Test problem with Eddington approximation

March 11, 2017, Revision: 1.1

1 Radiative transfer

The equation of radiative transfer is

$$
\begin{equation*}
\hat{\boldsymbol{n}} \cdot \nabla I=-\kappa \rho(I-S) \tag{1}
\end{equation*}
$$

where $I=I(\boldsymbol{x}, t, \hat{\boldsymbol{n}}, \nu)$ is the intensity, ρ is the density, κ is the intensity, and $S=\left(\sigma_{\mathrm{SB}} / \pi\right) T^{4}$ is the source function.

Equation (1) can be solved by taking moments. We define 0th, 1st, and 2nd moments as follows,

$$
\begin{gather*}
J=\frac{1}{4 \pi} \int_{4 \pi} I \mathrm{~d} \Omega \tag{2}\\
\boldsymbol{F}=\int_{4 \pi} I \hat{\boldsymbol{n}} \mathrm{~d} \Omega \tag{3}\\
\mathbf{P}=\frac{1}{4 \pi} \int_{4 \pi} I \hat{\boldsymbol{n}} \hat{\boldsymbol{n}} \mathrm{~d} \Omega \tag{4}
\end{gather*}
$$

Here, J is the mean intensity, \boldsymbol{F} is the radiative flux, and \mathbf{P} is the radiation pressure tensor. Taking the 0th and 1st moment of Equation (1) yields

$$
\begin{gather*}
\boldsymbol{\nabla} \cdot \boldsymbol{F}=-4 \pi \kappa \rho(J-S) \tag{5}\\
\boldsymbol{\nabla} \cdot \mathbf{P}=-\frac{\kappa \rho}{4 \pi} \boldsymbol{F} . \tag{6}
\end{gather*}
$$

Making the closure assumption

$$
\begin{equation*}
\mathrm{P}_{i j}=\frac{1}{3} \delta_{i j} J . \tag{7}
\end{equation*}
$$

Equation (6) becomes

$$
\begin{equation*}
\frac{1}{3} \nabla J=-\frac{\kappa \rho}{4 \pi} \boldsymbol{F} . \tag{8}
\end{equation*}
$$

Next, to calculate $\boldsymbol{\nabla} \cdot \boldsymbol{F}$, we divide first by $\kappa \rho$ and then take the divergence, so

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot\left(\frac{1}{3 \kappa \rho} \nabla J\right)=-\frac{1}{4 \pi} \boldsymbol{\nabla} \cdot \boldsymbol{F} \tag{9}
\end{equation*}
$$

Using Equation (5) we obtain a closed equation for J.

$$
\begin{equation*}
\nabla \cdot\left(\frac{1}{3 \kappa \rho} \nabla J\right)=\kappa \rho(J-S) \tag{10}
\end{equation*}
$$

2 Basic hydro equation

We are interested in steady solutions to the timedependent equations

$$
\begin{gather*}
\frac{\partial \rho}{\partial t}=-\nabla \cdot \rho \boldsymbol{u} \tag{11}\\
\rho \frac{\mathrm{D} u}{\mathrm{D} t}=\nabla P+\rho \boldsymbol{g}+\text { visc force } \tag{12}\\
\left(\rho T \frac{\mathrm{D} S}{\mathrm{D} t}=\right) \quad \rho \frac{\mathrm{D} E}{\mathrm{D} t}+P \nabla \cdot \boldsymbol{u}=-\nabla \cdot \boldsymbol{F} \tag{13}
\end{gather*}
$$

where $E=c_{\mathrm{v}} T$ is the internal energy with $c_{\mathrm{v}}=$ const. Using Equation (8), we have

$$
\begin{equation*}
\boldsymbol{F}=-\frac{4 \pi}{3 \kappa \rho} \boldsymbol{\nabla} J \tag{14}
\end{equation*}
$$

or, more directly using Equation (5)

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \boldsymbol{F}=-\boldsymbol{\nabla} \cdot \frac{4 \pi}{3 \kappa \rho} \boldsymbol{\nabla} J \tag{15}
\end{equation*}
$$

3 Equilibrium solution

Using Equation (9), the equilibrium solution, $\boldsymbol{\nabla} \cdot \boldsymbol{F}$, satisfies $J=S=\left(\sigma_{\mathrm{SB}} / \pi\right) T^{4}$, and therefore

$$
\begin{equation*}
0=\boldsymbol{\nabla} \cdot \boldsymbol{F}=-\boldsymbol{\nabla} \cdot \frac{4 \sigma_{\mathrm{SB}}}{3 \kappa \rho} \boldsymbol{\nabla} T^{4}=-\boldsymbol{\nabla} \cdot K \nabla T \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
K=\frac{16 \sigma_{\mathrm{SB}} T^{3}}{3 \kappa \rho} \tag{17}
\end{equation*}
$$

so $K \mathrm{~d} T / \mathrm{d} z=$ const for the equilibrium solution. In the following, we use

$$
\begin{equation*}
\kappa=\kappa_{0}\left(\rho / \rho_{0}\right)^{a}\left(T / T_{0}\right)^{b} \tag{18}
\end{equation*}
$$

where a and b are adjustable parameters, ρ_{0} and T_{0} are reference values for density and temperature, respectively, and κ_{0} gives the overall magnitude of the opacity.

Figure 1: Solution to Equations (19) and (21).

An analytic solution that also satisfies hydrostatic equilibrium is given by [see Equation (68) of Brandenburg (2016)]

$$
\begin{equation*}
\frac{T}{T_{0}}=\left[(n+1) \nabla_{\mathrm{rad}}^{(0)}\left(\frac{P}{P_{0}}\right)^{1+a}+\left(\frac{T_{\mathrm{top}}}{T_{0}}\right)^{m}\right]^{1 / m} \tag{19}
\end{equation*}
$$

where $m=4+a-b, \nabla_{\text {rad }}^{(0)}=F_{\mathrm{rad}} P_{0} /\left(K_{0} T_{0} \rho_{0} g\right)$, $K_{0}=16 \sigma_{\mathrm{SB}} T_{0}^{3} /\left(3 \kappa_{0} \rho_{0}\right)$ are constants, and $T_{\mathrm{top}}=$ $T_{\text {eff }} / 2^{1 / 4}$ is an integration constant that is specified such that $T \rightarrow T_{\text {top }}$ as $P \rightarrow 0$. Note also that $4+a-b=(n+1)(1+a)$, where

$$
\begin{equation*}
n=(3-b) /(1+a) \tag{20}
\end{equation*}
$$

is the polytropic index, so the ratio of $4+a-b$ to $1+a$ is just $n+1$, which enters in front of the $\nabla_{\mathrm{rad}}^{(0)}$ term in Equation (19). Since $K \propto T^{3-b} / \rho^{1+a} \propto$ T^{4+a-b} / P^{1+a}, we have $K \rightarrow$ const $=K_{0}$ for $T \gg T_{\text {top }}$. Finally, the z coordinate is obtained by numerical integration,

$$
\begin{equation*}
z=-\int \frac{\mathrm{d} P}{\rho g}=-\int \frac{P}{\rho g} \mathrm{~d} \ln P \tag{21}
\end{equation*}
$$

4 Example of BB14

Consider, as a specific example, Run B6 of Barekat \& Brandenburg (2014) with $a=1, b=0, \kappa_{0}=$ $10^{6} \mathrm{Mm}^{-1} \mathrm{~cm}^{3} \mathrm{~g}^{-1}$ and $T_{\text {eff }}=9300 \mathrm{~K}$. where $\rho_{0}=$ $410^{-4} \mathrm{~g} \mathrm{~cm}^{-3}$ and $T_{0}=38,968 \mathrm{~K}$ are used. The result is plotted in Fig. 1.

References

Barekat, A., \& Brandenburg, A.: 2014, "Nearpolytropic stellar simulations with a radiative surface," Astron. Astrophys. 571, A68

Brandenburg A.: 2016, "Stellar mixing length theory with entropy rain," Astrophys. J. 832, 6

