up
!***********************************************************************
    subroutine linear_interpolate_quadratic(gp,A_corners,x_corners,xxp)
!
!  Interpolate the value of g to arbitrary (xp, yp, zp) coordinate
!  using the linear interpolation formula
!
!    g(x,y,z) = A*x*y*z + B*x*y + C*x*z + D*y*z + E*x + F*y + G*z + H .
!
!  The coefficients are determined by the 8 grid points surrounding the
!  interpolation point.
!
!  21-may-31/NILS: Adapted form the version in general.f90
!
      use Cdata
!
      real, dimension(2,2,2,3) :: x_corners, A_corners
      real, dimension(3) :: xxp, A_p, gp
      real, dimension(3) :: g1, g2, g3, g4, g5, g6, g7, g8
      real :: xp0, yp0, zp0, drr
      real, save :: dxdydz1, dxdy1, dxdz1, dydz1, dx1, dy1, dz1
      integer :: i
      logical :: lfirstcall=.true.
!
      intent(in)  :: A_corners, x_corners, xxp
      intent(out) :: gp
!
!  Redefine the interpolation point in coordinates relative to lowest corner.
!  Set it equal to 0 for dimensions having 1 grid points; this will make sure
!  that the interpolation is bilinear for 2D grids.
!
      xp0 = 0
      yp0 = 0
      zp0 = 0
      if (nxgrid /= 1) xp0 = xxp(1)-x_corners(1,1,1,1)
      if (nygrid /= 1) yp0 = xxp(2)-x_corners(1,1,1,2)
      if (nzgrid /= 1) zp0 = xxp(3)-x_corners(1,1,1,3)
!
!  Inverse grid spacing
!
      if ( (.not. all(lequidist)) .or. lfirstcall) then
        dx1 = 0
        dy1 = 0
        dz1 = 0
        if (nxgrid /= 1) dx1 = 1/(x_corners(2,1,1,1)-x_corners(1,1,1,1))
        if (nygrid /= 1) dy1 = 1/(x_corners(1,2,1,2)-x_corners(1,1,1,2))
        if (nzgrid /= 1) dz1 = 1/(x_corners(1,1,2,3)-x_corners(1,1,1,3))
        dxdy1 = dx1*dy1
        dxdz1 = dx1*dz1
        dydz1 = dy1*dz1
        dxdydz1 = dx1*dy1*dz1
      endif
!
!  Function values at all corners.
!
      g1 = A_corners(1,1,1,1:3)
      g2 = A_corners(2,1,1,1:3)
      g3 = A_corners(1,2,1,1:3)
      g4 = A_corners(2,2,1,1:3)
      g5 = A_corners(1,1,2,1:3)
      g6 = A_corners(2,1,2,1:3)
      g7 = A_corners(1,2,2,1:3)
      g8 = A_corners(2,2,2,1:3)
!
!  Interpolation formula.
!
      gp = g1 + xp0*dx1*(-g1+g2) + yp0*dy1*(-g1+g3) + zp0*dz1*(-g1+g5) + &
          xp0*yp0*dxdy1*(g1-g2-g3+g4) + xp0*zp0*dxdz1*(g1-g2-g5+g6) + &
          yp0*zp0*dydz1*(g1-g3-g5+g7) + &
          xp0*yp0*zp0*dxdydz1*(-g1+g2+g3-g4+g5-g6-g7+g8)
!
      if (lfirstcall) lfirstcall = .false.
!
    endsubroutine linear_interpolate_quadratic
!***********************************************************************
    subroutine r_theta_phi_velocity_in_point(f,g_global,inear,iobj,o_global, &
        rs,r_sg,v_r,v_theta,v_phi)
!
!  Find values of the velocity in the r, phi and theta directions for
!  any given position (does not have to be a grid point).
!
      USE sub
!
      real, dimension(mx,my,mz,mfarray), intent(in) :: f
      real, dimension(3) :: o_global, g_global
      integer, dimension(3) :: inear
      real :: rs, r_sg, drr, rpp
      integer :: i, j, k, iobj
      real, dimension(3) :: xc, A_g, xc_local
      real, dimension(3) :: nrc_hat, nthetac_hat, nphic_hat
      real, dimension(2,2,2,3) :: x_corners, A_corners
      real :: v_r, v_phi, v_theta
      real :: vc_r, vc_phi, vc_theta
!
!  For all the 8 corner points the velocity in the r, phi and theta
!  directions must be found. These are then used to find a scaling
!  coefficient "A" for all three directions.
!
      do k = inear(3),inear(3)+1
        do j = inear(2),inear(2)+1
          do i = inear(1),inear(1)+1
            xc = (/x(i),y(j),z(k)/)
            xc_local = xc-o_global
            if (objects(iobj)%form == 'cylinder') then
              rpp = sqrt( (x(i)-o_global(1))**2 + (y(j)-o_global(2))**2 )
            elseif (objects(iobj)%form == 'sphere') then
              rpp = sqrt( &
                  (x(i)-o_global(1))**2 + &
                  (y(j)-o_global(2))**2 + &
                  (z(k)-o_global(3))**2   )
            endif
            drr = rpp-rs
            call find_unit_vectors(xc_local,rpp,iobj,nrc_hat,nphic_hat,nthetac_hat)
            call dot(nrc_hat,f(i,j,k,iux:iuz),vc_r)
            call dot(nphic_hat,f(i,j,k,iux:iuz),vc_phi)
            call dot(nthetac_hat,f(i,j,k,iux:iuz),vc_theta)
            A_corners(i-inear(1)+1,j-inear(2)+1,k-inear(3)+1,1) = vc_r/drr**2
            A_corners(i-inear(1)+1,j-inear(2)+1,k-inear(3)+1,2) = vc_phi/drr
            A_corners(i-inear(1)+1,j-inear(2)+1,k-inear(3)+1,3) = vc_theta/drr
            x_corners(i-inear(1)+1,j-inear(2)+1,k-inear(3)+1,:) = xc
          enddo
        enddo
      enddo
!
!  Having found the scaling component for all 8 corner points and for all three
!  velocity components (stored in "A_corners")
!  we can now find the interpolated velocity of the
!  three scaling components in point "g".
!
      call linear_interpolate_quadratic(A_g,A_corners,x_corners,g_global)
!
!  Since we now know "A_g", the value of the three scaling components in
!  the point "g" we can use "A_g" to find the three velocity components of
!  interest in "g".
!
      v_r    = A_g(1)*r_sg**2
      v_phi  = A_g(2)*r_sg
      v_theta = A_g(3)*r_sg
!
    endsubroutine r_theta_phi_velocity_in_point
!***********************************************************************
    subroutine solid_cells_timestep_first(f)
!
!  Setup dfs in the beginning of each itsub.
!
      real, dimension(mx,my,mz,mfarray) :: f
!
      call keep_compiler_quiet(f)
!
    end subroutine solid_cells_timestep_first
!***********************************************************************
    subroutine solid_cells_timestep_second(f,int_dt,int_ds)
!
!  Time evolution of solid_cells variables.
!
      real, dimension(mx,my,mz,mfarray) :: f
      real :: int_dt, int_ds
!
      call keep_compiler_quiet(f)
      call keep_compiler_quiet(int_dt)
      call keep_compiler_quiet(int_ds)
!
    endsubroutine solid_cells_timestep_second
!!  !***********************************************************************
!!      subroutine move_interpolation_point(i,j,k,inear,ifar,o_global,rs,constdir)
!!        integer, intent(in) :: i,j,k
!!        integer, intent(inout), dimension(3) :: inear, ifar
!!        real, intent(inout) :: g_global
!!        real, intent(in) :: o_global
!!        real, intent(in) :: rs, rp, r_plane
!!        integer, intent(in) :: constdir ! Need this variable from gridplane computation
!!  
!!        if(constdir .eq. 1) then
!!          if(y(j) < o_global(2)) then
!!            y(j) = - sqrt(rs**2 - x(i)**2)
!!          else
!!            y(j) = sqrt(rs**2 - x(i)**2)
!!          endif
!!        elseif (constdir .eq. 2) then
!!          if(x(i) < o_global(1)) then
!!            x(i) = - sqrt(rs**2 - y(j)**2)
!!          else
!!            x(i) = sqrt(rs**2 - y(j)**2)
!!          endif
!!        elseif (constdir .eq. 3) then
!!          call fatal_error('move_interpolation_point', &
!!              'Not implemented for spheres!')
!!        else
!!          call fatal_error('move_interpolation_point', &
!!              'No constant direction found!')
!!        endif
!!  
!!        if(x(i)**2 + y(j)**2 + < rs) then
!!          call fatal_error('move_interpolation_point', &
!!              'Point not moved outside solid!')
!!        endif
!!  
!!        
!!      endsubroutine move_interpolation_point
!!  !***********************************************************************
!***********************************************************************
    subroutine interpolate_g_ordinary(f,fvar,g_global,nr_hat,ntheta_hat,nphi_hat, &
          inear,vg_r,vg_phi,vg_theta)
!
!  Compute the value of the velocity components in "g" by linear interpolation
!
!  03-may-2016: jorgen - code extracted from close_inter_new and made into this routine
!
      use General, only: linear_interpolate
      use Messages, only: fatal_error
      use Sub
!
      real, dimension(mx,my,mz,mfarray), intent(in) :: f
      real, dimension(mvar), intent(out) :: fvar
      real, dimension(3), intent(in) :: g_global
      real, dimension(3), intent(in) :: nr_hat, ntheta_hat, nphi_hat
      integer, dimension(3), intent(in) :: inear
      real, intent(out) :: vg_r, vg_phi, vg_theta
!
      if ( .not. linear_interpolate(f,1,mvar,g_global,fvar,inear,.false.) ) then
        call fatal_error('close_interpolate_ordinary','')
      endif
!
!  If lclose_quad_rad_inter = true we must find the velocities in the r,
!  theta and phi directions at the point "g".
!
      if (lclose_quad_rad_inter) then
!
!  Having found the unit vectors in the r, theta and phi directions we can now
!  find the velocities in the same three directions at point "g".
!
        call dot(nr_hat,fvar(iux:iuz),vg_r)
        call dot(nphi_hat,fvar(iux:iuz),vg_phi)
        call dot(ntheta_hat,fvar(iux:iuz),vg_theta)
      endif
    endsubroutine interpolate_g_ordinary
!***********************************************************************
    subroutine interpolate_g_extraordinary(f,fvar,g_global,o_global, &
          nr_hat,ntheta_hat,nphi_hat,inear,constdir,rs,vg_r,vg_phi,vg_theta)
!
!  Relocate gridplane points that are inside the solid body and compute an estimate of 
!  the fluid properties in the point "g" by interpolation
!
!  Interpolate the value of g to arbitrary (xp, yp, zp) coordinate using bilinear
!  interpolation. 
!
!    g(X,z) = A*X*z + B*X + C*z + D
!
!  The coefficients are determined by the 4 grid points surrounding the
!  interpolation point. 
!  The interpolation direction X is either x or y, set by the constdir parameter.
!
!  The points used for interpolation are (X0,z0),(X1,z0),(X0,z1),(X1,z1).
!  Arrays related to these points are f00, f10, f01 and f11, respectively.
!
!  Trilinear interpolation is not needed, as only a 2D griplane is necessary to
!  compute "g" in the case of a cylinder.
!
!  03-may-2016: jorgen - coded
!
      use Messages, only: fatal_error
      use Sub
!
      real, dimension(mx,my,mz,mfarray), intent(in) :: f
      real, dimension(3), intent(in) :: g_global, o_global
      real, dimension(3), intent(in) :: nr_hat, ntheta_hat, nphi_hat
      integer, dimension(3), intent(in) :: inear
      integer, intent(in) :: constdir
      real, intent(in) :: rs
      real, dimension(mvar), intent(out) :: fvar
      real, intent(out) :: vg_r, vg_phi, vg_theta
  

      real :: x0,x1,y0,y1,z0,z1,r_ip
      real :: dX1,dz1,g_Xp,g_zp
      integer :: ix0,ix1,iy0,iy1,iz0,iz1,i
      real, dimension(mvar) :: f00,f10,f01,f11
      logical :: lcheck

      integer :: j,k,bax
      real :: rg0,rg1
!      
!  Set to true for testing purposes
!
      lcheck = .false.
!
!  Check if the grid point interval is correct.
!
      ix0=inear(1); iy0=inear(2); iz0=inear(3)
      ix1=inear(1)+1; iy1=inear(2)+1; iz1=inear(3)+1
      x0=x(ix0); y0=y(iy0); z0=z(iz0)
      x1=x(ix1); y1=y(iy1); z1=z(iz1)
      if ((x0<=g_global(1) .and. x1>=g_global(1) .or. nxgrid==1) .and. &
          (y0<=g_global(2) .and. y1>=g_global(2) .or. nygrid==1) .and. &
          (z0<=g_global(3) .and. z1>=g_global(3) .or. nzgrid==1)) then
        ! Everything okay
      else
        call fatal_error('g_interpolate_extraordinary', &
          'Interpolation point does not lie within the calculated' // &
          'grid point interval!')
      endif
!
!  Locate and move the interpolation points that are inside the solid.
!  Four different cases of interpolations points inside the cylinder.
!
      r_ip = sqrt((o_global(1)-abs(x0))**2 + (o_global(2)-abs(y0))**2)
      if (constdir == 1) then
        if (r_ip < rs) then
          y0 = o_global(2) + sqrt(rs**2-(o_global(1)-abs(x0))**2)
          f00(1:mvar) = 0
          f10(1:mvar) = f(ix0,iy1,iz0,1:mvar)
          f01(1:mvar) = 0
          f11(1:mvar) = f(ix0,iy1,iz1,1:mvar)
        else
          y1 = o_global(2) - sqrt(rs**2-(o_global(1)-abs(x0))**2)
          f00(1:mvar) = f(ix0,iy0,iz0,1:mvar)
          f10(1:mvar) = 0
          f01(1:mvar) = f(ix0,iy0,iz1,1:mvar)
          f11(1:mvar) = 0
        endif
        dX1 = 1/(y1-y0)
        g_Xp = g_global(2)-y0
      elseif (constdir == 2) then
        if (r_ip < rs) then
          x0 = o_global(1) + sqrt(rs**2-(o_global(2)-abs(y0))**2)
          f00(1:mvar) = 0
          f10(1:mvar) = f(ix1,iy0,iz0,1:mvar)
          f01(1:mvar) = 0
          f11(1:mvar) = f(ix1,iy0,iz1,1:mvar)
        else
          x1 = o_global(1) - sqrt(rs**2-(o_global(2)-abs(y0))**2)
          f00(1:mvar) = f(ix0,iy0,iz0,1:mvar)
          f10(1:mvar) = 0
          f01(1:mvar) = f(ix0,iy0,iz1,1:mvar)
          f11(1:mvar) = 0
        endif
        dX1 = 1/(x1-x0)
        g_Xp = g_global(1)-x0
      else 
        call fatal_error('g_interpolate_extraordinary', &
            'Not implemented for spheres!')
      endif
!
! In case of 2D flow
!
      if (nzgrid==1) then
        dz1 = 1
        g_zp = 0
      else
        dz1 = 1/(z1-z0)
        g_zp = g_global(3)-z0
      endif
!
!
!  Interpolation formula.
!
      fvar = f00 + g_Xp*dX1*(-f00+f10) + g_zp*dZ1*(-f00+f01) &
        + g_Xp*g_zp*dX1*dz1*(f00-f10-f01+f11)

!
!  Do a reality check on the interpolation scheme.
!
      if (lcheck) then
        do i=1,mvar
          if (fvar(i)>max(f00(i),f10(i),f01(i),f11(i))) then
            call fatal_error('g_interpolate_extraordinary', &
                'Interpolation value larger than values at corner points!)')
          endif
          if (fvar(i)<min(f00(i),f10(i),f01(i),f11(i))) then
            call fatal_error('g_interpolate_extraordinary', &
                'Interpolation value smaller than values at corner points!)')
          endif
        enddo
      endif
!      
!  If lclose_quad_rad_inter = true we must find the velocities in the r,
!  theta and phi directions at the point "g".
!
      if (lclose_quad_rad_inter) then
!
!  Having found the unit vectors in the r, theta and phi directions we can now
!  find the velocities in the same three directions at point "g".
!
        call dot(nr_hat,fvar(iux:iuz),vg_r)
        call dot(nphi_hat,fvar(iux:iuz),vg_phi)
        call dot(ntheta_hat,fvar(iux:iuz),vg_theta)
      endif
    endsubroutine interpolate_g_extraordinary
!***********************************************************************
    logical function gridplane_need_adjust(inear,constdir,rs,o_global)
!
!  Check if any gridpoints of the gridplane used for interpolation is inside
!  the solid body.
!
!  03-may-2016: jorgen - coded
!
      use Messages, only: fatal_error
      use Sub
  
      real, dimension(3), intent(in) :: o_global
      integer, dimension(3), intent(in) :: inear
      integer, intent(in) :: constdir
      real, intent(in) :: rs

      real :: rspow2

      gridplane_need_adjust= .false.
      rspow2 = rs*rs
      if ((x(inear(1))-o_global(1))**2 + (y(inear(2))-o_global(2))**2 < rspow2) then
        gridplane_need_adjust= .true.
      elseif (constdir == 1 .and. & 
        ((x(inear(1))-o_global(1))**2 + (y(inear(2)+1)-o_global(2))**2 < rspow2)) then
        gridplane_need_adjust= .true.
      elseif (constdir == 2 .and. &
        ((x(inear(1)+1)-o_global(1))**2 + (y(inear(2))-o_global(2))**2 < rspow2)) then
        gridplane_need_adjust= .true.
      elseif (constdir == 3) then
        call fatal_error('gridplane_need_adjust', &
            'Cannot use close_interpolation_method=1 for spheres!')
      endif
    endfunction gridplane_need_adjust
!***********************************************************************
    subroutine time_step_ogrid(f)
!
!  Dummy routine
!
      real, dimension(mx,my,mz,mfarray) :: f
!
      call keep_compiler_quiet(f)
!
    end subroutine time_step_ogrid
!***********************************************************************
    subroutine f_ogrid
!
!  Dummy routine
!
    end subroutine f_ogrid
!***********************************************************************
    subroutine p_ogrid
!
!  Dummy routine
!
    end subroutine p_ogrid
!***********************************************************************
    subroutine wsnap_ogrid(chsnap,enum,flist)
!
!  Dummy routine
!
      character(len=*), intent(in) :: chsnap
      character(len=*), intent(in), optional :: flist
      logical, intent(in), optional :: enum
!
      if (ALWAYS_FALSE) print*, chsnap
      if (ALWAYS_FALSE) then 
        if (present(enum)) print*, enum
        if (present(enum)) print*, flist
      endif
    endsubroutine wsnap_ogrid
!***********************************************************************
    subroutine map_nearest_grid_ogrid(xxp,ineargrid_ogrid,rthz)
!
!  Dummy routine
!
      real, dimension (3) :: xxp, rthz
      integer, dimension (4) :: ineargrid_ogrid
!
      intent(in)  :: xxp, rthz
      intent(out) :: ineargrid_ogrid
!      
      if(ALWAYS_FALSE) print*, xxp, rthz
      ineargrid_ogrid=0
!      
    endsubroutine map_nearest_grid_ogrid
!***********************************************************************
    subroutine interpolate_particles_ogrid(ivar1,ivar2,xxp,gp,inear_glob)
!
!  Dummy routine
!
      integer :: ivar1, ivar2
      real, dimension (3) :: xxp
      real, dimension (ivar2-ivar1+1) :: gp
      integer, dimension (4) :: inear_glob
!
      intent(in)  :: ivar1, ivar2, xxp, inear_glob
      intent(out) :: gp
!
      if (ALWAYS_FALSE) then
        print*, ivar1,ivar2,xxp
        print*, inear_glob
      endif
      gp=0.
!
    endsubroutine interpolate_particles_ogrid
!***********************************************************************
endmodule Solid_Cells