! $Id$ ! ! This module provide a way for users to specify custom initial ! conditions. ! ! The module provides a set of standard hooks into the Pencil Code ! and currently allows the following customizations: ! ! Description | Relevant function call ! ------------------------------------------------------------------------ ! Initial condition registration | register_special ! (pre parameter read) | ! Initial condition initialization | initialize_special ! (post parameter read) | ! | ! Initial condition for momentum | initial_condition_uu ! Initial condition for density | initial_condition_lnrho ! Initial condition for entropy | initial_condition_ss ! Initial condition for magnetic potential | initial_condition_aa ! ! And a similar subroutine for each module with an "init_XXX" call. ! The subroutines are organized IN THE SAME ORDER THAT THEY ARE CALLED. ! First uu, then lnrho, then ss, then aa, and so on. ! !** AUTOMATIC CPARAM.INC GENERATION **************************** ! Declare (for generation of cparam.inc) the number of f array ! variables and auxiliary variables added by this module ! ! CPARAM logical, parameter :: linitial_condition = .true. ! !*************************************************************** ! ! HOW TO USE THIS FILE ! -------------------- ! ! Change the line above to ! linitial_condition = .true. ! to enable use of custom initial conditions. ! ! The rest of this file may be used as a template for your own initial ! conditions. Simply fill out the prototypes for the features you want ! to use. ! ! Save the file with a meaningful name, e.g. mhs_equilibrium.f90, and ! place it in the $PENCIL_HOME/src/initial_condition directory. This ! path has been created to allow users to optionally check their ! contributions in to the Pencil Code SVN repository. This may be ! useful if you are working on/using an initial condition with ! somebody else or may require some assistance from one from the main ! Pencil Code team. HOWEVER, less general initial conditions should ! not go here (see below). ! ! You can also place initial condition files directly in the run ! directory. Simply create the folder 'initial_condition' at the same ! level as the *.in files and place an initial condition file there. ! With pc_setupsrc this file is linked automatically into the local ! src directory. This is the preferred method for initial conditions ! that are not very general. ! ! To use your additional initial condition code, edit the ! Makefile.local in the src directory under the run directory in which ! you wish to use your initial condition. Add a line that says e.g. ! ! INITIAL_CONDITION = initial_condition/mhs_equilibrium ! ! Here mhs_equilibrium is replaced by the filename of your new file, ! not including the .f90 extension. ! ! This module is based on Tony's special module. ! module InitialCondition ! use Cparam use Cdata use General, only: keep_compiler_quiet use Messages use EquationOfState ! implicit none ! include '../initial_condition.h' ! real :: g0=1.,density_power_law=0.,temperature_power_law=1. real :: gravitational_const=0. ! real, dimension(0:6) :: coeff_cs2=(/0.,0.,0.,0.,0.,0.,0./) ! real :: r0_pot=0.,qgshear=1.5 integer :: n_pot=10 ! ! Correct extra forces in the centrifugal balance condition ! logical :: lcorrect_pressuregradient=.true. logical :: lpolynomial_fit_cs2=.false. logical :: ladd_noise_propto_cs=.false. real :: ampluu_cs_factor=1d-3 ! ! Quantities for the pressure bump ! real :: bump_radius = 1.,bump_ampl = 0.4, bump_width = 0.1 character (len=labellen) :: ipressurebump='gaussian' ! namelist /initial_condition_pars/ g0,density_power_law,& temperature_power_law,& gravitational_const,r0_pot,qgshear,n_pot,& lcorrect_pressuregradient,lpolynomial_fit_cs2,& ladd_noise_propto_cs,ampluu_cs_factor,& bump_radius,bump_ampl,bump_width,& ipressurebump ! contains !*********************************************************************** subroutine register_initial_condition() ! ! Register variables associated with this module; likely none. ! ! 07-may-09/wlad: coded ! if (lroot) call svn_id( & "$Id$") ! endsubroutine register_initial_condition !*********************************************************************** subroutine initialize_initial_condition(f) ! ! Initialize any module variables which are parameter dependent. ! ! 07-may-09/wlad: coded ! real, dimension (mx,my,mz,mfarray) :: f ! call keep_compiler_quiet(f) ! endsubroutine initialize_initial_condition !*********************************************************************** subroutine initial_condition_uu(f) ! ! Initialize the velocity field. ! ! This subroutine is a general routine that takes ! the gravity acceleration and adds the centrifugal force ! that numerically balances it. ! ! Pressure corrections to ensure centrifugal equilibrium are ! added in the respective modules ! ! 24-feb-05/wlad: coded ! 04-jul-07/wlad: generalized for any shear ! 08-sep-07/wlad: moved here from initcond ! use Gravity, only: acceleration use Sub, only: get_radial_distance,power_law ! real, dimension (mx,my,mz,mfarray) :: f real, dimension (nx) :: rr_cyl,rr_sph,OO,g_r,tmp integer :: i ! if (lroot) & print*,'centrifugal_balance: initializing velocity field' ! if ((rsmooth/=0.).or.(r0_pot/=0)) then if (rsmooth/=r0_pot) & call fatal_error("centrifugal_balance","rsmooth and r0_pot must be equal") if (n_pot<=2) & call fatal_error("centrifugal_balance","don't you dare using less smoothing than n_pot=2") endif ! do m=m1,m2 do n=n1,n2 ! call get_radial_distance(rr_sph,rr_cyl) ! if (lgrav) then ! ! Gravity of a static central body ! call acceleration(g_r) ! ! Sanity check ! if (any(g_r > 0.)) then do i=l1,l2 if (g_r(i-l1+1) > 0) then print*,"centrifugal_balance: gravity at physical point ",& x(i),y(m),z(n),"is directed outwards" call fatal_error("","") endif enddo else if ( (coord_system=='cylindric') .or.& (coord_system=='cartesian')) then OO=sqrt(max(-g_r/rr_cyl,0.)) else if (coord_system=='spherical') then OO=sqrt(max(-g_r/rr_sph,0.)) endif endif ! elseif (lpointmasses) then ! ! Nbody gravity with a dominating but dynamical central body ! call power_law(sqrt(g0),rr_sph,qgshear,tmp) ! if (lcartesian_coords.or.& lcylindrical_coords) then OO=tmp if (lcylindrical_gravity) & OO=tmp*sqrt(rr_sph/rr_cyl) elseif (lspherical_coords) then OO=tmp endif ! endif ! if (coord_system=='cartesian') then f(l1:l2,m,n,iux) = f(l1:l2,m,n,iux) - y( m )*OO f(l1:l2,m,n,iuy) = f(l1:l2,m,n,iuy) + x(l1:l2)*OO f(l1:l2,m,n,iuz) = f(l1:l2,m,n,iuz) + 0. elseif (coord_system=='cylindric') then f(l1:l2,m,n,iux) = f(l1:l2,m,n,iux) + 0. f(l1:l2,m,n,iuy) = f(l1:l2,m,n,iuy) + OO*rr_cyl f(l1:l2,m,n,iuz) = f(l1:l2,m,n,iuz) + 0. elseif (coord_system=='spherical') then f(l1:l2,m,n,iux) = f(l1:l2,m,n,iux) + 0. f(l1:l2,m,n,iuy) = f(l1:l2,m,n,iuy) + 0. f(l1:l2,m,n,iuz) = f(l1:l2,m,n,iuz) + OO*rr_sph endif ! enddo enddo ! endsubroutine initial_condition_uu !*********************************************************************** subroutine add_noise(f) ! use FArrayManager, only: farray_use_global use EquationOfState, only: get_cv1,cs20,gamma_m1,lnrho0 ! real, dimension (mx,my,mz,mfarray) :: f real, dimension (nx) :: cs2 real :: cv1,cp1 integer, pointer :: iglobal_cs2 ! if (llocal_iso) then call farray_use_global('cs2',iglobal_cs2) elseif (lentropy) then call get_cv1(cv1) elseif (ltemperature) then call get_cp1(cp1) endif ! do n=n1,n2; do m=m1,m2 if (llocal_iso) then cs2=f(l1:l2,m,n,iglobal_cs2) elseif (lentropy) then !even with ldensity_nolog=T, this rho is in log cs2=cs20*exp(cv1*f(l1:l2,m,n,iss)+ & gamma_m1*(f(l1:l2,m,n,ilnrho)-lnrho0)) elseif (ltemperature) then if (ltemperature_nolog) then cs2=f(l1:l2,m,n,iTT)*gamma_m1/cp1 else cs2=exp(f(l1:l2,m,n,ilnTT))*gamma_m1/cp1 endif endif call gaunoise_vect(ampluu_cs_factor*sqrt(cs2),f,iux,iuz) enddo; enddo ! endsubroutine add_noise !*********************************************************************** subroutine gaunoise_vect(ampl,f,i1,i2) ! ! Add Gaussian noise (= normally distributed) white noise for variables i1:i2 ! ! 23-may-02/axel: coded ! 10-sep-03/axel: result only *added* to whatever f array had before ! use General, only: random_number_wrapper ! real, dimension (mx,my,mz,mfarray) :: f integer :: i1,i2 ! real, dimension (nx) :: r,p,tmp,ampl integer :: i ! intent(in) :: ampl,i1,i2 intent(inout) :: f ! ! set gaussian random noise vector ! do i=i1,i2 if (lroot.and.m==1.and.n==1) print*,'gaunoise_vect: variable i=',i if (modulo(i-i1,2)==0) then call random_number_wrapper(r) call random_number_wrapper(p) tmp=sqrt(-2*log(r))*sin(2*pi*p) else tmp=sqrt(-2*log(r))*cos(2*pi*p) endif f(l1:l2,m,n,i)=f(l1:l2,m,n,i)+ampl*tmp enddo ! endsubroutine gaunoise_vect !*********************************************************************** subroutine poly_fit(cs2) ! real, dimension(0:6) :: c real, dimension(mx) :: cs2,lncs2 ! ! Fits for different combinations of cs2 and temperature_power_law ! if (cs0 .eq. 0.1 .and. temperature_power_law.eq.2) then coeff_cs2=(/-8.33551,27.6856,-57.5702,54.6696,-27.2370,6.87119,-0.690690/) else if (cs0 .eq. 0.1 .and. temperature_power_law.eq.1) then coeff_cs2=(/-6.47454,13.8181,-28.6687,27.1693,-13.5113,3.40305,-0.341599/) else call fatal_error("poly_fit",& "fit not calculated for choice of cs0 and Teff power law") endif c=coeff_cs2 lncs2 = c(0) + c(1) * x + c(2) * x**2 + c(3) * x**3 + & c(4) * x**4 + c(5) * x**5 + c(6) * x**6 ! cs2=exp(lncs2) ! endsubroutine poly_fit !*********************************************************************** subroutine initial_condition_lnrho(f) ! ! Initialize logarithmic density. init_lnrho will take care of ! converting it to linear density if you use ldensity_nolog. ! ! 07-may-09/wlad: coded ! use FArrayManager use Gravity, only: potential,acceleration use Sub, only: get_radial_distance,grad,power_law use EquationOfState, only: rho0 ! real, dimension (mx,my,mz,mfarray) :: f real, dimension (mx) :: strat,tmp1,tmp2,cs2 real, dimension (mx) :: rr_sph,rr,rr_cyl,lnrhomid,rho,pp real :: lat,TT0,pp0 integer, pointer :: iglobal_cs2,iglobal_glnTT integer :: ics2 logical :: lheader,lpresent_zed ! if (lroot) print*,& 'initial_condition_lnrho: locally isothermal approximation' if (lroot) print*,'Radial stratification with power law=',& density_power_law ! if (lenergy.and.llocal_iso) then if (lroot) then print*,'You switched on entropy or temperature evolution,' print*,'but you are still using llocal_iso in start.in.' print*,'Use one or the other instead.' endif call fatal_error("initial_condition_lnrho","") endif ! ! Pencilize the density allocation. ! do n=1,mz;do m=1,my ! lheader=lroot.and.(m==1).and.(n==1) ! ! Midplane density ! call get_radial_distance(rr_sph,rr_cyl) if (lcylindrical_gravity.or.lcylinder_in_a_box.or.lcylindrical_coords) then rr=rr_cyl elseif (lsphere_in_a_box.or.lspherical_coords) then rr=rr_sph endif ! select case (ipressurebump) case ('gaussian') rho = 1 + (bump_ampl-1)*exp(-(rr_cyl - bump_radius)**2/(2*bump_width**2)) case ('step') rho = 1 + .5*bump_ampl*(tanh((rr_cyl-bump_radius)/bump_width) + 1) case default if (lroot) print*, 'No such value for ipressurebump: ', trim(ipressurebump) call fatal_error("initial_condition_lnrho","") endselect rho = rho * rho0 * rr_cyl**(-density_power_law) lnrhomid = log(rho) ! f(:,m,n,ilnrho) = f(:,m,n,ilnrho) + lnrhomid enddo;enddo ! ! Set the sound speed ! do m=1,my; do n=1,mz lheader=((m==1).and.(n==1).and.lroot) ! pp0 = rho0*cs20/gamma rho = exp(f(:,m,n,ilnrho)) pp = pp0 * (rho/rho0)**gamma cs2 = gamma*pp/rho ! call get_radial_distance(rr_sph,rr_cyl) if (lcylindrical_gravity.or.lcylinder_in_a_box.or.lcylindrical_coords) then rr=rr_cyl elseif (lsphere_in_a_box.or.lspherical_coords) then rr=rr_sph else call fatal_error("initial_condition_lnrho",& "no valid coordinate system") endif ! if (llocal_iso.or.lenergy) then ! ! Store cs2 in one of the free slots of the f-array ! if (llocal_iso) then nullify(iglobal_cs2) call farray_use_global('cs2',iglobal_cs2) ics2=iglobal_cs2 elseif (ltemperature) then if (ltemperature_nolog) then ics2=iTT else ics2=ilnTT endif elseif (lentropy) then ics2=iss endif f(:,m,n,ics2)=cs2 else ics2=impossible_int endif enddo;enddo ! ! Set the thermodynamical variable ! if (llocal_iso) then call set_thermodynamical_quantities& (f,temperature_power_law,ics2,iglobal_cs2,iglobal_glnTT) else if (lenergy) then call set_thermodynamical_quantities(f,temperature_power_law,ics2) endif ! ! Correct the velocities by this pressure gradient ! if (lcorrect_pressuregradient) & call correct_pressure_gradient(f) ! endsubroutine initial_condition_lnrho !*********************************************************************** subroutine initial_condition_ss(f) ! ! Initialize entropy. ! ! 07-may-09/wlad: coded ! real, dimension (mx,my,mz,mfarray), intent(inout) :: f ! ! SAMPLE IMPLEMENTATION ! call keep_compiler_quiet(f) ! endsubroutine initial_condition_ss !*********************************************************************** subroutine set_thermodynamical_quantities& (f,temperature_power_law,ics2,iglobal_cs2,iglobal_glnTT) ! ! Subroutine that sets the thermodynamical quantities ! - static sound speed, temperature or entropy - ! based on a sound speed which is given as input. ! This routine is not general. For llocal_iso (locally ! isothermal approximation, the temperature gradient is ! stored as a static array, as the (analytical) derivative ! of an assumed power-law profile for the sound speed ! (hence the parameter temperature_power_law) ! ! 05-jul-07/wlad: coded ! 16-dec-08/wlad: moved pressure gradient correction to ! the density module (correct_pressure_gradient) ! Now this subroutine really only sets the thermo ! variables. ! use FArrayManager use EquationOfState, only: gamma,gamma_m1,get_cp1,& cs20,cs2bot,cs2top,lnrho0 use Sub, only: power_law,get_radial_distance ! real, dimension (mx,my,mz,mfarray) :: f real, dimension (nx) :: rr,rr_sph,rr_cyl,cs2,lnrho real, dimension (nx) :: gslnTT real :: cp1,temperature_power_law integer, pointer, optional :: iglobal_cs2,iglobal_glnTT integer :: ics2 ! intent(in) :: temperature_power_law intent(inout) :: f ! ! Break if llocal_iso is used with entropy or temperature ! if (lenergy.and.llocal_iso) & call fatal_error('set_thermodynamical_quantities','You are '//& 'evolving the energy, but llocal_iso is switched '//& ' on in start.in. Better stop and change it') ! ! Break if gamma=1.0 and energy is solved ! if ((gamma==1.0).and.lenergy) then if (lroot) then print*,"" print*,"set_thermodynamical_quantities: gamma=1.0 means " print*,"an isothermal disk. You don't need entropy or " print*,"temperature for that. Switch to noentropy instead, " print*,"which is a better way of having isothermality. " print*,"If you do not want isothermality but wants to keep a " print*,"static temperature gradient through the simulation, use " print*,"noentropy with the switch llocal_iso in init_pars " print*,"(start.in file) and add the following line " print*,"" print*,"! MGLOBAL CONTRIBUTION 4" print*,"" print*,"(containing the '!') to the header of the "//& "src/cparam.local file" print*,"" call fatal_error('','') endif endif ! if (lroot) print*,'Temperature gradient with power law=',temperature_power_law ! ! Get the pointers to the global arrays if needed ! if (llocal_iso) then nullify(iglobal_glnTT) call farray_use_global('glnTT',iglobal_glnTT) endif ! if (lenergy) call get_cp1(cp1) ! do m=m1,m2 do n=n1,n2 ! ! Put in the global arrays if they are to be static ! cs2=f(l1:l2,m,n,ics2) if (llocal_iso) then ! f(l1:l2,m,n,iglobal_cs2) = cs2 ! call get_radial_distance(rr_sph,rr_cyl); rr=rr_cyl if (lspherical_coords.or.lsphere_in_a_box) rr=rr_sph ! gslnTT=-temperature_power_law/((rr/r_ref)**2+rsmooth**2)*rr/r_ref**2 ! if (lcartesian_coords) then f(l1:l2,m,n,iglobal_glnTT )=gslnTT*x(l1:l2)/rr_cyl f(l1:l2,m,n,iglobal_glnTT+1)=gslnTT*y(m) /rr_cyl f(l1:l2,m,n,iglobal_glnTT+2)=0. else! (lcylindrical_coords.or.lspherical_coords) then f(l1:l2,m,n,iglobal_glnTT )=gslnTT f(l1:l2,m,n,iglobal_glnTT+1)=0. f(l1:l2,m,n,iglobal_glnTT+2)=0. endif elseif (ltemperature) then ! else do it as temperature ... if (ltemperature_nolog) then f(l1:l2,m,n,iTT)=cs2*cp1/gamma_m1 else f(l1:l2,m,n,ilnTT)=log(cs2*cp1/gamma_m1) endif elseif (lentropy) then ! ... or entropy lnrho=f(l1:l2,m,n,ilnrho) ! initial condition, always log f(l1:l2,m,n,iss)=1./(gamma*cp1)*(log(cs2/cs20)-gamma_m1*(lnrho-lnrho0)) else ! call fatal_error('set_thermodynamical_quantities', & 'No thermodynamical variable. Choose if you want '//& 'a local thermodynamical approximation '//& '(switch llocal_iso=T init_pars and entropy=noentropy on '//& 'Makefile.local), or if you want to compute the '//& 'temperature directly and evolve it in time.') endif enddo enddo ! ! Word of warning... ! if (lroot.and.llocal_iso) then if (associated(iglobal_cs2)) then print*,"Max global cs2 = ",& maxval(f(l1:l2,m1:m2,n1:n2,iglobal_cs2)) print*,"Sum global cs2 = ",& sum(f(l1:l2,m1:m2,n1:n2,iglobal_cs2)) endif if (associated(iglobal_glnTT)) then print*,"Max global glnTT(1) = ",& maxval(f(l1:l2,m1:m2,n1:n2,iglobal_glnTT)) print*,"Sum global glnTT(1) = ",& sum(f(l1:l2,m1:m2,n1:n2,iglobal_glnTT)) endif endif ! cs2bot=cs20 cs2top=cs20 ! if (lroot) & print*,"thermodynamical quantities successfully set" ! ! Add noise if needed. ! if (ladd_noise_propto_cs) call add_noise(f) ! endsubroutine set_thermodynamical_quantities !*********************************************************************** subroutine correct_pressure_gradient(f) ! ! Correct for pressure gradient term in the centrifugal force. ! For now, it only works for flat (isothermal) or power-law ! sound speed profiles, because the temperature gradient is ! constructed analytically. ! ! 21-aug-07/wlad : coded ! use FArrayManager use Sub, only: get_radial_distance,grad use EquationOfState, only: get_cv1,get_cp1 ! real, dimension (mx,my,mz,mfarray) :: f real, dimension (nx,3) :: glnrho,gss real, dimension (nx) :: rr,rr_cyl,rr_sph real, dimension (nx) :: cs2,fpres_thermal,gslnrho,gsss real :: cp1,cv1 logical :: lheader ! if (lroot) print*,'Correcting density gradient on the '//& 'centrifugal force' ! call get_cv1(cv1) call get_cp1(cp1) ! do n=n1,n2 ; do m=m1,m2 lheader=(lfirstpoint.and.lroot) ! ! Get the density gradient ! call get_radial_distance(rr_sph,rr_cyl) call grad(f,ilnrho,glnrho) if (lcartesian_coords) then gslnrho=(glnrho(:,1)*x(l1:l2) + glnrho(:,2)*y(m))/rr_cyl else if (lcylindrical_coords) then gslnrho=glnrho(:,1) else if (lspherical_coords) then gslnrho=glnrho(:,1) endif ! if (lspherical_coords.or.lsphere_in_a_box) then rr=rr_sph else rr=rr_cyl endif ! ! Get sound speed and calculate the temperature gradient ! call grad(f,iss,gss) gsss=gss(:,1) ! ! Correct for cartesian or spherical ! cs2=cs20*exp(cv1*f(l1:l2,m,n,iss)+gamma_m1*(f(l1:l2,m,n,ilnrho)-lnrho0)) fpres_thermal=(gsss*cp1 + gslnrho)*cs2 ! call correct_azimuthal_velocity(f,fpres_thermal) ! enddo;enddo ! endsubroutine correct_pressure_gradient !*********************************************************************** subroutine correct_azimuthal_velocity(f,corr) ! use Sub, only: get_radial_distance ! real, dimension(mx,my,mz,mfarray) :: f real, dimension(nx), intent(in) :: corr real, dimension(nx) :: rr_sph, rr_cyl, rr, tmp1, tmp2, OO real :: OOcorot ! call get_radial_distance(rr_sph,rr_cyl) ! if (lcartesian_coords) then tmp1=(f(l1:l2,m,n,iux)**2+f(l1:l2,m,n,iuy)**2)/rr_cyl**2 tmp2=tmp1 + corr/rr_cyl elseif (lcylindrical_coords) then tmp1=(f(l1:l2,m,n,iuy)/rr_cyl)**2 tmp2=tmp1 + corr/rr_cyl elseif (lspherical_coords) then tmp1=(f(l1:l2,m,n,iuz)/rr_sph)**2 tmp2=tmp1 + corr/rr_sph endif ! ! Make sure the correction does not impede centrifugal equilibrium ! if (lcylindrical_coords.or.lcylinder_in_a_box) then rr=rr_cyl else rr=rr_sph endif call reality_check(tmp2,rr) ! if (lcorotational_frame) then OOcorot=rcorot**(-1.5) else OOcorot=0. endif ! OO=sqrt(tmp2)-OOcorot ! ! Correct the velocities ! if (lcartesian_coords) then f(l1:l2,m,n,iux)=-OO*y( m ) f(l1:l2,m,n,iuy)= OO*x(l1:l2) elseif (lcylindrical_coords) then f(l1:l2,m,n,iuy)= OO*rr_cyl elseif (lspherical_coords) then f(l1:l2,m,n,iuz)= OO*rr_sph endif ! endsubroutine correct_azimuthal_velocity !*********************************************************************** subroutine reality_check(tmp,rr) ! ! Catches unphysical negative values of phidot^2, i.e., impossibility ! of centrifugal equilibrium. ! ! 18-feb-13/wlad: moved to a separate subroutine because too many ! subroutines called it. ! use Messages, only: warning, fatal_error ! real, dimension(nx) :: tmp,rr logical :: lheader integer :: i ! lheader=lroot.and.lfirstpoint ! do i=1,nx if (tmp(i)<0.) then if (rr(i) < r_int) then !it's inside the frozen zone, so !just set tmp2 to zero and emit a warning tmp(i)=0. if ((ip<=10).and.lheader) & call warning('reality_check','Cannot '//& 'have centrifugal equilibrium in the inner '//& 'domain. The pressure gradient is too steep.') else print*,'reality_check: ',& 'cannot have centrifugal equilibrium in the inner ',& 'domain. The pressure gradient is too steep at ',& 'x,y,z=',x(i+nghost),y(m),z(n) print*,'the angular frequency here is',tmp(i) call fatal_error("","") endif endif enddo ! endsubroutine reality_check !*********************************************************************** subroutine read_initial_condition_pars(iostat) ! use File_io, only: parallel_unit ! integer, intent(out) :: iostat ! read(parallel_unit, NML=initial_condition_pars, IOSTAT=iostat) ! endsubroutine read_initial_condition_pars !*********************************************************************** subroutine write_initial_condition_pars(unit) ! integer, intent(in) :: unit ! write(unit, NML=initial_condition_pars) ! endsubroutine write_initial_condition_pars !*********************************************************************** ! !******************************************************************** !************ DO NOT DELETE THE FOLLOWING ************** !******************************************************************** !** This is an automatically generated include file that creates ** !** copies dummy routines from noinitial_condition.f90 for any ** !** InitialCondition routines not implemented in this file ** !** ** include '../initial_condition_dummies.inc' !******************************************************************** endmodule InitialCondition