Test problem with Eddington approximation
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1 Radiative transfer

The equation of radiative transfer is
n-VI=—kp(I-25). (1)

where I = I(x,t,n,v) is the intensity, p is the den-
sity, » is the intensity, and S = (ogsg/7)T* is the
source function.

Equation (1) can be solved by taking moments.
We define Oth, 1st, and 2nd moments as follows,
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Here, J is the mean intensity, F' is the radiative
flux, and P is the radiation pressure tensor. Taking
the Oth and 1st moment of Equation (1) yields

V.- F = —4dnkp(J - S), (5)
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Making the closure assumption
Pij = 50i;J. (7)
Equation (6) becomes
Kp
lyj=-"F (8)
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Next, to calculate V - F', we divide first by xp and
then take the divergence, so
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Using Equation (5) we obtain a closed equation for
J.

V- LVJ =rp(J—9). 10
(3577) =w0-5. (o

3Kp

2 Basic hydro equation

We are interested in steady solutions to the time-
dependent equations

dp
—=-V- 11
y pu (11)

D

pD—?:VP—&—pg—i—visc force (12)

DS DE
T— = —+PV - u=-V_ .F 13
(p O ) P+ u (13)

where E = ¢,T is the internal energy with ¢, =
const. Using Equation (8), we have
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or, more directly using Equation (5)
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3 Equilibrium solution

Using Equation (9), the equilibrium solution, V- F,
satisfies J = S = (osg/7) T?, and therefore
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so KdT'/dz = const for the equilibrium solution. In
the following, we use

k= ro(p/po)(T/Tv)", (18)

where a and b are adjustable parameters, pg and T}
are reference values for density and temperature,
respectively, and k(g gives the overall magnitude of
the opacity.
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Figure 1: Solution to Equations (19) and (21).

An analytic solution that also satisfies hydro-
static equilibrium is given by [see Equation (68) of
Brandenburg (2016)]
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where m = 4 +a— b7 VES& - radPO/(KOTOIOO.g)v

Ko = 16051y /(3k0po) are constants, and Tiop =
Ter/ 21/4 is an integration constant that is specified
such that T — Ti,, as P — 0. Note also that
44a—-b=(n+1)(1+a), where

n=3-0)/(1+a) (20)
is the polytropic index, so the ratio of 4 +a — b to
1+a is just n+ 1, which enters in front of the Vigé
term in Equation (19). Since K oc T37¢/plte
T4te=b/plta we have K — const = K, for
T > Tiop. Finally, the z coordinate is obtained
by numerical integration,

z:—/d—P:—/EdlnP.
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4 Example of BB14
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Consider, as a specific example, Run B6 of Barekat
& Brandenburg (2014) with a = 1, b = 0, kg =
106 Mm ™! cm? g ! and T.q = 9300 K. where po =
4107% g em™2 and Ty = 38,968 K are used. The
result is plotted in Fig. 1.
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