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1 Radiative transfer

The equation of radiative transfer is

n̂ · ∇I = −κρ (I − S). (1)

where I = I(x, t, n̂, ν) is the intensity, ρ is the den-
sity, κ is the intensity, and S = (σSB/π)T 4 is the
source function.

Equation (1) can be solved by taking moments.
We define 0th, 1st, and 2nd moments as follows,

J =
1

4π

∫

4π

I dΩ, (2)

F =

∫

4π

In̂ dΩ, (3)

P =
1

4π

∫

4π

In̂n̂ dΩ. (4)

Here, J is the mean intensity, F is the radiative
flux, and P is the radiation pressure tensor. Taking
the 0th and 1st moment of Equation (1) yields

∇ · F = −4πκρ (J − S), (5)

∇ · P = −
κρ

4π
F . (6)

Making the closure assumption

Pij = 1
3δijJ. (7)

Equation (6) becomes

1
3∇J = −

κρ

4π
F . (8)

Next, to calculate ∇ · F , we divide first by κρ and
then take the divergence, so

∇ ·

(

1

3κρ
∇J

)

= −
1

4π
∇ · F . (9)

Using Equation (5) we obtain a closed equation for
J .

∇ ·

(

1

3κρ
∇J

)

= κρ (J − S). (10)

2 Basic hydro equation

We are interested in steady solutions to the time-
dependent equations

∂ρ

∂t
= −∇ · ρu (11)

ρ
Du

Dt
= ∇P + ρg + visc force (12)

(

ρT
DS

Dt
=

)

ρ
DE

Dt
+ P∇ · u = −∇ · F (13)

where E = cvT is the internal energy with cv =
const. Using Equation (8), we have

F = −
4π

3κρ
∇J, (14)

or, more directly using Equation (5)

∇ · F = −∇ ·
4π

3κρ
∇J. (15)

3 Equilibrium solution

Using Equation (9), the equilibrium solution, ∇ ·F ,
satisfies J = S = (σSB/π)T 4, and therefore

0 = ∇ · F = −∇ ·
4σSB

3κρ
∇ T 4 = −∇ · K∇ T (16)

where

K =
16σSBT 3

3κρ
, (17)

so KdT/dz = const for the equilibrium solution. In
the following, we use

κ = κ0(ρ/ρ0)
a(T/T0)

b, (18)

where a and b are adjustable parameters, ρ0 and T0

are reference values for density and temperature,
respectively, and κ0 gives the overall magnitude of
the opacity.
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Figure 1: Solution to Equations (19) and (21).

An analytic solution that also satisfies hydro-
static equilibrium is given by [see Equation (68) of
Brandenburg (2016)]

T

T0
=

[

(n + 1)∇
(0)
rad

(

P

P0

)1+a

+

(

Ttop

T0

)m
]1/m

,

(19)

where m = 4 + a − b, ∇
(0)
rad = FradP0/(K0T0ρ0g),

K0 = 16σSBT 3
0 /(3κ0ρ0) are constants, and Ttop =

Teff/21/4 is an integration constant that is specified
such that T → Ttop as P → 0. Note also that
4 + a − b = (n + 1)(1 + a), where

n = (3 − b)/(1 + a) (20)

is the polytropic index, so the ratio of 4 + a − b to

1+ a is just n+1, which enters in front of the ∇
(0)
rad

term in Equation (19). Since K ∝ T 3−b/ρ1+a ∝

T 4+a−b/P 1+a, we have K → const = K0 for
T ≫ Ttop. Finally, the z coordinate is obtained
by numerical integration,

z = −

∫

dP

ρg
= −

∫

P

ρg
d ln P. (21)

4 Example of BB14

Consider, as a specific example, Run B6 of Barekat
& Brandenburg (2014) with a = 1, b = 0, κ0 =
106 Mm−1 cm3 g−1 and Teff = 9300K. where ρ0 =
4 10−4 g cm−3 and T0 = 38, 968K are used. The
result is plotted in Fig. 1.
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