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Preface

Being an astronomy student, I have frequently encountered questions like how big is
the universe, - is it endless, how many stars are there, how old is the universe, does
it go on for ever... All those big questions about “life, the universe and everything”
(Adams 1989b).

Sitting in the office at the computer, where the most common problem is to
understand some computer code written by a guy in the seventies, or to figure out
why changing and changing back again do not return your code to its previous state,
I do feel pretty far from the above questions, - but there is a connection anyway.

One of the most fundamental tasks of astronomy has always been the determi-
nation of distances in the universe — rather important if we want to know what we
talk about.

We have now received precise measurements of parallaxes for about 120000 of
the nearest stars, obtained by the HIPPARCOS satellite (Perryman et al. 1997).
The parallax method is the only direct method for measuring distances to objects
outside the solar system, and this method only works for stars within about 100 pc
or 300 light years of the Sun. Going further out, we have to rely on various indirect
techniques, most of which depend crucially on knowledge about stellar surfaces and
evolution. When observing stars far away, it gets increasingly difficult to obtain
spectra with any reasonably resolution, and normally one takes recourse to broad
band photometry, observing in 2-5 spectral bands, to get enough photons. From
the magnitudes in these colours, one then infers information on the star’s physical
parameters like effective temperature, T.g, surface gravity, g and metallicity Z. The
transformation from the observed magnitudes to these physical parameters does,
however, depend strongly on our detailed understanding of stellar atmospheres. The
latter is addressed in this thesis. More precisely the subject is

“Effects of near-surface convection on solar and stellar structure
with special emphasis on realistic treatment of the input physics”

The last line refers to my desire to produce results that can be compared directly
with observations.

So even if stars were not interesting in themselves (and 1 can assure the reader
that they are), the cosmologists would at least want to know a few things about
stars to answer these questions about — well, in particular “...the universe and

everything”.
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Chapter 1

Introduction
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Fig. 1.1: This plot serves to give an overview of the region around the solar at-
mosphere. It combines a semi empirical chromospheric model (Vernezza et al.
1981) (VAL) with my convection simulations and a conventional 1D-envelope model
(Christensen-Dalsgaard & Dappen 1992). The abscissa is a depth scale, so z in-
creases inward in the models. The curves above z = 0.1Mm shows the VAL-model,
the curves below z = —0.5Mm are from the 1D-envelope model, and the thick
curves overlapping both, are temporal and horizontal averages of my 3D convection
simulation of the Sun.



2 CHAPTER 1. INTRODUCTION

In Fig. 1.1 I show the region around the photosphere, which I will investigate in this
thesis. The investigation is observational in a fairly new sense, in that this thesis
is centered around observations of numerical simulations of the coupled thermo-,
radiation- and hydro-dynamics around stellar photospheres.

Fig. 1.1 1s a combination of three angles of view: The chromospheric model based
on observations and extending down to the photosphere. The stellar structure model
extending up to the photosphere, and finally the simulations presented here, that
sit right in the photosphere, experiencing the complications from both regions. The
agreement between the three different ways of viewing the Sun is surprisingly good.
The main difference is that dynamic quantities, such as velocities and turbulent
pressure, are underestimated (or missing) in the photospheres of the 1-D models.

The good agreement is very reassuring — we know quite a bit about the Sun,
but the disagreement in the photosphere, (fortunately) tells us that there is still
work to do. Mainly in the field of 3D and dynamical analysis of photospheres, as
addressed with this thesis.

The turbulent motions of gases in the convective parts of stars have always
been a problem. And the complications arise in the transition from convective
to radiative transport of the energy. In this transition zone, convection gets less
efficient and more vigorous gas flows are needed to carry the flux. This affects the
hydrostatic equilibrium, by contributing to the vertical momentum balance. It is
also the region where the radiation experiences the transition from optically thick
to optically thin (diffusion approximation breaks down), resulting in very steep
temperature gradients. Combining this with inhomogeneities between warm up-
flows and cool downdrafts renders this region very hard to treat in 1D models.

My thesis is organized as follows:

e Chapter 2 explains the basic hydrodynamics, as well as gives a rather detailed
description of the numerical methods that goes into the hydrodynamical part
of the convection code.

e Chapter 3 is a full description of the atomic physics used in the simulations,
i.e. the thermodynamic part described by the equation of state (EOS), and
the opaqueness of the plasma — the opacity. The high quality atomic physics,
is one of the major reasons that we can talk about realistic simulations, and
an appreciable amount of my work is spent here.

e Chapter 4 describes the computation of the radiative transfer in the simula-
tions, and this is the other major contributor to the realism of the simulations.

e Chapter 5 is a presentation of the 6 stars | have chosen to make simulations
of, as well as reasons for this choice.

e Chapter 7 is the observational part. I show and explain some of the many
features of the convection, compare the six stars and compare with other ways
of treating convection in stellar model calculations.



Chapter 6 shows how the simulations can be combined with conventional 1D
stellar models to tell something about the whole outer convection zone of the
star, rather than just a thin layer at the surface.

Chapter 8 is a short presentation of a high-resolution simulation of the Sun,
intended for future analysis.

Chapter 9 tells about all the projects that I did not have time to include in
this thesis.

Chapter 10 provides a short summary and conclusions.






Chapter 2

The hydrodynamical foundation

One of the key quantities for describing a hydrodynamical system is the Reynolds
number (Rott 1990). The Reynolds number, R = UL /v, is the ratio of advective
to viscous transport of momentum in a system with kinematic viscosity, v, a char-
acteristic length scale, £, and typical flow speeds, ¢. The viscosity of a plasma is
approximately v = vyhd, where vy, is the thermal speed and d is the average inter-
particle distance (Kippenhahn & Weigert 1990, chapter 43). From this we see that
the Reynolds number for a plasma is just the ratio of macroscopic to microscopic
speed xdistance-scales. For stellar atmospheres the pressure scale height, Hp is a
natural choice for £ (but note that the characteristic horizontal scale, the granular
scale of motion is about an order of magnitude larger than the pressure scale height).

A large R implies that viscosity only influence the the flow directly on a much
smaller scale, and that turbulence can develop. Turbulence transports kinetic energy
from the macroscopic scales and down to the dissipation scale through a turbulent
cascade, whereby large-scale fluctuations break up and form ever smaller turbulent
eddies right down to the dissipation scale where the energy is dissipated. Turbulence
is, however, not a one way phenomena, from large to small scales, as the amount
of energy dissipated on the small scale most likely will influence the large-scale
behaviour of the flow. A large gap between the macroscopic and the dissipation
scales indicates a potential for turbulence, but whether the granular flow will appear
turbulent is also a question of stratification of the flow, as discussed in Sect. 7.2 and
Nordlund et al. (1997).

The convection simulations are performed in a plane-parallel geometry, with-
out magnetic fields and with a resolution that corresponds to Reynolds numbers
of about, R ~ 40, which is rather far from the R ~ 10'® prevailing in stellar at-
mospheres. This means that these simulations do not resolve all of the possible
small-scale structure of the actual stellar atmospheres. If the convection is appre-
ciable turbulent this might be a serious shortcoming of the simulations and this is
also the most critical point of the kind of simulations presented here. These low R
simulations do however seem to describe the high R reality rather well, as will be
discussed further in Sect. 7.2.
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The rest of this chapter contains a detailed description of the hydrodynamics part
of the convection code, and is based largely on Nordlund & Stein (1990), Nordlund
(1982), Stein (1989) and a close inspection of the code.

2.1 Hydrodynamics

The basic equations solved in this work are: the equation of mass conservation, often
referred to as the continuity equation,

0
a—fz—u-Vg—gV-u, (2.1)
the equation of momentum conservation, also called the equation of motion,
Ju
0, = TOU- Vu+og—VPE,, (2.2)
and the equation of energy conservation,
or
W =-V-: (UE) - PV -u+ Q(Qrad + Qvisc)? (23)

where p is the density, P, the gas pressure, I/ the internal energy per volume, u the
velocity field and g is the gravity, assumed to be constant with depth.

Because the densities and pressures change by 4-5 orders of magnitude from
the top to the bottom of the simulations, it is advantageous to precondition the
equations for use in the highly stratified case of stellar atmospheres. This is done by
rewriting (2.1) - (2.3) in terms of logarithmic density, Inp, velocity, w, and internal
energy per unit mass, e:

1
% =—u-Vinp—V - u, (2.4)
P
98_7; = —u-Vutg- VP (2.5)
and P p
a—i =—u-Ve— EV -u+ Qrad + QViSC' (26)

These equations are much more well behaved than (2.1) - (2.3) and the various
derivatives are also smoother.
The radiative energy exchange rate is

Qrad = 0 A /Q ka(lng — S3)dQdA, (2.7)

and will be discussed further in Sect. 4. The viscous dissipation is

Q= s (2 28)
visc — ~ V; afL’] ; .
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where the v;’s are the direction-dependent diffusion coefficients, discussed in Sect.
2.2.

Let us return to the per-volume version of the mass- and momentum equations.
Adding uw times mass conservation (2.1) to the momentum equation (2.2) we get

Jou

o =V (uue) = VP +go (2.9)

and taking the horizontal average of this

HO) 2 (ou) + (Re)) + o), (2.10)

which naturally leads us to the definition
Peurp, = (ou?) (2.11)

of the turbulent pressure — a quantity I will return to frequently.

2.2 Diffusion

The numerical time stepping (see Sect. 2.4) is stable, but the numerical evaluation of
spatial derivatives introduces some anti-diffusion that needs to be counteracted with
the artificial diffusion described here. The artificial diffusion is not an attempt to
mimic molecular-type diffusion, nor does it attempt to model subgrid-scale motions.
Rather, the various contributions to the artificial diffusion are instrumented so that
they stabilize the numerical behaviour at scales comparable to the mesh size, in
various regimes of fluid motions (advection, sound waves, shocks, ... ), while leaving
larger-scale, well-resolved motions as unaffected as possible.

For a per-unit-mass quantity f, second-order diffusion gives a contribution of the

form
af of
= E @:L'] [ a%] (2.12)

Numerically, it is an advantage to expand this into

af 2f dv; dlnp\ J0f
P +Zl]62 (axﬁ”f 9z, ) 9z, | (2.13)

At constant p and v;, a “saw-tooth” f-variation (with wavelength A = 2Az) has a
vanishing first derivative (when evaluated with a second- or higher-order difference
scheme), and hence Eq. (2.12) does not give rise to any diffusion, in the very case
where it is most needed. Equation (2.13), on the other hand, damps such a saw-
tooth effectively. Since its first derivative vanishes, a saw-tooth cannot be advected
and it is indeed desirable to damp it out.
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Notice that the diffusion coeflicients v; are direction-dependent, which has two
immediate advantages: the diffusion gets proportional to the grid spacing, which is
rather important as the z-scale is irregular and the aspect ratios of the simulations
typically are about 2:1. Also shocks and waves are stabilized without affecting the
directions parallel to them.

For f = Inp or f = &, the diffusion in the z-direction is only applied to the
fluctuations, e.g. f =1Inp — (Inp), to prevent diffusion of the mean stratification.

During my work with the code, the diffusion has undergone quite a few im-
provements (Stein et al. 1997), increasing its efficiency while minimizing the overall
diffusion. Following Nordlund & Galsgaard (1997) I will refer to the new type of dif-
fusion as quenched diffusion and is described below in Sect. 2.2.2, while the original
scheme is referred to as mized second- and fourth-order diffusion.

2.2.1 Mixed second- and fourth-order diffusion

The diffusion is separated into two parts: a second-order diffusion that has a coeffi-
cient with two different contributions
A:L'j

— 2.14
=, (2.14)

vaj = (ar|uj| + a2 AF uj)

and a fourth-order diffusion,
af 1 0? 0*f
L IN |yt 2.1
at p ZJ: dx? lyjpaa:? ’ (2.15)

that has a coefficient with the two contributions

A.Ij
1227
The numbering of the terms aj-asz is chosen to be consistent with the notation in
the source code of the program. The terms in a; are proportional to the fluid
speed, and prevent ringing at sharp changes in advected quantities. The term in

as is proportional to the (fiducial) sound speed &, stabilizes weak waves, numerical
differentiation and the time stepping. The term in a, is proportional to a velocity

(2.16)

va; = (day|uj| + asés)

divergence spread out over 4 grid points:
2
Afu(k)= Y0 Atuylk— 1+ Ak), (2.17)
Ak=-1

where k£ enumerates the grid-points in the j-direction, and
ATuj(k = 3) = [u;(k — 1) — u;(k)]+ (2.18)

is the positive part of the upstream — downstream velocity difference, centered on
k — % Note that Afu;, with the above definitions, is in fact centered on k. This
last term in the diffusion coefficient stabilizes shock fronts.
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The fiducial soundspeed used in (2.16) is just

2 _ 1 g7 5 \Bo)
& =1.67 o) (2.19)

calculated from horizontally averaged pressure and density, rather than the exact
adiabatic soundspeed

P,
cz — g‘
1%
The difference, due to the variation of I'; with ionization, is just 15-20% and only
below the photosphere, and it should not affect the properties of the diffusion.

(2.20)

The corresponding dissipation is
8ui ? 62% 2
visc — i\ 3 il 5 2.21
w= o () 4o (5 | @21

where vy; and vy, are the coeflicients for the second- and fourth-order diffusion
respectively.

2.2.2 Quenched diffusion

With the quenched diffusion, only the shock capturing a; term remains in the second-

order part of the diffusion.

A;L'j
12

The vy4; coeflicient is similar to the mixed second- and fourth-order case, and

(2.22)

_ AT
ve; = azfy AT U

Az
vaj = (ar|uj] + a2 foAsu; + agcs)l—QJ. (2.23)

One of the improvements consists of including the p-scaling
[ =14 (0)/ ot (2.24)

where o, 1s a reference density, chosen to be the horizontal mean density just
below the photosphere. This scaling reduces the shock capturing diffusion in the
dense layers, where the motions are gentle.

The main improvement consists of using an expression for v4; that involves a
(signed) first-order difference, scaled with the ratio of (unsigned) third-order differ-
ences to (unsigned) first-order differences,

Asf . Af maX3|A3f|
Az;  Az; maxs|Af]’

(2.25)
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centered on k — % The maxs-operator takes the maximum value in a three-point

neighbourhood of &k, i.e. &k —1,k,k 4+ 1. The third-order difference is defined by

Af(k—=3) = f(k)—flk—1), (2.26)
A f(k) = Af(k+3—Af(k—1) and (2.27)
A f(k—1) = A2f(k)— A’f(k—1). (2.28)

By scaling the first-order difference in this way one obtains a diffusive flux that has
the sign of the first-order difference, but the order of magnitude of the third-order
difference. In smooth parts of the solution the diffusive flux will thus be quenched
(hence the denomination), and the effect of the diffusion operator will be of similar
magnitude as that of a fourth-order diffusion operator. In steep parts of the solution,
on the other hand, the ratio of the third- to first-order difference will be of the order
unity or larger, and the diffusion will be similar to normal second-order diffusion.
The diffusion contributions are combined into

af 1 8 of | Asf
E_...Jrgzj:a_%lg(%a iy 3 )] (2.29)

where the first part is a second-order diffusion that is active mainly in shocks. The
second part is qualitatively similar to a fourth-order diffusion, but has the advantage
that sharp edges and localized peaks do not give rise to the ringing that tends to
develop with a normal fourth-order operator. In the combined second- and fourth-
order diffusion, enough second-order diffusion must be present to counteract the
tendency for ringing from the fourth-order operator. Since this tendency is not
present when (2.29) is used, one can remove the second-order diffusion altogether,
except in shocks, where significant local diffusion is always needed.
The dissipation that corresponds to (2.29) is

ou; ou;
Qvisc - ZZ]: lawj (VQJa ‘|‘ V4]A3u2)] . (230)
The diffusion at the top and the bottom are set to zero in both diffusion schemes
to avoid boundary effects. All of the non-local operators take advantage of the

periodic properties in the horizontal directions and are skewed at the top and bottom
boundary.

2.3 Boundary Conditions

2.3.1 The horizontal boundaries

The horizontal boundaries are by far the easiest to handle. There are no prefered
directions, so a periodic boundary, expressed for a discrete variable f as

f(0)=f(N;+1) for 1 =uz,y, (2.31)
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where N; is the number of points in direction i, is a very reasonable choice. This
of course only works if the size of the simulation box is large enough to contain a
few of the largest structures we want to investigate. These structures are in this
case granules, and each of the simulations are ensured to contain 6-8 granules on
average (See Fig. 7.4). This choice of scale means that we cannot investigate rotation
[Brummell et al. (1996) has produced some nice simulations, including the effects
of rotation] or meso/super granulation. Then it also means that we do not have to
worry about these effects.

2.3.2 The top boundary

The uppermost plane in the simulation box, ¢ = 1, is a fiducial layer, which is not
treated as part of the simulation but just serves to guide the actual boundary layer
at ¢+ = 2. This fiducial layer is placed three times further apart from the : = 2 layer
than the next point inward, i.e. z3 — z; = 3(23 — z2). This is also more than one
pressure scaleheight,

Hp = <Pg>, (2.32)

g(e)

above the ¢« = 2 layer, helping to minimize the influence of the fiducial layer. The
density fluctuations at = 2 are just copied to the fiducial layer and scaled as

(o)}

01 = 02 .
<Q>2

(2.33)

The horizontally averaged density at + = 1 is advanced with the horizontally aver-
aged mass flux, to keep it close to hydrostatic equilibrium,

(o)1 = (o)1 — AtHpa(ou.)s. (2.34)

The velocities are copied directly from the boundary layer
U; = Ug, (235)

and the energy is set to a constant, ¢ = £, for the whole plane. ¢ is a vertically
smoothed, horizontal average, which is not evaluated at each timestep, but at about
10s intervals. Originally, £ at « = 1 was kept constant in time, and just set by the
initial state of the simulation. I changed this to a damped, linear extrapolation:

gy =ed+ (1 —d)|(e)y — M(ZQ — )|, (2.36)

23 — 22

where the damping consists of using the fractions d of the previous £ and d — 1 of
the extrapolation. I have chosen d = 0.7, which prevents the uppermost layers from
fluctuating wildly after having kicked the model, by e.g. changing input physics,
the z-scale, or the mean structure to adjust Teg. This choice of the top energy does
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not affect the simulation when it is relaxed, but ensures that the simulation is able
to relax to whatever state it wants to.

The purpose of the fiducial layer is to make it possible to implement a trans-
mitting boundary at + = 2. The presence of the fiducial layer at : = 1 makes a
spline derivative at ¢+ = 2 more well behaved than a one-sided derivative. Because of
the larger 29 — 27 interval, the derivative is still mostly determined by the shape of
the function inside the boundary (at ¢ = 2), and works more or less as a one-sided
derivative. The presence of the fiducial layer “ties down” the function at + = 1
and thus prevents the boundary instabilities that otherwise result from using one-
sided derivatives at a boundary. The excellent transmitting properties of the top
boundary have been investigated by Nordlund & Stein (1990).

2.3.3 The bottom boundary

The bottom boundary is constructed to be a node in pressure waves (p-modes), to
transmit (convective) flows freely and to do no work on its own. This is accom-
plished by controlling the entropy of the in-flowing gas, and let the out-flowing gas
pass undisturbed. The value of the entropy of the in-flowing gas also, ultimately,
determines the effective temperature, Teg, of the simulation.
The variables are first advanced in time using
af

f+ [+ Ata for f=1Ino,u,e, (2.37)

except for the pressure which is advanced using

de (0P L e do (0P
At \ Oe . at @g
instead of evaluating the pressure from an EOS call with the new g and . This is all
right for the Sun, but maybe not for stars with more violent convection where the

Pb<—Pb—|-At (238)

fluctuations, even at the bottom boundary, are so large that the EOS, e.g. pressure,
is no longer linear in the fluctuations of p and «.

The pressure is then set to P, = (F,) for the whole bottom plane. The entropy
of the in-flowing plasma, Sj,, is controlled by specifying the density and energy of
the in-flowing plasma, g;, and ¢;,, and the deviation in entropy is

AS = [e — &) (g—f) + [0 — 0in) (Z_i) . (2.39)

Consequently the energy is changed according to

Oe )
Ae={ I as), " (2.40)
0 out.
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The timescale for changing the properties of in-flowing plasma is

Azb

_ 1
bn =3 |———
max;, t,

2

, (2.41)

i.e. half the shortest time it takes in-coming plasma to cross the first vertical grid
spacing. The five dependent quantities are changed according to

e = e+ Ae (2.42)
Inp = Inp+ Ace (%) . (2.43)
Upy = Upy(l— ?) in (2.44)
u, = u,+ %(<u2>m —u,) in, (2.45)
(2.46)

where only the velocities of in-flowing plasma is altered. As a technical point,
the bottom boundary layer is then changed back to its previous condition and the
differences are turned into time derivatives and stored in the boundary layer of
df/ot, to allow for normal time stepping in this layer too (¢f. Sect. 2.4.4).

2.4 Solving the Difference Equations

Due to the digital nature of computers, we have to discretize all the differentiations
and integrations encountered, and this also leads to the need for interpolation. A
function can only be evaluated at a finite and discrete set of points (in space or
time), but to calculate derivatives and integrals, we have to decide on what we
think happens between grid-points.

2.4.1 Spatial interpolation

Spatial interpolation is done by cubic spline interpolation as described in de Boor
(1978). The most important property of cubic splines is their smoothness. Each
interval is interpolated by a third-order polynomial

f(@) = fi+ Axf + A2 [+ AP, Av =z —ay, (2.47)

constrained by the requirement that the total interpolating function is twice differ-
entiable (having piecewise linear second derivatives).

This all sounds like excellent properties, but everyone having dealt with poly-
nomial interpolation of real-world data knows that sharp edges are disastrous for
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the interpolation, causing the interpolating function to oscillate wildly on both sides
of the edge. An optimization of the grid can prevent (or at least minimize) such
oscillations, by increasing the resolution around the edge giving better guidelines for
the interpolation, as described in Sect. 2.5.

2.4.2 Spatial derivatives

As cubic spline interpolation is twice differentiable, the derivatives from the inter-
polating functions are used. This ensures consistency and smoothness. Between
grid-points we have

f(z)= [l + Axf" + TA2* . (2.48)

2.4.3 Spatial integration

Together with the spline interpolation and differentiation, one can of course also
derive the corresponding integral. Integrating Eq. (2.47) and combining with Eq.
(2.48) result in the following compact and easy-to-evaluate expression

Tit1 Az; , ,
/x‘ f(z)dz = Az, %(fz + fiy1) + ﬁ(fz - fi+1) . (2.49)

2.4.4 Time stepping

The time is advanced using the Hyman third-order leap-frog method, with variable
time step (Strikwerda 1989, chapter 8). It is a two-step method, with odd steps
being leap-frog predictor steps, and even steps acting as third-order corrector steps.
Odd steps are advanced using

J(n+1) = af(n—1) + [1 — alf(n) + bf'(n), (2.50)

where the time derivatives, f/'(n) are given by Eqs. (2.4)-(2.6). The coefficients a
and b are found from inserting in (2.50) the Taylor expansion of f(n—1) around

f(n)

Fnb1) = f(n) + [b— aBtgal () + Jabif"(n) + OB)  (251)
and comparing with a Taylor expansion of f(n+1) around f(n)
Fnt1) = f(n) + ALf(n) + EAZ () + O(3), (252
yielding
a=r? b= At[l +r] with r = At/ Alya. (2.53)

Here the time steps are Atgq = t(n) — t(n—1) and At ={(n+1) — t(n).

The even step does not advance in time, but serves to evaluate the time derivative
at the new time step, f'(n+1), which can then be used to improve the estimate of
f(n+1) as found in the odd step. At the even step we have

fn+l)=cf(n=1)+[1 =] f(n) + df (n)AlL + ef'(n + 1)At, (2.54)
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with n being the same as in (2.50) for the odd step. The coefficients c—e (and the
motivation for the expression) can be found by inserting the Taylor expansions of

f(n—1) and f'(n+1) around f(n)
f(n+1) = f(n) + [dAL — cAlga + eAt]f'(n) (2.55)
+ [FeAtoq + eAC]f"(n) + [~ geAtgy + 3eA° f(n) + O(4),

this time including up to third-order terms. Again comparing with the Taylor ex-
pansion of f(n+1) (2.52), but now retaining also the third-order term, ZA#? f"(n),
gives
3 1 2 1
c:ri, d:( +r) and €= —I_r. (2.56)
2+ 3r 2+ 3r 2+ 3r

So even though either (2.50) nor (2.54) contains derivatives of order higher than

one, the scheme is in fact a third-order scheme.

2.5 The z-grid

The cubic splines used for both interpolation, differentiation and integration as
described above are rather sensitive to abrupt changes in the quantity to be in-
terpolated. If there are too few points on each side of the transition to guide the
splines, they will tend to develop oscillations in this region. As we have some very
sharp transitions in the photosphere above granules, we have to make sure that these
transitions are resolved well enough to avoid such oscillations.

It can be shown that the optimum mesh for resolving a function f is defined by

[V = 1= [Pl o i=1N D

(de Boor 1978, pp. 44). Equation (2.57) states that the mesh, z;, should be equidis-
tant in the square root of the second derivative. The interpretation of this is rather
simple: As straight lines, no matter the slope, are fully described by just two points,
we are interested in the deviation from straight lines, that is f”. The reason for the

|...]is obvious and the square root distributes changes evenly between the function
and the mesh.

For f" 1 use
d2T
= max 3 (2.58)
where maxj, is the maximum for each horizontal plane. But we want a z-scale
constant in time, so instead of (2.58), which is rather “noisy” and time dependent,

I use a loose fit to (2.58) at a single time step, to a function of the form

R |
1" J)

= ||z — 20| tae (5

(2.59)



16 CHAPTER 2. THE HYDRODYNAMICAL FOUNDATION
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Fig. 2.1: These two plots illustrates the z-scales for the simulation of oo Cen B to the
left, and of nBoo to the right. The z-scales are shown with solid lines and each
z-point is marked by a small cross. The z.,4-scale is plotted for 10 timesteps from
each of the simulations to demonstrate the stability of the method. The horizontal
dotted lines shows (Az) and the vertical dotted line marks the upper boundary of
the simulation (the uppermost plane is the fiducial layer, (¢f. Sect. 2.3.2).

giving a nice and smooth z-scale (See Fig. 2.1). As the simulation evolves, this
z-scale is routinely checked for consistency with (2.58) and renewed if necessary.
The detailed radiative transfer is solved on its own grid, z;.q, as only part of the
simulation box is involved (7 < 300) and as we need all the resolution we can get.
For this grid I use
dlngk.
dz ’
which is chosen to give a good optical depth scale, 7. This expression does not follow
the idea of (2.57) strictly, but as 7 is the vertical integral of gk [¢f. Eq. (4.24)],
(2.60) can be seen as a smoothed version of d*r/dz?.
The grid in the horizontal directions is regular, and is not optimized in any
way. Instead the horizontal extent of the simulations is chosen to contain a certain

(2.60)

" = max;,

number of granules, to make the simulation box a representative part of the stellar
surface. The horizontal variation of any quantity is anyway rather modest, making
the spline interpolation safe, even with a poor resolution.

2.6 Damping of p-modes

Initial configurations of the simulation box will most likely not be in exact vertical
pressure balance. If the starting configuration is constructed to have a horizontally
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averaged thermodynamic structure in hydrostatic equilibrium, but with a fairly
random velocity field, there will be surplus energy either in the form of kinetic
energy because of too high velocities, or in the form of potential energy because of
too low velocities. In either case, this energy will go into excitation of p-modes that
can have rather high amplitudes (because of the small mass contained in the box),
depending on how far the initial configuration were from the statistical steady state

The only way for the p-modes to loose energy is through dissipation, but the
dissipation is negligible on the scale of the p-mode wavelength so we need to help it
a little by artificially extracting energy from the modes. This is done by adding a
damping term to the time derivative of the vertical velocity. The velocity fluctuation

associated with the mode is

_ {ouz)
Umode = @) (2.61)

where the (...) denotes a horizontal (not temporal) average. We only observe radial
(or vertical as the simulation is plane parallel) modes in the simulations, justifying
that (2.61) only includes the z-component.
If we want this p-mode component of the velocity field to decrease exponentially
with time,
Umode = Umode o€ "/ fdemp, (2.62)

with a damping time {4amp, it will obey the differential equation:

dvmode Umode
= — . 2.63
dt tdamp ( )

This term is now added to the time derivative of the vertical velocities
du, du, Umode

= ( ) . ned (2.64)
dt dt ), ldamp

efficiently damping any p-modes.

The damping time, {4amp, should be chosen similar to the p-mode periods, to
obtain near-critical damping. If the damping time is too long, the p-mode is damped
too slowly, while if the damping time is too short it takes a too long time for the
model to reach vertical pressure equilibrium. I have found that a {gamp 1.3 times
larger than the dominant p-mode period is a good choice for efficient damping.

In some of the simulations I find two p-modes with a small separation in frequency
and similar amplitudes interfering with each other, resulting in the well-known beat
phenomena. The modulation of the amplitude can easily be mistaken for damping
and complicates the analysis of the damping quite a bit.

After having damped the oscillations as much as possible in this way, the damping
is turned off before the simulations are used for further analysis. This damping does
not destroy the p-modes alltogether, but brings the amplitude down to a level which
is the natural amplitude for the simulation, determined by the convective forcing
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and damping, as well as the mass contained in the box. The remaining oscillations
can thus surely tell us a lot about convection as an excitation mechanism for p-mode
oscillations (Stein 1989; Stein & Nordlund 1990; Musielak et al. 1994), but I will

leave that subject for another project.



Chapter 3

The atomic physics foundation

The ongoing work of expanding our basic knowledge about atoms, ions and molecules,
is a cornerstone for both equation of state (EOS) and opacity calculations, and in
1984 the biggest coordinated effort ever was initiated to make extensive compila-
tions of such data of all atoms and ions of astrophysical interest. This is the Opacity
Project, abbreviated OP. Some 30 of the constituent articles have been collected in
the OP books (Seaton 1995; Berrington 1997), covering both the EOS, the opacity
and the atomic data calculations. If one does not feel like reading the more than
500 pages, I can at least recommend browsing the books, to get a feeling for the
current state of atomic physics. It is very instructive, and the level of sophistication
in the modelling and analysis is really impressive. At the same time though, one
also realizes that all these issues still are very open. It seems as if we know even
less than 20 years ago, when the astrophysical community used the LAOL-opacities
(Los Alamos Astrophysical Opacity Library) (Huebner et al. 1977). It was a com-
mon belief at that time that any refinements in the atomic physics would only result
in a marginal change in the opacity and an even smaller change in the EOS. At that
time we seemed very close to the truth.

By now (after browsing the OP books) we have learned that very many effects
are in play at the same time and that each discarded approximation has meant a
significant alteration of the KOS and the opacity. That these changes really are
improvements has been confirmed by much better agreement with observations in
a variety of astrophysical problems, e.g. helioseismology (Christensen-Dalsgaard &
Déappen 1992; Dziembowski et al. 1992) and modelling of variable stars (Petersen
1990; Moskalik & Dziembowski 1992). Detailed comparisons with experiment, ion
for ion, state for state (as can be seen throughout the OP book) are very reassuring,
clearly indicating that the right tracks are followed and that we are closer to the
real world than ever. But it is also evident that there still remains a good deal of
work before the chapter can be closed.

19
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3.1 Chemical Mixture

As one often realizes, the world is far from ideal, which is also the case here. I have
to use different chemical mixtures for different parts of the atomic physics. The
MHD EOS program is numerically heavy, and including more than the adopted 6

Table 3.1: Abundances for various relevant mixtures.

A Gust. AGN92 solar MHD® MHD® 4 X2 X3

H 1.008 12.00 12.00 12.00 12.00 12.00 13.60°
He  4.003 11.00 11.00 10.92 10.92 11.00 24.59° 54.42

C 12.01 855 855 853 856 8.58 11.26° 24.38 47.89
N 14.01  7.93 7.97 791 7.8% 7.90 14.53° 20.60 47.45
0 16.00 8.77 8.87 875 878 880 13.62° 35.12 54.93
Ne 2018 851 807 849 —  — 2156 40.96 63.45
Na 2300 6.8 633 616 —  — 514° 47.29 71.64
Mg 2432 748 758 746  —  —  T7.65° 15.04° 80.14
Al 26.97 6.40 647 638 -  —  599° 18.83 28.45
Si 28.06 7.55 755 753 —  —  8.15° 16.35 33.49
S 3206 7.21 721 719  —  — 1036 23.33 34.83
K 39.10 5.05 5.3 503 —  — 434 31.63 45.72
Ca 4008 633 636 631 —  — 6.11° 11.87° 50.91
Cr 5201 547 567 545 —  —  6.77 16.50 30.96
Fe 5585 750 751 748 823 825 7.87° 16.16 30.65
Ni 58.69 508 625 506 — — 7.64 18.17 35.17
X/T%] 70.296 70.350 73.694 73.694 70.296

Y /[%] 27.916 27.937 24.500 24.500 27.916

Z][%)] 1.788 1.713 1.806 1.806 1.788

p(no ioni) 1.3018 1.3009 1.2605 1.2606 1.3018
p(full ioni) 0.6196 0.6193 0.6039 0.6040 0.6196

*The six element mixture mimicking the “solar” composition
*The six element mixture mimicking the “Gust.” composition

¢The atom/ion is included as a source of opacity

elements, would make it prohibitively slow, even though it only has to be run once.
The ODFs (see Sect. 3.3.3) taking care of the line opacity, have been calculated for a
much more realistic mixture (Anders & Grevesse 1989, will be referred to as AG89),
including all elements from hydrogen through uranium. As I need more elements to
calculate continuous opacities than provided with the MHD EOS, I use the original
EOS by Gustafsson (1973) as a basis for these opacity calculations. Fortunately I
can change the mixture used for the latter, to for example the one used for the ODFs,
although only using 16 most abundant elements out of the 92 elements included in

the ODF calculation (Kurucz 1992a).
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Table 3.1 displays the different mixtures used for this work, and a few funda-
mental data for the elements. The second column in the table contains the atomic
weights adopted for the tabcmp-program. The MHD EOS uses one more digit, but
are consistent with the values listed here. The last three columns contain the ion-
ization potentials in eV for the first few ionization stages, which are included in this
table to give a feeling for at what temperatures the various ions are important. For
the solar mean stratification, half of the hydrogen will be ionized at a temperature of
around 22 900K and half of the helium will be single ionized at 41 700K. Potassium,
the element included with the lowest ionization potential, is ionized throughout the
solar atmosphere, as it ionizes at a temperature well below the temperature mini-
mum (see Fig. 1.1).

The abundances tabulated in Tab. 3.1 are all logarithmic abundances by num-
bers, normalized to 12.00 for hydrogen. Below the element listing, I also give the
corresponding “global” parameters; the fractions by mass, X, Y and Z and the mean
molecular weights, p, for the non-ionized and the fully ionized mixture respectively.

The third column, labelled “Gust.” contains the original abundances (Gustafs-
son et al. 1975, Tab. 1). This is the mixture I have used for the low-res simulations
and its global parameters are fairly close to the mixture adopted by Kurucz (1992c¢)
for his ODF calculations, although he uses the full AG89 mixture, from hydrogen
to uranium. In order to compare EOQS-effects on the simulations, I have also calcu-
lated a 6-element mixture with exactly the same global parameters as for the Gust.
mixture, for use with the MHD EOS.

The fourth column lists the newest and most often cited solar abundance which
is AG89 updated by Grevesse & Noels (1992) (AGN92), most noticeable resulting
in a lowering of the solar photospheric iron abundance, bringing it into agreement
with meteoritic abundances. AGN92 is not used in the present work, but is merely
included for comparison.

The fifth column is the mixture I adopt for the best solar. The heavy element
mixture is taken from AG89 (to agree with Kurucz) for the 14 metals I include. These
abundances are then scaled in accordance with the meteoritic and solar photospheric
metal to hydrogen ratio; Zg/Xg = 0.0245 (AGN92) and with helioseismology (Basu
& Antia 1995) which yields Yz = 0.245.

The sixth and seventh column list the truncated mixture used for the MHD
EOS calculations. The heavy-element mixture has been adjusted to give X,Y, 7
and p’s that agree with the Gust and solar mixtures respectively. These five global
quantities for the solar and the Gust. mixtures, are seen to agree very well with the
corresponding 6-element mixtures for the MHD EOS calculations, with only small
deviations on the sixth significant digit.



22 CHAPTER 3. THE ATOMIC PHYSICS FOUNDATION

3.2 The Equation of State

In this section I will outline the ideas behind the original EOS, and compare this
with my update, which consists in employing the so-called MHD EOS (Hummer &
Mihalas 1988; Mihalas et al. 1988; Dappen et al. 1988; Mihalas et al. 1990). This
MHD is an acronym for the authors; Mihalas, Hummer and Déappen (in order not
to get confused with magneto-hydro-dynamics I will always refer to this EOS as the
MHD EOS) and it is the EOS which is part of the Opacity Project.

An EOS deals with the problem of determining the occupation of the possible
states of a plasma. Among these states we have (going from high energies toward
lower energies) the continuum of states of free electrons and free nuclei, bound
electronic states (electrons around nuclei forming ions and atoms) and bound states
of nuclei forming molecules and molecular ions.

The EOS is calculated under the assumption of local thermodynamic equilibrium
(LTE) reducing the problem to only involving the local state of the environs, and the
EOS can then be expressed as a function of only two independent parameters, say
(0,T),(Pes,T) or (N, T), with o being the mass density, P, the electron pressure, N
the number of electrons per volume and 7' the temperature. Assuming LTE there is
no ambiguity regarding temperature, as the radiation temperature and the kinetic
temperatures of the constituent particles all are the same.

We now express the relative numbers of mutually reacting particles

X, =X, + X, (3.1)
as a chemical equilibrium via a stoichiometric equation:

p1 = fia + pt3 or Py = g + 3 (3.2)

where the u’s are the chemical potentials of the respective particles, and the ¢; =
wi/ kT are the degeneracy parameters. The second equation is only valid if all the
reacting particles have the same temperature, which is the case in LTE. The energies
of the three particles are now related through

S —— E1 (33)
ma

€6 = Ey+y——— 3.4

? ? sz + ms (3.4)
ms

= K (————— 3.5

€3 3 —I_ Xmg _I_ m37 ( )

where x is the difference in internal energy between the left- and the right-hand side
of (3.1), that is x = Eine( X2 + X3) — Fint(X1). The E;’s are the kinetic energies
associated with the Fermi-Dirac distribution of the respective particles, and m; are
their masses. Equation (3.3)-(3.5) do not describe a single reaction, but are just
statistical considerations.
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Statistical mechanics tells us that the total number per volume of fermions having
degeneracy parameter v, is obtained by integrating the distribution function over

momentum p: ,
c 4drp*dp 1
n:g/o W3 eIt 1 (3.6)
where ¢ is the statistical weight or degeneracy of the state represented by the par-
ticle. Degeneracy of a state is normally due to the spin and/or rotational angular
momentum of the particle, in which case g = (25 +1)(2./+1). For a non-degenerate
gas (¢ < —1) (3.6) reduces to

o 4rptdp
— P —e/kT
n = ge /0 s € /KT (3.7)
Equation (3.2) can also be expressed as e™%1 = e~*2¢~%*, which, combined with

(3.7) solved for ¥ gives

Nan3 _ 9293 (27rkTm2m3/m1)3/2 o X/KT
ny g1 h? '

(3.8)

This version of the equilibrium equation is most applicable for molecular dissocia-
tion balances and ionization balances in stellar atmospheres, as all the particles are
assumed non-degenerate. In stellar interiors an ionization process might involve a
partially degenerate electron, so choosing particle 3 to be the electron we get

2 _ 92 (@)3/2 e—x/kT—lbe’ (3.9)

ny g1 \my

where I have just left the e™¥*-term unaltered. As m; and m, only differ by the
very small mass of the electron, it is costumary to assume m; = my. The same is
of course also applicable to (3.8) when used for ionization equilibria.

If each of the particles can exist in a number of states with different energies, (3.7)
should be summed over these states to get the total number of particles regardless
of their state of excitation

oo 2
n = eQngk/O Zmii;lpe_ﬁk/w, (3.10)
k

where subscript k numbers the states with £ = 0 being the ground state. The energy
is now €; = €+ xx where Y is the energy of the excited state relative to the ground
state (i.e. xo = 0). The definition of € in Eq. (3.3)-(3.5) still applies though y,
the energy difference between the left- and right-hand side of the reaction equation
(3.1), should now be defined more precisely as this energy difference for the case
where all the reacting particles are in their ground state. The kinetic properties of
the particle are unaltered by excitation, and the summing over states can therefore
be done outside the integral

0 4I y Qd’
n = €¢u/ Me—%/kT7 (3.11)
0 h3
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effectively defining the partition function

u=Y gpe Xk/k. (3.12)
k

This form can be used directly for atoms and ions, but if there are several kinds of
independent excitations, as is the case for molecules, the various contributions are
multiplied to get a final partition function. For a diatomic molecule (which is the
only molecules considered in this work), it amounts to

Umo] = nge_Xk/kTZ Z(QJ _I_ 1)6—[61;-}-6J(U)]/kT7 (313)
k v J

i.e. each bound electronic state k& possesses a number of vibrational states v which
again harbour a large number of closely spaced rotational states .J. This is beauti-
fully visualized in Fig. 3.6 of the line opacity, where the bands of rotational states
for the first two vibrational states of the CO molecule are clearly seen (see the ac-
companying text for more detail). In Eq. (3.13) the degeneracy of electronic states
is taken care of by the statistical weight gr and degeneracy of vibrational states is
included in the (2.J + 1)-factor. The sum is split in two, for the case of homonuclear
molecules (Hg, C2, Ny and O3): a para-part for even J and an ortho-part for odd .J,
weighted with a factor of 2 and 6 respectively.

Combining (3.11) with the stoichiometric equation (3.2), we can now write down
the equivalents to (3.8) and (3.9)

nan3  UgUs (QWkngmg/ml)B/Z s

(3.14)

1 U1 h3

and

n uy [my\3/?

me_ 2 <_) e X/KT v (3.15)
1 U1 \Mmyq

These are the so-called Saha equations, describing dissociation and ionization equi-

libria, regardless of the reacting particles’ internal states. We notice that the popu-

lation of excited states can be expressed as

Bk Tk =i /KT (3.16)
n u
known as the Boltzmann equation.

Everything looks very nice till now, except that we haven’t specified any upper
limits for the summing over excited states. From elementary atomic physics we
know that there is an infinite number of bound states in any atom and that the
energy of these states converge to the ionization energy. Returning to the partition
function (3.12) with this in mind, we see that the sum is divergent!

The divergence is of course not physical, nor is the infinity of states. The above-
mentioned elementary atomic physics also tells us that the radii of hydrogenic or
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highly excited atoms, as function of principal quantum number n, increase as n?.

So if the atom only has a limited amount of space to its disposal, it can only have
a limited number of bound states. We therefore know that the partition function
is finite, but how the sum should be truncated is far from trivial and is one of the
main problems in EOS research.

In both the EOS considered here, the Stark effect is assumed to destroy otherwise
bound states, and on basis of that, a probability for the existence of each state w;
is calculated — this is the so-called occupation probability formalism. In this picture
the partition function (3.12) is changed to

u=>_ wigpe T (3.17)

k=0

making the sum convergent. Also a dependency of density enters, as wy depends on
the frequency of close encounters between atoms and ions in the plasma.

The Boltzmann formula (3.16) is of course changed accordingly, by adding a wy,
in the numerator.

The next two sections describe two different ways of evaluating these weights, as
well as two different ways of deriving thermodynamic quantities from the occupation
numbers obtained.

3.2.1 The original EOS

The EOS, as used by Gustafsson (1973), follows the almost classical interpretation
of the Debye & Hiickel (1923) theory of electrolytes. This theory takes into account
the presence of other atoms, ions and especially electrons, which according to the
classical interpretation reduces the ionization potential by

Ay = 4.98-107*(1 + Z)0,/P. /[eV], (3.18)

where 7 is the net charge of the atom/ion (Griem 1964, p. 139). He suggests to use
Ax = 0 for H™, but Gustafsson adopt 2Ay according to Tarafdar & Vardya (1969),

i.e. changing to (1 4+ |Z|). The partition functions are separated into three terms:

U= gog+ Z[u' + Usng), (3.19)
1

where gy is the groundstate statistical weight and w,s is an asymptotic part which
can be treated as hydrogenic. The intermediate 5-15 states going into u’ are approx-
imated by a small number (2-5) of substitute states, as evaluated by Traving et al.
(1966), based on the measured energy levels as published in the first compilation by
Moore (1949; 1952a; 1958). The summing over s in Eq. (3.19), is a summing over
various doubly excited states, where the ionization will leave the ion in an excited
state.
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The asymptotic part of the partition function, u,s, corresponding to states of
principal quantum number p and higher, is evaluated using Eq. (3.17), summing
from p, and the weights are

/!

7
Inwy, = 33.83 — 2In(>° N 222 + N,) + 4ln =%, (3.20)

ij ’ Nk
as first evaluated by Pannekoek (1938) and later refined by de Jager & Neven (1960)
based on a static Holtsmark (Inglis & Teller 1939) distributed E-field.

The elements are numbered ¢, with : = 1 corresponding to hydrogen, and the ions
are numbered with j, and 7 = 0 corresponds to a neutral atom. The total charge of
the ion is therefore Z;; = j. For ease of notation, I have suppressed the element and
ion indexing of the left-hand side, and they are only included in summations over
elements and ions. Z; and nj; are the effective charge and the principal quantum

number of the kth state, respectively.
Defining p, as the effective principal quantum number for which w; = 1, we get

p=42-10°Z,N}¢, (3.21)

under the assumption that only single-ionizing atoms are present, i.e. taking the
summation in Eq. (3.20) to be equal to Ne.
Expanding the exponential in Eq. (3.17), and inserting the weights (3.20) yields

o] 4 2

_ p D D

Uag = pme /KT N Ton? (1 + —~ + —2n4) , (3.22)
k=p 'k k k

where D = (y — xx)/kT, and assuming that the asymptotic states are hydrogenic:
gr = n} and n; = k. This sum is a Hurwitz or generalized (-function (Spanier &
Oldham 1987), which can be approximated by integrals, yielding

2 2

D D
Qu= 39"+ 3" 4 o 30p =3 K= 1 J( = 1) = D(= 1)+ . (329

where finally
Uas = 2gprCQase_X/kT- (324)

The hydrogen molecule and its ion are treated according to Vardya (1965) and
Mihalas (1967). Dissociation data for the molecules H,O, OH, CH, CO, CN, Cy,
O3, N2, NH and NO are taken from Tsuji (1973).

The gas pressure is just evaluated as the sum of the partial pressures

M, & A

Py =P+ (3.25)

where M, is the atomic mass unit (a.m.u.), and the summing extends over all heavy
species, i.e. atoms, ions and molecules, and P, is the electron pressure. A; is
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the mass (in a.m.u.), and X; is the abundance by mass fraction of the particle in
question.
The internal energy per unit mass is evaluated from

€= %%JFZ%Z%(XM —AXU)JFZ%(Dm — AE,), (3.26)
% L m m
where the first term is the translational energy, the second term is the energy gained
by ionization, summed over element : and ion j, and the last term is the energy
gained by dissociation of molecules, m. D,, is the dissociation energy and AF,, is
the sum of vibrational and rotational energies of the molecule. AF,, is neglected
for all molecules except H, and Hj .

3.2.2 The MHD EOS

In the MHD EOS the destruction of states proceeds in a qualitatively different
manner (Hummer & Mihalas 1988), as it takes into account the fluctuating behaviour
of the perturbing field. The presence of an F-field splits the line into a Stark manifold
of lines. As the field increase, the Stark manifolds of two adjacent principal states
n and n + 1, will eventually overlap and undergo avoided crossings. As the field
decreases again, the electron can make a Landau-Zener transition, and be left in
the n + 1 Stark manifold. As the field changes sign and increase in amplitude, the
electron will be lifted up towards the n 4+ 2 Stark manifold and the process repeats
itself (Pillet et al. 1984).

It does not matter that the electron do not traverse the avoided crossing every
time, as it gets plenty of new chances at subsequent traversals. The radiative life-
time for excited states is of the order 10™® s, whereas the duration of collisions, as
estimated by Hummer & Mihalas, is less than 107'%s, so the atom will experience
many encounters during the lifetime of a particular state. This picture of the field
ionization is substantiated by experimental results (van Linden van den Heuvell &
Gallagher 1985; Pillet et al. 1984).

The states having |m| < 1 are the easiest to ionize, and if these states govern
the overall ionization of a principal state, ny, the weight will be

47 (7 + 1)1/262 ?
| = — (—) ]VZ ’ [0k’ 3 16 | ————
nwy 3V {%; ok (TE + Ti0kr)” + [ K;:/ZXJC

3 Nazgﬂ} . (3.27)

aFe

where the quantal Stark-ionization correction factor Ky is

16( ng )2 ng+7/6

K, = — . 3.28
h ng+1/ ni+ng+1/2 ( )

3

The various m-states are assumed fully mixed by the fluctuations in the direction
of the F-field. This means that there always will be |m| < 1 states to take from.
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It is worth noticing that the MHD EOS accounts explicitly for houndreds of
bound states in each molecule/atom /ion, and does not assume an integrable contin-
uum of hydrogenic states near the ionization energy.

The dissociation of hydrogen molecules is evaluated using the molecular constants
found by Herzberg & Howe (1959) and for the Hf -ion by use of the data from Vardya
(1966). One of the drawbacks of the MHD EOS in connection with this work, is
that only these two molecular species are considered.

In contrast to the original EOS (¢f. Sect. 3.2.1), the MHD EOS is solved by use
of the technique known as free energy minimization (Graboske et al. 1969; Dappen
1980). The Free energy is the sum of four contributions

F(T7 V7 Ns) - Ftrans + Ent + Fe + FCoulllmb7 (329)

the translational free energy assuming that all particles are point particles, the
free energy from internal excited states, the free energy of electrons of arbitrary
degeneracy and the free energy of Coulumb interactions respectively. The EOS is
then solved by minimizing F' with respect to the number densities of particles. For
ionization of hydrogen for example, we get the stochiometric equation

oF  or  Or
aNH @Np aNe

and likewise for other ionizations/dissociations. Combining such stochiometric equa-

=0 (3.30)

tions with number conservation and charge conservation closes the system.

An outstanding feature of the MHD EOS is the analytical derivatives. First they
are used in the Newton-Raphson scheme for solving the EOS, then they are used
for evaluating thermodynamical quantities and finally to evaluate thermodynamic
derivatives. The basic thermodynamic quantities can be found from the equilibrium
free energy, e.g. gas pressure

oF
P (_) | (331)
aV AT
internal energy per unit mass
F/T
e=-T? (%) (3.32)
oT (N
and entropy
oF
aT AR

(Cox & Guili 1968, Sect. 9.12). This method ensures that the EOS is thermody-
namically self-consistent, and satisfies all thermodynamic relations.

The MHD EOS does very well in comparison (Trampedach et al. 1997) with
the other leading astrophysical EOS project, the OPAL EOS (Rogers et al. 1996),
indicating that the remaining uncertainties regarding the EOS are very small indeed,
in particular in the physical regime investigated here.
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3.2.3 Discussion

The occupation fractions, as derived from the above two formulations are presented
in Fig. 3.1. The first thing to notice is that the atoms typically occupy much less
space than is available (indicated with the vertical dotted lines). This result is rather
reassuring, as we want the atoms to have room enough for thermal motions. We
also note the rather unphysical kink in the curves of de Jager & Neven (1960) as
they reach 1, as their theory fails to predict the behaviour of intermediate states.

Fig. 3.1: Comparison of the occupation probabilities, as calculated for a hydrogen
atom using the MHD EOS formulation (solid line) and the Fischel-Sparks formu-
lation (dashed line). The vertical dotted lines shows n corresponding to the state
having a radius equal to the average inter-particle distance. Each of the three curves
are plotted for five (7', logp) pairs from the solar simulation: (4427,-8.03), (6891,-
6.62), (11520,-6.31), (15240,-5.54), (21920,-4.60), from right to left.

But Gustafsson also used the substitute states of Traving et al. (1966) for the first
10 or so states, implying wy = 1 for £ < 10 which is clearly not fulfilled for the three
inner points in the solar simulation. So Gustafsson’s combination of contributions
to the partition function is actually self-contradictory — even for the solar case.
There is also a counting problem, as u’ includes a constant number of states and p,
the lowest state included in u,s, varies with electron density, Eq. (3.21).

Hummer & Mihalas argue that the few percent chance of finding one of de Jager
& Neven’s atoms to be as large as the average inter-particle distance is very unlikely.
Also 1 find the very long tail, extending far beyond this limit, very worrisome. For
comparison, the MHD EOS predicts the chance for encountering an atom this large,
to be less than 1 in 10*%°! Furthermore, Hummer & Mihalas (1988) have recalculated
the work of de Jager & Neven in a more direct way, and they get a n~'? dependency
of the critical field strength, instead of the n=*.

The depression of the continuum, Ay, is not supported by experiments (Wiese
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et al. 1972). The observed Ay is more than an order of magnitude smaller than
predicted from Eq. (3.18). The idea of a continuum depression is based on the
static screened Coulumb potential (SSCP) model of atoms in a plasma, as described
by the Debye & Hiickel (1923) theory, but Hummer & Mihalas (1988) point out
quite a few weak points in employing the Debye & Hiickel theory in this way. So
both theoretical and experimental results suggest abandoning this concept, which is
hereby done.
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Fig. 3.2: The superadiabatic gradient Vg, as calculated from two different expres-
sions and with Gustafssons EOS and the MHD EQOS respectively. This plot is for
simulations of a Cen A, but is representative for the other simulations too.

The original motivation for changing the EOS, was an observed discrepancy
between superadiabatic gradients, as evaluated from two different expressions as
shown in Fig. 3.2. The straightforward difference V — V,q gets negative with depth
when using Gustafssons EOS, indicating an inconsistency in this EOS. A negative
V¢ would normally mean stability against convection, in marked contradiction with
what is observed in the simulations. The Vy as evaluated from the entropy gradient,
on the other hand, looks more reasonable.

The reason for this thermodynamical inconsistency is the evaluation of pressures
and internal energies by Eqs. (3.25) and (3.26). These expressions do not have any
contributions from the processes that truncate the partition functions. In the MHD
EOS these are automatically and consistently included, as P, and ¢ are evaluated
from the free energy which contains these contributions. The superadiabatic gradi-
ents calculated with the MHD EOS are both positive in the convection zone, and are
very close to each other. The remaining discrepancy is probably due to both the nu-
merical evaluation of derivative and integrals, and the effect of averaging non-linear
fluctuations at different stages (¢f. Sect. 6 for more details).

The evolution from Gustafssons EOS to the MHD EQOS is of course closely linked

to the evolution of computer power during the past 20 years, as many approximations
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of the former was necessary to obtain reasonable calculation times. Gustafsson’s
EOS was also developed for in situ calculations in the marcs stellar atmosphere code
(Gustafsson et al. 1975), and furthermore requires a realistic elemental mixture and
many molecules, to be suitable as a base for opacity calculations. All this of course
put high demands on the calculation speeds. The MHD EOS, on the other hand,
was developed for making tables of an high precision EOS and execution time has
therefore not been a high priority-issue.

3.3 The Opacity

The interaction between matter and radiation, can proceed in one of two profoundly
different ways: absorption or scattering. Absorption is a process which includes en-
ergy exchange between photons and particles, thereby permitting the emitted photon
to have an energy different from the incoming photon. The energy of the emitted
photon therefore depends on the reshuffling by the other particles. Because of this
coupling between matter and radiation, absorption processes acts to thermalize the
plasma — i.e. restore local thermodynamical equilibrium LTE, and keep the kinetic
temperatures of all the particles equal, and equal to the radiation temperature. The
reshuffling is also the statistical process that ensures a Boltzmann distribution of
particles and Planck distribution of radiation. There are two types of real absorption
processes:

The bound-free process is the ionization or dissociation process, where a com-
pound particle (e.g. a hydrogen atom being a bound state of a proton and an
electron, or a bound state of two hydrogen atoms, forming a hydrogen molecule)
absorbs a photon and its energy goes into breaking up the particle, and supplying
the debris with kinetic energy. The free-free process is a three particle interaction,
where a photon exchanging energy with an ion, interacts with an electron in order
to conserve momentum. The ff-process can also be understood as photo ionization
of an electron in a free, continuum state in the potential of an atom.

The fact that absorption processes involve at least one continuum of states per
interaction, is also the reason that absorption processes are thermalizing.

Scattering is a process without energy exchange. A photon excites an electron to
an oscillatory state, and is reemitted with exactly the same energy, but in a random
1, If at some wavelength, there is a higher probability for the photon to
be scattered than absorbed, the photon can suffer many encounters without being
destroyed (thermalized) and it can consequently travel to areas significantly different
from where it was created. The scattering process therefore works to decouple the

direction

radiation field from the matter. The radiation field no longer follows a Planck
distribution, and this will also affect the distribution functions for particles and

1Unless situated in a strong magnetic field, in which case the atoms (and therefore also the
emission) can get more or less aligned. This might be of some importance for radiative transport
in the flux tubes of the solar chromosphere.
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alter the ionization or dissociation equilibria. All these effects are known as non-
LTE effects.

Non-LTE effects becomes important in the chromosphere and they are respon-
sible for the temperature minimum at 3500 K. This region is in fact covered by the
simulations, but we neglect non-LTE effects anyway, in order to render the problem
tractable. This is probably the main reason that my simulations do not display any
temperature minima. All of the atomic physics in this chapter is done under the
assumption of LTE. We have though, allowed for a non thermal contribution to the
source function in the radiative transfer. This will be described in more detail in
chapter 4.

3.3.1 The bf- and ff-opacity

I use the program by Bengt Gustafsson (1973) to calculate the monochromatic
and Rosseland mean opacities. This program is based on a large input file with
tabulated absorption coefficients for most of the considered sources and the rest are
treated with analytical expressions in the program. As all this was made more than
20 years ago, quite some work has been done on opacities since then and I have
therefore updated most of the data tables and added some more metallic sources.
The program is very flexible, so it is not a problem to change and expand the data
tables, nor is it difficult to add new analytical expressions. All of my changes are
included and commented in the list below.

For helium and most of the metallic absorption I use analytical expressions in
the form of polynomials in wavelength plus wavelength thresholds for each of the
levels considered. For these opacity sources, the listing below only states the number
of levels, the excitation- to ionization-potential ratio of the highest level, and the
wavelength of its absorption edge. Temperature dependency only enters in the
population of the levels, which is evaluated using the classical Boltzmann formula
(3.16). As mentioned in Sect. 3.2, the partition function (3.12) contained in the
Boltzmann equation, involves a divergent sum over states. As I include only a
very limited number of levels, I just take the sum over these levels. The correct
thing to do is of course to include the calculation of the level population in the
EOS calculation and evaluate the partition function in a physically meaningful and
consistent manner. A consistency between EOS and opacity calculations is clearly
desirable, but it is not within the scope of this thesis, so I will stick to using (3.16)
and (3.12) using the numbers of levels stated in the list below.

Most of the updates are based on the compilation by Mathisen (1984), hereafter
referred to as Matl.

H~ Bound-free absorption by the negative hydrogen ion H™, is updated to the
data of Wishart (1979) which are better wavelength sampled, have overall
slightly higher values, and are shifted a little to the blue, as compared to
the previous data (Doughty et al. 1966). For wavelengths shorter than
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1750A T use the Mat1 compilation of data from Broad & Reinhardt (1976),
including the resonance at 1130.5A.

The free-free absorption by Doughty & Fraser (1966) is replaced by the
results of Bell & Berrington (1987) (see Fig. A.1).

Absorption by neutral hydrogen is left unchanged (Gustafsson 1973, Eq.
(10)) and uses the bf- and ff-gaunt factors calculated by Karzas & Lat-
ter (1961). 15 levels are treated explicitly and the rest are treated as a
continuum of levels (Unsold 1955).

10 levels, Xmax/! = 0.94 and Ajax = 8260A, from Matl p. 20-22.

3 levels, Xmax/I = 0.24 and Ay = 1445;\, from Matl p. 23-24. The
analytical expressions are supplied with tables for A > A, (Peach 1967).

3 levels, Xmax/! = 0.42 and Ajax = 113110%, from Matl p. 25-26.

Bound-free absorption by oxygen is based on the tables by Hofsaess (1979).
From the three pages of tables I just extracted the absorption edges and a
few additional guiding points.

2 levels, Xmax/I = 0.41 and Ajax = 4084A, from Matl p. 28.
8 levels, Xmax/! = 0.78 and Ayax = 7292A, from Matl p. 29-30.

The ground level bf-absorption is taken from the theoretical work of Men-

doza & Zeippen (1987). The analytical expressions are supplied with tables
for A > Apax (Peach 1967).

13 levels, Xmax/I = 0.86 and Ayax = 5694A, from Matl p. 31.
8 levels, Xmax/! = 0.83 and Ajax = 12496A, from Matl p. 32-33.

9 levels, Xmax/! = 0.74 and Ajax = 5839A, from Matl p. 33-34.
The analytical expressions are supplied with tables for A > Apax (Peach
1967).

3 levels, Xmax/I = 0.42 and Ajax = SSOOA, from Matl p. 38-39.
12 levels, Xmax/! = 0.82 and Ay = 5686A, from Matl p. 39-40.

26 levels, Xmax/I = 0.60 and Ay = 40()4;%, from Matl p. 40-41 and
Sawey & Berrington (1992) blue-wards of 1150A.

The bf-absorption by the quasi-hydrogen molecule is left unchanged (Doyle
1968) (see Fig. A.4). This absorption corresponds to the process

H 4+ H — H,(°SF) 4+ he — Hy(°S),

where the ungerade state is a repulsive unbound state, and the end product
is a hydrogen molecule in the lowest, bound gerade triplet state. The *
means that the molecule is excited with respect to the singlet 12; ground
state.
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HF The bf-absorption by the HF molecular ion from the photo-dissociation
reaction

Hf + hv — HT + H,

is changed from Mihalas’ interpolation (Mihalas 1965) of Bates’ semi-
classical results (Bates 1952) (extended by Bogges 111 (1959) and Buck-
ingham et al. (1952)) to the quantum mechanical treatment by Stancil
(1994). The absorption by the corresponding ff-process

H* +H+ hv — H + H,

is also taken from Stancil (1994) but this is treated in the semi-classical
picture as in (Bates 1952). Stancil’s tables generally cover our range of
interest better than Bates’ (see Fig. A.3).

H; The photo-ionization ff-absorption by the H; molecular ion
Hy+e +hv — Hy+ e,

was treated using the data of John (1978), but has been changed to those
of Bell (1980) which display a larger absorption, particular for low tem-
peratures, and has a somewhat different wavelength dependency (see Fig.
A.2). The corresponding bf-absorption from Hj is neglible.

OH/CH The photo-dissociation bf-absorption by OH and CH molecules (Kurucz
et al. 1987) is included (see Fig. A.5).

H,0 The bf-absorption by water vapour where taken from Mat1l’s combination
of several data sets (see Fig. A.5).

The absorption by Hy molecules have not been included even though it is the most
abundant molecule, as Hy only absorbs at very short wavelengths. The threshold
for photo ionization occurs at 804 A (Ford et al. 1975), which is below the 860 A 1
use for the lower wavelength limit. The absorption due to photo dissociation only
occurs in a very small wavelength region and the ground vibrational state, v = 0 falls
below the 860 A. Only v > 1 states have thresholds above this and only v > 3 states
have thresholds above the Lyman limit. Even the v = 10 state has its threshold at
a short 1147 A. The absorption coefficient for each state is about 1-8-107'® cm? per
molecule, but has a three orders of magnitude dip around 980 A (Allison & Dalgarno
1969).

3.3.2 Scattering by Electrons
The scattering of photons by free electrons is (unchanged)

& e? \?
ar = ? ( 2) 5 (334)

meC
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the Thomson scattering. This is a purely classical expression, and one could of course
include the relativistic and quantum-mechanical corrections, but it can hardly be of
any importance what so ever.

The scattering by bound electrons — the Rayleigh scattering, is changed to

= ersos (12 [ ()5 (B)]) s

where z is the number of electrons in the scattering system. At small wavelengths
the energy of the incident light is much larger than that of the electrons, and the
electrons respond as if they were free. The max-operator in (3.35) makes sure
that the short-wavelength behaviour is right, though it cuts out all the resonances.
The red-ward wings of the resonances are taken care of by the terms in the square

Table 3.2: Parameters for Rayleigh-scattering.

name A B C D z
He 379 678 674 735 2
Hy 756 1380 35 1422 2

brackets of (3.35) and the remaining part of the resonances are just ignored with
this formula.

Equation (3.35) is used for Rayleigh scattering by Hy and He, whereas atomic
hydrogen, the strongest and most abundant scatterer, is treated in somewhat more
detail, as described in App. B. The parameters for He and Hy are listed in Tab.
3.2 and are derived from Matl. For He the parameters are fit to calculations by
Langhoff et al. (1974) and for Hs a fit to experiments (Victor & Dalgarno 1969).
Both fits work over the entire range of wavelengths given in the references — rather
better than the fits stated in Matl (Fig. B.2).

3.3.3 Line opacity

For a long time the line opacities have been neglected or at most treated very rudi-
mentary in calculations of Rosseland mean opacities, assuming that the lines are so
thin that they only contribute neglible to this harmonic mean. The lines do never-
theless contribute significantly, due to a variety of effects not appreciated in earlier
opacity work. The term splitting due to internal Stark and Zeeman effects in the
atoms/ions, and pressure (Stark) broadening by fields from passing ions/electrons,
are very efficient in increasing the accumulated width of the lines (Iglesias et al.
1992; Rogers & Iglesias 1994). In this way, the lines can actually fill out wavelength
regions, especially if the continuum opacity is low. As the lowest opacity is decisive
for a Rosseland mean, this can be rather important.
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This of course only pertains to modelling of stellar interiors, where radiation
transport can be evaluated in the diffusion approximation fully described by a Rosse-
land average. For atmosphere calculations, on the other hand, the effect of lines has
been taken account of for the last 30 years or so by various approximate methods.
The presence of millions of lines, especially in the UV, will block the flux in these
wavelength regions. This is referred to as line blocking or line blanketing, and forces
the flux to redistribute to less blocked wavelengths (See Sect. 4.1 for a more detailed
description). The temperature structure in a stellar atmosphere can be severely
affected by line absorption.

Opacity distribution functions.

The sheer number of lines needed to reproduce the radiative transfer in stellar at-
mospheres adequately, forces a statistical approach to the treatment of lines. There
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Fig. 3.3: This figure shows the idea behind the ODF method. First the distribution
of opacities in the selected wavelength interval, is translated into a distribution
function, f, and then f is inverted and mapped on the wavelength interval and
sampled at the triangulation points, to obtain the giant line.

are now two methods in widespread use; The opacity distribution function (ODF)
adopted here, and the opacity sampling (OS).

The ODF method is based on the full monochromatic opacity. The wavelengths
are divided into a number of intervals, and for each interval, is then calculated
the distribution of line opacities, f(Kine). The method is illustrated for a single
such wavelength interval in Fig. 3.3. The distribution function (being monotonic)
is then inverted, and a number of f-points is chosen for sampling Kjine(f), the so-
called triangulation points. By ascribing wavelengths to the triangulation points,
the ODF's can now simply be added to the rest of the opacity and treated accordingly
in the radiative transfer. ODFs are also, quite naturally, referred to as giant lines.

The usage of ODFs rests on the assumption that the source function is constant
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over each wavelength interval. This assumption is easily satisfied by choosing suf-
ficiently small wavelength intervals. The distinction between continuous- and line-
opacity also introduces the assumption of constant continuous-opacity over each of
the wavelength intervals. An bf-absorption edge in the middle of a giant line, of
course breaks this assumption, which is one of the reasons for me to suggest the
calculation of total ODFs including all kinds of absorption (See p. 41) and then just
calculate the scattering separately.

There is also a more serious limitation on the validity of the ODF approach. The
wavelength dependency of the ODFs are always roughly the same, independently
of depth in the model. High opacity and low opacity will always be at the same
wavelengths, which is not always the case in the real world. A wavelength of a
molecular line will have large absorption in the outer parts of the model, whereas
wavelengths corresponding to atomic and ionic lines will have high absorption at
increasing depth. Radiation at the former wavelength will be severely impeded
at great heights, contributing to the heating here, whereas radiation at the latter
wavelengths will escape freely from lower in the atmosphere. If within a given giant
line, there is a mixture of atomic and molecular lines, the ODF method will therefore
overestimates the line-blocking, and can lead to a wrong temperature stratification.

The OS method is the Monte-Carlo approach to the problem (Petreymann 1974;
Sneden et al. 1976). The opacity is evaluated at a number of random, but fixed
wavelength points. In this way, the problem of the position of the high opacity
regions is circumvented. The variation of the opacity with depth in the model, will
be the true and physical variation, contrary to the ODF approach.

Another nice feature of the OS method, is the linearity with opacity sources.
The OS can be tabulated for each element and then added together for any desired
compositions, and new opacity sources can be added without recalculating every-
thing. The most precise and computationally cost efficient method would be to use
pre-tabulated total OS, including all opacity sources, and then calculate the scatter-
ing separately. A change to the OS method in this way is desirable, but not within
the scope of this work.

In Fig. 15 and 16 of their article, Gustafsson et al. (1975) compares their ODF
atmospheres with the OS atmospheres of Petreymann (1974).

Gustafssons ODF's

The original ODFs Gustafsson (1973), consist of 42* giant lines in the wavelength
region 3000-7 200A, each 100A wide and with four quadrature points. These ODF-
data are given for 9 temperatures between 3000 and 9000K and 15 electron pres-
sures: P, = 1072-10*dyn cm~2. The ODF-data are interpolated linearly in equidis-
tant logarithmic temperatures and electron pressures, and are given as logarithmic
relative opacity, normalized to the 5200A continuum opacity.

ZSee (Adams 1989a, chapter 27) for a discussion of the significance of this particular number.



38 CHAPTER 3. THE ATOMIC PHYSICS FOUNDATION

The giant lines are turned back-to-back in order to prevent an artificial bluening
of the model. By this procedure the pairs of giant lines in fact resembles some very
large lines, instead of the normal sawtooth function. Due to the lack of line-data for
wavelengths shorter than 3000A and as there is still an appreciable amount of flux
coming from this UV region, the two bluest giant lines, have somewhat arbitrarily
been copied to the 2076-3000A region.

The ODF-data are based on some 50000 atomic lines and a somewhat larger
number of molecular lines from MgH, CH, OH, NH and CN molecules. To obtain
better agreement with observed spectra of the Sun and Arcturus, it was found
necessary to add some lines in the UV.

For A >7200A only line absorption from CN and CO molecules are considered
(including isotopic shifts due to the presence of both C'? and C'3). These line
data are summed up into 23 giant lines for CN and CO separately and are given
as logarithmic relative line opacity per molecule. In this way the ODF-data need
only be a function of temperature and the number densities of the molecules can
be supplied at run-time. The two sets of giant lines are combined by turning the
giant lines of CN one way and those of CO the other way, assuming a minimum of
correlation between the actual CN and CO lines. The line blanketing is of course
overestimated in this way, but the CN lines are fairly weak anyway, so it cannot be
that far off. These ODFs cover the wavelength range from 7200 to 125000A and
are given for 6 temperatures from 2 000K to 7 000K.

Kurucz’ ODF's

My update of opacities include a change of ODFs, to the ones of Kurucz (1992¢) (¢f.
Fig. 3.4). They are available in two resolutions, and I have chosen the coarse set
with 328 giant lines, of which I only use the 230 between 860 and 200 000A. Each
line has 12 triangulation points so the lines are much better resolved than with
Gustafssons ODFs. The ODFs are given on a grid of 56 temperatures and 21 gas
pressures with linear interpolation between logarithmic quantities. Kurucz’ ODFs
give absolute line opacities, as opposed to Gustafssons which are given relative to
the continuum. I use the ODFs with microturbulent velocities of 2kms™!.
Changes in abundances can only be done in one dimension, by changing the
metal to hydrogen ratio [Fe/H], as Kurucz assumes the solar helium to hydrogen
ratio [He/H] to be fixed (and known?). Fortunately I have found an ODF-file for
solar metallicity, but without any helium, making it possible to interpolate in two
dimensions: X, Z.Y =1 — X — 7, as described in Sect. 3.3.4. This does not give
many points to interpolate between in Y, but He has a few features that makes
this interpolation less unsafe. First of all, the opacity contribution from He is in-
significant in the stellar atmospheres considered here, as can be seen from Fig. A.7.
Second, He is a very poor electron donator due to the high ionization potential,
and the influence on the H™—ion balance is therefore very small. Helium is a very
inactive element, and its main effect is to displace some hydrogen and metals.
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Fig. 3.4: The monochromatic opacity at a point in the solar simulation. The thin
solid line is the continuum, and the thick solid line shows Gustafssons ODF's, whereas
the grey line depicts Kurucz’ ODFs. There is clearly much more line blocking with
Kurucz” ODFs.

Kurucz” ODFs are the result of including 58 000 000 lines from atomic and molec-
ular transitions (Kurucz 1992a). The latter from both electronic, rotational and
vibrational transitions of a wealth of diatomic molecules. No triatomic molecules
are included, but that should not matter, as [ am only dealing with F and G stars.
For K and M stars (Alexander et al. 1997) also tri- and polyatomic molecules as
well as dust formation, starts to play a significant role for the opacity (Alexander &
Ferguson 1994).

The atomic lines include 66 800 lines from atoms lighter than Ca, 38500 lines
of atoms heavier than Ni and 42000000 lines from the first nine ions of the iron
group elements, Ca through Ni. Many of the iron group lines are predicted lines and
Kurucz has in this way been able to extrapolate to the hundreds of thousands of
weak lines, predominantly from transitions between highly excited states, supposed
to add up to an efficient source of line-blocking in the UV. This, however, turns out
not to be the case. These weak lines have a neglible influence on the flux distribution
according to Bell et al. (1994), and the missing UV opacity is more likely to come
from bf-processes — a suggestion also advocated by Lester (1996). Most of Kurucz
g f-values are theoretical because of the quite limited experimental data available,
but some of these extrapolated lines, especially in the UV, have oscillator strengths
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that are too large to explain any lines in the solar spectrum (Bell et al. 1994). On
a coarse wavelength scale though (as used for his ODFs) the emergent flux from his
atlas9 atmosphere models, do very well in comparison with observations (Kurucz
1992b; Castelli & Kurucz 1994). In view of the above discussion, this agreement
is probably due to the right combination of underestimated continuum opacity and
overestimated line opacity.

One can argue that this is just another fudging of physical opacities to obtain
astrophysical opacities. The previous version of tabcmp, using Gustafssons ODFs,
in fact used an ad hoc enhancement of the UV opacity (Magain 1983; and below)
to agree with the observed solar flux, as well as with UBV colours of other stars of
luminosity class V, with temperatures in the range 5250 K< T.g <7000 K.

I better like using the slightly doubtful ODFs of Kurucz, than the combination
of Magain’s opacity enhancement and Gustafssons ODFs, as the latter are rather
arbitrary and unconstrained by observations for wavelengths shorter than 3000 A.
Also Kurucz’ exaggerated lines are at least due to a broad range of physical ions, and
just add normally to the rest of the opacity, independently of what this rest looks
like. Finally my personal taste also plays a role here, as | find that using Kurucz’
ODFs is more in the ab initio spirit of this thesis, as is the usage of Magain’s opacity
enhancement.

Magain’s UV-opacity enhancement

The idea of Magain’s prescription (Magain 1983) is to model the missing UV-opacity,
as stemming from an excited state (~ 3 eV) of neutral iron. The emerging flux differ-
ence between a solar model using Gustafssons ODFs, and observations, is translated
into an opacity difference, to infer the wavelength dependency, k(X). This k(}), is
then multiplied with the number of iron atoms in the fictious, 3eV, average-excited
state. It is worth mentioning, that k()) is rather continuous, but can just as well
be a veil of weak metal lines, as it can be bf-absorption from various metals. It is
though, not coming from a number of strong lines.

The k() actually used in the previous tabemp, is just linear in A (below A=>5000 A),
and in fact misses a lot of opacity in the 3300-4 000 A region, compared to Magain’s
original version. Below 3300 A, E(X) is undefined due to lack of observations at that
time, so k() was just extrapolated to shorter wavelengths. As Gustafssons lines in
this region was also just an extrapolation (See above), the combination of Gustafs-
sons ODFs and Magain’s opacity enhancement is rather dubious in the extreme UV
(EUV).

One of the assumptions behind the temperature dependency, is that the contin-
uous opacity is predominantly due to the H™-ion. For wavelengths short ward of
about 4000 A, this is not the case for any temperatures in the Sun (¢f. Fig. 3.6-3.8).
Whether this is important or not, is not easily judged, and agreement with obser-
vations is of course more important than agreement with this simple assumption.
Magain compares his results with observations in various colour-colour diagrams of
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UBV colours, but as the U band only goes down to 3000 A, discrepancies in the
EUV will not show up on such diagrams. Only a colour-magnitude diagram will
show the difference, as an erroneous flux in the EUV will be compensated equally

in both U, B and V.

bf versus bb

A lot of the lines included in Kurucz’ ODFs are actually resonances from bf-transitions,
apparently autoionizing lines, but this is not described very well by Kurucz and
does deserve a few comments. Looking at various bf-absorption coefficients from
the Opacity Project, one soon realizes that the notion that continuous- and line
opacity, distinguishes between bb- and bf-absorption is rather malplaced, and it is
important to distinguish between bf- and continuous absorption. The bf-absorption
namely turns out to have numerous resonances of all thinkable shapes and sizes (See
Fig. 3.5). The widths of these resonances span from normal line widths to hundreds
of Angstrgms, and their heights can easily be orders of magnitude higher (or lower)
than a somehow smoothed background absorption, making it very hard to come
up with a reasonable choice for a continuum opacity. This is of course mostly the
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Fig. 3.5: An example of bf-absorption, as calculated by the OP team. These data
have been retrieved from the electronic OP data-archive (Cunto & Mendoza 1993).
The plot shows the bf-absorption for the first 8 levels of Mgl, having excitation
energies below 6eV (Butler et al. 1993).
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case for ionization from lower states in many-electron atoms and ions, and these
resonances are therefore most common in the UV. This situation makes it very easy
to mix up bf- and bb-opacity in the UV, and though broad band fluxes might turn
out right, a detailed spectrum will certainly look wrong with a wrong weighting
between continuum and lines (Lester 1996). To solve the problem consistently, I
would like to suggest the calculation of total ODFs (or OS-data), including both
bb- and bf-absorption, on an equal footing and with the same wavelength resolution
and including Doppler broadening by micro turbulence. If then a continuous opacity
is needed, it can be found (observed) as the low opacity triangulation point of each
giant line.

The complexity and remaining uncertainty regarding line-data, can be illustrated
by a recently published multiplet table for Fel (Nave et al. 1994). In this article,
28 new energy levels are added to previous work, making a total of 846 levels. The
extensive and widely used tables of Moore (1952b; 1959) contains identification of
about 5500 lines. With the work of Nave et al. this has increased to 9501 lines cov-
ering the 1700 A to 5um region, with the biggest increase occuring in the ultraviolet
(~ 1200 new lines) and the infrared (~ 3000 new lines). Only a few of the lines in
these regions (below 3000A and beyond Lum) have measured oscillator strengths.
Brown et al. (1988) investigated the 15503 215A region and found 800 lines below
1700 A and many of the lines above were not in common with Nave et al.’s findings
due to different types of experiments and therefore different populations of highly
excited levels.

In view of this, the iron line opacity is still a very unsettled matter, and a lot of
work remains on both line identification and measurements of oscillator strengths.
Many fairly strong lines observed in both solar spectra and in the laboratory are
still unidentified.

3.3.4 The total opacity
Adding it all together

The continuous opacity is evaluated once for each giant line, and is interpolated
linearly in wavelength and absolute opacity within a giant line. Each giant line then
samples this linearly interpolated continuous opacity at the 4, 8 or 12 quadrature
points. Some of my new sources of continuous opacity, have some very sharp reso-
nances and wavelength resolution then becomes a significant issue. For that reason
the resonant features in the H™ and Mgl bf-absorption has been truncated or left
out (¢f. Fig. A.1 and A.6).

The ODFs used together with Gustafssons opacities, are calculated for exactly
the same abundances as they have been used for, as my first simulations was with
the abundances suggested by Gustafsson (¢f. Tab. 3.1). Kurucz’s ODFs on the
other hand, have slightly different abundances so I therefore had to decide on an
interpolation scheme. I use a log-log interpolation assuming that a power-law is a
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good approximation locally. As a measure of abundances I do not use the normal
weight-fractions or number fractions, but the hybrid: numbers per mass, as that is
what determines an opacity per mass. The interpolation is performed between three
tables; Kurucz’s [Fe/H] = 0.0, [Fe/H] = —0.1 and [Fe/H] = 0.0 without He. For
Gustafssons mixture this results in the linear combination (65%, 37%, -2%) of the
three tables respectively, and for the mixture I have chosen as solar: (38%, 49%),

13%).

Results

The result of summing all the opacity sources is presented in the figures 3.6-3.8,
for various parameters 7" and o corresponding to three points in a typical averaged
snapshot of the solar simulation. In the two first figures, corresponding to the tem-
perature minimum and the photosphere respectively, we see a very characteristic
round bump, centered just below LogA = 4.0. This feature is the bound-free ab-
sorption from the H™-ion (cf. Fig. A.1), and it is a dominant source to the Rosseland
mean opacity in the atmospheres of all F, G and K stars. To the red of this we see
the combination of free-free absorption by the H™-ion, and as temperature rises,
also the bound-free absorption from the higher levels of neutral hydrogen as well
as some free-free absorption by hydrogen. To the blue of the H™-bump, we see a
lot of bf absorption edges from various metals. In Fig. 3.6, going from blue to red,
we have first the large Balmer jump, arising from ionization from the ground state
of hydrogen. Then comes the ground state carbon absorption edge. On the next
plateau we see a small peak, which is the first resonance in the Rayleigh scattering
by hydrogen (cf. Fig. B.2). The next two absorption edges comes from the ground
state and first excited state of silicium and also the ground states of iron and mag-
nesium contributes here, as well as the two peaks from the calcium ground state.
The large edge at the end of this rugged plateau is supplied by the ground state of
aluminium and after that we have an even larger edge from the first excited state of
magnesium. Also the next edge is from magnesium; the second excited state with
its resonance (truncated, see Fig. A.6) showing up, as the small bump in the middle.

In Fig. 3.6 it is also evident how the huge amount (tens of millions) of thin
metallic lines seriously can alter the opacity. Between 1500 and 4 000A the lines
define a effective continuum that is up to an order of magnitude larger than the
real continuum. The two prominent line features in the infrared, are the absorption
bands of CO molecules, where the reddest band with bandhead at 41832A is the
fundamental mode, the first overtone has its bandhead at 22 760A and the second
overtone at 15331A, well hidden in the H~ bf-absorption. The band of lines arises
from the closely spaced rotational levels, and the different bands and the tones
mentioned above, refer to different vibrational levels.

In Fig. 3.7 we have moved inward to a point in the solar photosphere and
we clearly see the effect of increasing the temperature; the ff-absorption and bf-
absorption from highly excited states have increased considerably and the molecular
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Fig. 3.6: The calculated opacity for 7' = 3474K and p = 3.16 x 107?gcm™2. The
thick solid line is the continuum opacity, as commented on above, the thin solid line
is the full opacity including the line opacity from the ODFs. The dashed line is the
Rosseland weighting function and the dotted line is the Rosseland mean value. 1
have also marked the 5000 A continuum opacity with a thick cross (at LogA ~ 3.7).

bands from CO have disappeared. Apart from what can be seen in Fig. 3.6, we also
see the first two excited states of carbon, on either side of the Rayleigh scattering
resonance, emerging from the receding aluminium ground state absorption. We also
see the Balmer limit at 3647A although it almost coincides with the Mgl second
excited state absorption edge at 3757A.

Fig. 3.8 is, in many respects, very different from the two preceding ones. First of
all, we notice the total lack of H™ bf-absorption and the dominance of bf-absorption
by highly excited states of hydrogen. The little hump, just to the red of the Lyman
limit, is ground state carbon absorption, but apart from that, no metals can be seen.
A very obvious reason for this, is of course that I have only included two ions in my
continuous opacity calculations, the Mgll and the Call ions. At temperatures above
10 000K all elements except He and Ne, are at least partly ionized. It is therefore a
bad approximation to neglect these ions. The reason I do it anyway, is that at these
temperatures we are deep down in the convection zones of the stars | investigate in
this work, hence the opacity do not have any effect on the models.

Another peculiar thing is the behaviour of the lines. There are almost no lines
left, and those left, are almost exclusively hydrogen lines. The very large line widths
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Fig. 3.7: The same as in Fig. 3.7, but this time for T = 5820K and o = 2.07 x 1077,

corresponding to a point in the photosphere.

are due to pressure broadening or collisional broadening, which is much more efficient
in broadening the line wings than the core. As we, going through these three figures,
have increased the temperature with one order of magnitude, and the density with
more than 4 orders of magnitude, the dominant line-broadening agent has shifted
from Doppler-broadening to pressure broadening. As Doppler broadening consists
of folding the line with a Gaussian, the linewings are not enhanced by this process,
whereas pressure broadening contributes directly to the width of the Lorentzian (the
combination of the two being the well-known Voigt-profile).

The orientation of the ODFs, gives these broadened lines a strange look, but
reversing the ODF-lines to the red of a line centre, results in some smooth linewings.
A thing worth noticing in this figure, is the merging of lines near an absorption edge.
This is most clearly seen for the Lyman lines, whose wings form a smooth continuous
transition to the otherwise sharp absorption edge.

Fig. 3.9 summarizes the effect of all the above changes I have made to the opac-
ities. As the need for an update of the opacities was noticed, in a comparison with
Kurucz’ opacities (Kurucz 1992b), I'll stick to this and also compare my updates
with Kurucz. The figure presents ratios between Kurucz Rosseland mean opacities
and different levels of updates on the opacities I use, along a o/T-track typical for
horizontally averaged simulation of the Sun.

In order to separate the different effects, I have first calculated a version with
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Fig. 3.8: The same as in Fig. 3.7, but this time for 7' = 20 310K and p = 1.65x 1077,

close to the deepest point in my simulation of the Sun.

the full update, that is, the current version of the opacities. This is represented by
the upper solid curve that wiggles nicely around 1, for LogT < 4.1. Then I have
calculated opacities with each of the updates changed back to the old version —
always one at a time, to single out the effects.

The discrepancy above LogT < 4.1, is due to the lack of ions in my continuous
opacity calculations. The strongest absorber missing in my calculations, is the C*-
ion which just starts to dominate over atomic carbon at 10 000K.

The lowermost solid curve shows the effect of totally ignoring line opacity, so it
is actually not illustrating an update. I included it to show the large impact that
line absorption has on a Rosseland mean. For this o/T-track, we find the smallest
impact at LogT' ~ 3.6 where the opacity is “only” raised by a factor of 1.25, and we
can see that the lines adds up to 50% to the Rosseland mean.

3.4 The table program

The convection code i1s completely decoupled from the EOS and opacity issues, in
that it calls a autonomous program (tabcmp) for making tables of the EOS and
opacity, suitable for the convection code. This table just spans the o/T-area cov-
ered by a snapshot of the simulation plus margins in both parameters. Such a table
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The effect of opacity changes
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Fig. 3.9: This figure shows the effect of the various changes I have made to the
opacity. The ratio between my opacity and Kurucz’ are plotted against logarithmic
temperature through a typical mean model of the Sun. The lower solid curve shows
this ratio if only the continuous opacity is included (to show the large impact of
line opacity). The solid curve in the middle is calculated with the old ODFs and
therefore also the old wavelength interval. The upper solid line is for my opacity
calculations including all the changes mentioned above. I also plot ratios using the
old hydrogen (H, H-, (H+H), H; and HJ) opacity (dot-dash), old heavy element
opacity (short dashed), and without CH-, OH-, and HyO-molecules (dotted). The
latter can only be seen around the peak at LogT ~ 3.72, where it merges with
the dashed “old heavy element opacity”-curve to give a dot-dashed line. Running
short of linestyles, I have used long-dashed lines for two types of changes; Below
LogT ~ 3.6, the long-dashed line is the result of using the old version of Rayleigh
scattering and at higher temperatures, the long-dashed line comes from using the
old (shorter) wavelength interval.

is of course far from rectangular but it is very efficient for obtaining the highest res-
olution at the least memory expenditure. When the simulation occasionally makes
excursions outside the table boundaries, the convection code automatically makes
tabcmp expand the table.

tabcmp is developed specially for the convection code and is just an interface
between the convection code and the EOS and opacity routines. The latter have till
now, been supplied by Gustafsson (1973), but I have for several reasons decided to
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update both the EOS and the opacities, as described below.

The tables are first calculated as functions of 7" and p, but as T' is not contained
explicitly in any of the Navier Stokes equations, (2.4)-(2.6), whereas internal energy
per mass, ¢ is, the tables are inverted into tables containing variables as functions
of ¢ and p. The final tables contain the quantities, P, Inkp, T" and the four binned
pseudo Planck functions (¢f. Sect. 4.2, Eq. (4.23)), as well as their derivatives with
respect to ¢ and p. The differentiation with respect to ¢ is evaluated with cubic
splines (Sect. 2.4.1), whereas the p derivatives are just linear derivatives, assuming
that the o dependency of any of the tabulated quantities is much more moderate
than the ¢ dependency. This means that I do not exploit the analytical derivatives
of the MHD EOS. This is rather unfortunate and a change to interpolation routines
which makes use of both the absolute quantities and their derivatives in a consistent
way, is desirable — not only for this work.

3.5 Thermodynamics

After having calculated a table as described in Sect. 3.4, the various thermodynamic
quantities can be evaluated via the derivatives contained in the table (See e.g. Cox

& Guili (1968), Kippenhahn & Weigert (1990) or Christensen-Dalsgaard (1991)).

I use two of the adiabatic exponents:
InP, InP, P InP,
r= (Anfe) _ (Onfy) | Fy (OInfy) (3.36)
dlng ] 4 dlng )~ o de ,

which goes into calculating the adiabatic soundspeed

P
=T -E, (3.37)
0

and

P, [ 0lnP,
I, =& (ﬁ) +1, (3.38)
0 Oe ,
used in the calculation of the adiabatic temperature gradient
@lnT Fg —1
Vad = = ) 3.39
d (alnpg) . I (3:39)

Whether the turbulent pressure should be included in some way in V,q is unsettled,
and I will therefore just use this purely thermodynamic definition. The specific heat
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The enthalpy, H, is
H=c¢+PF,/o.

The specific heat at constant volume is
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Chapter 4

The radiative transfer

The main reason for the complications arising near the surface of stars is the interac-
tion between radiation and matter (Nordlund 1985; Nordlund & Dravins 1990). The
largest inhomogeneities occur in the same layers where we have the transition from
convective to radiative energy transport and, furthermore, it is the region where
matter gets optically thin resulting in the breakdown of the diffusion approximation
in the radiation transfer. This latter obstacle really complicates the calculations a
great deal and evaluation of the radiative transfer takes up 25-50% of the computing
time.

The radiative heating of the gas may be expressed as the difference between
absorption and emission as in (2.7), or may be rewritten as

Qrad = 47TQ/A ra(Jy — S))dA, (4.1)

where the mean radiation intensity, .Jy, is

1
h= [ B(@)a0 42
r = o ) D), (4.2)
and [, is related to the source function by

AR S 4.
dT/\ A S)\v ( 3)

where the monochromatic optical depth, along a ray inclined at an angle 6 to the
surface normal, is defined by

dry = ok secldz. (4.4)

Realizing that Eq. (4.1) is a summation over of the order of a thousand wavelength
points, each for about 10 different angles, that this should be done for each of the
100% grid points in a horizontal plane and that each of these are the result of solving
the differential equation (4.3) at about 100 vertical grid points, it is clear this task

51
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would cause severe digestive problems for even the largest supercomputers of today
— and give me a very long holiday while waiting for results.

A way around this is to split the problem in two: the detailed frequency-
dependent radiation transfer and radiation transfer, in a inhomogeneous medium.
The first problem is solved for a 1-D mean stratification when calculating the EOS
and opacity tables (Sect. 4.3) and the other one is solved in the simulations (Sect.
4.2).

4.1 The effect of lines

The presence of lines in absorption gives rise to different effects in optically thick
and thin regions.

In the optically thick case, the diffusion approximation holds and the lines just
enter through their influence on the Rosseland mean opacity, which can be increased
significantly (more than 20%, ¢f. Fig. 3.9) by the lines. This increase results in a
larger temperature gradient, and as 7(T' = T.g) is approximately fixed at 7 ~2/ 3,
this leads to higher temperatures below the photosphere (for fixed Teg). Since the
optically thick layers are dominated by convection, this only pertains to a thin layer
in cool stars, where the convection zone barely reaches the photosphere (see Sect.
7.2.2). A much more important effect occurs right at the surface, where the optical
depth is unity in the continuum. Here, the presence of spectral lines leads to a
blocking of some of the continuum light, and hence the total flux is reduced, relative
to a case with no spectral lines. In order to compensate, so that the total flux
indeed equals the nominal flux, the surface temperature must be increased (roughly
by 1/ 4 of the fraction of flux that is blocked). This is the so-called backwarming
effect of spectral lines. Backwarming can also be regarded as the heating by photons
back-scattered by the opaque lines.

Let us consider the radiative transfer at a single wavelength, A, on the corre-
sponding optical depth scale, 7,. This single wavelength is not in radiative equilib-
rium and may contribute heating and cooling

Qrad,)\ - 47-[-@/{)\(‘]/\ - S)\)v (45)

at various heights, as radiative equilibrium only implies that the total heating (),.q
is zero. As we move upwards in the atmosphere, to optically thinner heights, the
radiation starts to escape from the plasma, which causes an increasing anisotropy
in the radiation field. There is no longer radiation coming in from above and less
coming in from the sides, so Jy will be reduced by more than a factor of two in
the transition from optical thick to thin. The radiative heating of Eq. (4.5) will
therefore become negative, and we have radiative cooling. When the radiation is
fully decoupled from the plasma temperature and we only have radiation directed
outward, .J, can no longer decrease. But the source function Sy ~ B,, which is just
a slightly scattering-altered Planck function, will decrease with temperature and
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(rad,x Will therefore increase again, eventually giving rise to a heating of the upper
parts of the atmosphere.

All the above works in general, as long as non-L'TE effects are neglected. Clearly,
the higher opacity, the higher up in the atmosphere the various effects will set in.
The main effect of spectral lines is to introduce a lot of high opacity in the middle
of the source function. The continuous opacity is only large in the UV or in the far
IR where the flux is low, but the lines place some high opacity in the most flux-rich
wavelength region (¢f. Fig. 3.6 and 3.7). The lines therefore spread the cooling
and heating over a larger range of heights, as compared to an atmosphere without
lines. Without lines all of the radiation would just decouple at one height and
J would stay almost constant above this height. To obtain radiative equilibrium,
Qraqa = 0, the temperature would therefore also have to be almost constant above
the height of decoupling. The decoupling would of course be spread out a little, as
the wavelength variation of the continuum opacity covers a few orders of magnitude
in the flux richest part of the spectrum. By including lines, this is easily increased to
6 orders of magnitude (¢f. Fig. 3.6). The lines ensures that there are both heating
and cooling at a large range of heights, and radiative equilibrium can therefore be
sustained at a lower temperature. This effect is referred to as surface cooling by
spectral lines.

4.2 3D radiative transfer

Assuming that the source function is known, as is the case in LTE with a given
temperature structure, the equation of transfer (4.3) is a linear first-order differential
equation with constant coefficients. This implies that there exists an integrating
factor, which can be shown to be equal to e”™/#, and we may therefore rewrite the
transfer equation as

L(m,p) = p! SA(t)e_(t_T*)/“dt

eTA/FLTAoo
- = /0 Sy(t)endt (4.6)

(Mihalas 1978, pp.38). We recognize the integral as a Laplace transform and con-
clude that ,ue_”/“[A(TA,,u)Ais the Laplace transform, £, of S\. We can furthermore
define the linear operator L

. ! d
LSy = / en/iLs, B g, (4.7)
0 "

which is the parenthesis of the integral of the radiative heating in Eq. (4.1).
We also notice that LS, only depends on the run of Sy(7y), so if the relative
opacity,
Ty = K)\/K, (4.8)
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where & is the standard opacity defined in Eq. (4.17) or (4.18), is constant with
depth for all wavelengths having relative opacity z;, then the radiative transfer
can be described by the same source function. Now, z)(7)) is seldom constant, so
instead we draw on the linearity of the Laplace operator to approximate the radiative
transfer at wavelengths, z) = z;, with an average source function S;.

This concept is developed further by regrouping the opacity into four bins, z; so
that each ¢ represents an interval in z, (Nordlund 1982; Nordlund & Dravins 1990)
and the radiative heating can then be evaluated using

/)\/i,\(J)\ — B)\)d)\ ~ KZZL’)\](J,\] — B,\])w,\] (49)
J
= KVZZ{IJA](J)\] — B,\])w)\] (410)
i)

= KEZCEAJIA;(B/\J)U]/\J (411)
i)

.‘{Z:L‘Zj; (Z B/\]w)\]) (412)
g ()

ﬁzxiz(&)wi (4.13)
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where [ use By = 5, in the spirit of LTE.

Equation (4.9) is just the discretization of the integral in wavelength, and the
right hand side can get as close to the left hand side as we desire, depending on the
number of wavelength points we choose. w, is the integration weights (not to be
confused with the occupation probabilities, wy, from Sect. 3.2).

The next step, (4.10), is a reordering of the wavelength points into groups, ¢,
where j(1) is the set of wavelength points that fall in bin ¢ (the procedure is specified
below), and in (4.11) the (Jy— B)) is substituted by its corresponding linear operator
lA)(B/\). Both of these steps are exact.

Going to (4.12) we employ several crucial assumptions. First of all, the relative
opacity is discretized to a small number (in this case four) of values, z;. The next
and less straightforward approximation is to assume that all z, belonging to the
same bin has the same variation with depth, and therefore can be represented by
the same operator L; (Nordlund & Dravins 1990). The next two steps are mere
definitions of B;, w; and .J; respectively (see Eqs. (4.23) and (4.22) for explicit
expressions).

The k used above, is a standard opacity that defines the optical depth scale, 7,
on which to solve the radiative transfer. This & should be chosen so as to make Eq.
(4.12) a good approximation for all optical depths.
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In optically thick layers (7, > 1 for all A) the diffusion approximation holds, and
the Rosseland mean opacity

oo 1 aB)\
——dA
/0 li,\—I-O')\ aT
OO@B\ ’
o JT

(4.15)

He| =

where the scattering, o, is included, reproduces all the transfer properties of the full
monochromatic problem. For 7 — 0, the intensity weighted mean

(k)J = /°° kaJrdA (4.16)
0

without scattering, reproduces the fluxes of the monochromatic solution (Mihalas
1978, Chapter 3.2). The original choice for the standard opacity was therefore

k=€ (k) + (1 — e )R, (4.17)

which is just a smooth transition between the two limiting cases (Nordlund &
Dravins 1990). During my work, this was refined by Ake Nordlund and replaced by

ko= e (k)Y 4 (1 — ek, (4.18)

where 7* corresponds to the Rosseland mean opacity for the continuum bin (¢ = 0).
The purpose of decreasing the optical depth at which the transition takes place is
to ensure that the relatively large intensity weighted mean does not “contaminate”
the opacity at optical depth unity.

The Rosseland mean opacity now only includes the continuum bin (z = 0),

> 1 9B,
w
/i)\] + 0')\] 6T A

 j(i=0)
_ = 7B, . (4.19)
or

J(i=0)

1
/%*

The intensity weighted opacity has been altered to only include optically thin wave-

lengths, by weighting with a factor e /2

—TXx /2
Z KAJ JAJ € ! w)\]
J

= —TX /2
D e
J

(k)" (4.20)

The opacity table is calculated from a continuum Rosseland mean opacity, k., based
on the continuum opacity alone, and then from the standard opacity we derive a
correction factor, z, = k/k.. But s is only evaluated for a single o/T-track for
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a given simulation and not for the whole table. z, is then regarded as a function
of either temperature or optical depth, and is interpolated in the rest of the table
to obtain k. Nordlund & Stein use z,(7), whereas I use z.(7) after having found
that 7 for a given simulation may be approximated by a function in p and T'— in
particular for small 7.

The standard opacity, so defined, reproduces the emergent flux of the full mono-
chromatic problem well within one percent. This is checked routinely for all the
simulations, by evaluating the radiative transfer for a slice of the simulation box,
using the methods described in Sect. 4.3, both for the full monochromatic opacity
and for the binned opacity. The differences are random and are due to the vary-
ing thermodynamical structure in the simulations, as x, is only evaluated for one
o/T stratification. The temporal and surface averaged fluxes are very close to the
monochromatic case.

The opacity binning works as follows: The bins of relative opacities are chosen
to be logarithmically equidistant

z; = 10", (4.21)

where we use ¢ = 0,1,2,3 and a = 1. The binning weights are (following from the

step (4.12) to (4.13))
wi =Y wy, (4.22)
(1)

and it also follows that

BZ' = (Z B/\]w/\]) /wZ (423)
()

The j(i) over which the sums are taken are those j where 7 reaches unity within
P — % <logT <1+ %, where 7 without subscript is the standard optical depth scale
defined via the standard opacity.

dr = ordz. (4.24)

The opacity binning is calculated for a horizontally averaged snapshot of the simu-
lation. The pseudo Planck functions, B;, are functions of temperature only through
the temperature dependence of the Planck function, so the bin-membership of a
contributing wavelength is assumed independent of temperature.

The angular integration to obtain the mean intensity, Eq. (4.16), is evaluated
by keeping the simulation box fixed and interpolating it to a tilted grid, exploiting
the periodic horizontal boundaries. Only the rectangular part of the box having
standard optical depth 7 < 300 is used for the radiative transfer calculations, and
this part is furthermore rescaled as described in Sect. 2.5 to optimize the resolution
with respect to this problem.

As the simulations are far from plane parallel (the reason to perform the simu-
lations), we have two independent angles to integrate over: inclination with vertical
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(radial) lines, 6, and rotation about this line, ¢. The radiative transfer is evalu-
ated with just two #-points and four ¢-points, where the ¢-points are rotated 15°
per timestep to prevent the development of directional preferences. The y = cos 6-
points are u = 1,1/ 3 with integration weights 1/4 and 3/ 4 respectively. The integral
over ¢ is evaluated with the trapezoidal method. Including p = 1 is advantageous,
because no ¢ averaging is need for vertical rays, and because the vertical direction
in general gives the highest contribution to the flux. Given the two p values, the
weights are chosen to give exact results for the highest polynomial /() (in this case
a lst order polynomial as we have two p-points).

4.3 1D radiative transfer

In order to determine the bin membership of the wavelength points, i.e. the binned
pseudo Planck functions, B;, and the opacity correction factor z., the detailed
radiative transfer, Eq. (4.3), is calculated directly for all the wavelength points
in the ODF representation of the opacity, for a horizontal and temporal averaged
o/ T-stratification of the model.

The 3D effects, from integrating over tilted rays through an inhomogeneous me-
dia, are of course neglected, but instead the full wavelength dependence is included.
While the models are in the process of relaxing, the mean stratification is checked
from time to time, to assure that the table is consistent with the simulation. Also the
binned emerging flux is compared with the detailed to make sure that the binning
does not alter the surface averaged emerging flux.

4.4 The Feautrier technique

For both the 1D and 3D case, the transfer equation is solved using a modified
Feautrier technique (Mihalas 1978; Nordlund 1982). The radiative transfer equation
(4.3) is normally rewritten in terms of the average of in- and out-going intensities
along a ray into the space angle €,

pr = 3[IN(Q) + I\(—Q)] (4.25)
d?py
=p»— B 4.26
dT)% Px As ( )
with boundary conditions
p PrQ for my, =0
P

AL B ; 4.27
87’,\ a A for TXx = TA,max ( )

87-,\

which is then solved numerically using some finite-difference scheme (Mihalas 1978).
However, as py approaches B, at large optical depths, the problem get very ill-posed
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and leads to fatal round-off errors. If instead we use
@ =px— By, (4.28)

and therefore
(4.29)

which can be solved in the same way as (4.26), but with the boundary conditions

dagy dB,

— = By — — f = 4.

an q\ + By an or T, =0 (4.30)
qx = 0 for TA = TA,max (431)

we can obtain accurate solutions for all 7.



Chapter 5

Six different stars

I have chosen a set of six pairs of stellar atmosphere parameters, Teg and ggu.f, for
my convection simulations, as listed in Tab. 5.1. This choice is motivated by the
possibility of observing solar-like oscillations of the stars associated with these pa-
rameters. The first 6 rows in Tab. 5.1 contain the adopted observed global quantities
for each of the stars. Star B is just a set of parameters, with no actual star attached
to it, and started as a simulation of Procyon that turned out to give too low a Teg.
The chemical mixture is X = 70.296% and Z = 1.788% corresponding to Gustafs-
son’s mixture (¢f. Sect. 3.1). Below the thin line, which splits the table in two, |

Table 5.1: Parameters for the simulations.

name aCen B Sun aCen A Star B n Boo Procyon
Spectral class K1V G2V G2V — GOIV ~ F5IV-V
Toft « 5325 K STTTK 5800 K 6184 K 6070 K 6500 K
Gsurf /[ems—2] 3.604-10* 2.740-10* 1.970-10* 1.084-10* 5.668-10° 1.084-10*
M/Mg 0.900 1.000 1.085 1.240 1.630 1.750
L/Lg 0.494 1.000 1.532 4.070 9.600 7.080
R/Rg 0.827 1.000 1.228 1.770 2.807 2.102
Ter 5362 K 5801 K 5768 K 6167 K 6023 K 6470 K
e! 1.904 1.889 1.844 1.763 1.788 1.772
dez 30.69% 28.64% 30.71% 19.72% 21.50% 10.65%
(Bp) 7.9%  107%  112%  155%  195%  21.0%

have given a few results from the simulations. These will be explained and discussed
later in this chapter, and right now they just serve as appetizers. The stars in the
table are ordered, from left to right, in increasing vehemence of the convection of
which the peak turbulent- to total pressure ratio (given in the last row) is a rather

99
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Fig. 5.1: This HR-diagram shows the six stars I investigate in this work, together
with evolutionary tracks of stars in the same mass range. The evolutionary tracks,

courtesy Christensen-Dalsgaard, give an idea of the evolutionary state of each of the
six stars. The size of the symbols reflects the radii of the stars. The mass of the
virtual star, Star B, is about 1.27 Mg, when derived from the tracks shown here.

good measure. I will return to this fierceness of the convection and other measures
of it as well as its significance, repeatedly in this chapter.

The surface gravity, gsur, is an input parameter for the simulation, whereas the
effective temperature depends on the convective fluxes in the model, and can be
adjusted by changing the entropy of the gas flowing into the box at the bottom
boundary, as described in Sect. 2.3.3.

The main objective of this work is to make a differential comparison of convection
for various atmosphere parameters, rather than to compare specific stars. This is
the reason that I just use the same chemical mixture for all the stars, and that I
have not fine tuned the effective temperatures. These simulations will then be used
as initial conditions for precise simulations of the actual stars, with the observed
abundances and probably also with a higher resolution, in future work. This I have
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so far only done in the solar case, as presented in chapter 8. In Fig. 5.1 | present
the six program stars in an evolutionary context. The evolutionary tracks plotted
in this figure (Christensen-dalsgaard 1982), are based on an EOS somewhat simpler
than the MHD EOS used in the rest of this work, and is dubbed the EFF EOS for
the initials of its authors, Eggleton et al. (1973). The evolutionary tracks are shifted
systematically towards lower effective temperature and luminosity as compared to
the MHD EOS case. The tracks based on MHD go straight through the location
of the Sun and a Cen B, but due to the boundaries of the MHD EQOS tables these
tracks could not be followed to greater masses. The physics in the evolution code is
treated in exactly the same way as in the envelope code and as described in Sect.
6.2.1. For the T' — 7 relation in the atmospheres of these models, a scaled fit to
the T' — 7 relation derived from the solar simulation was used. Also the a derived
from envelope matching to the solar simulation (see Tab. 5) was used for all the
models. Assuming the (scaled) T'— 7 relation and « to be invariant is in accordance
with normal practice. The validity of this practice is discussed and questioned in
Trampedach et al. (1998a) and Trampedach et al. (1998b) (see App. D and E,

respectively).

5.1 The asteroseismic motivation

The advent of helioseismology has opened up a whole new window to the solar
interior, and now asteroseismology brings the promise of windows to the interior
of other stars too. This will certainly be a vast improvement of the observational
side of astrophysics, since until now we have only had the solar reference point for
our stellar models. The micro physics, i.e. the EOS and the opacity, is of course
independent of this state of affairs, as these are evaluated from ab initio models, but
the convection that until now has been treated using the very crude mixing-length
theory (MLT) for the majority of stellar models has one or two free parameters which
are not set by the theory. It has been costumary to calibrate the MLT parameter
a, and the likewise undetermined He abundance, Y, to obtain a solar model of the
present age, radius and luminosity and then use this value, ag, for models of other
stars too.

The detection of a large selection of p-modes in other stars, would suddenly give
us a much firmer handle on our stellar models. In particular, dynamical phenomena
are just extrapolated from the solar case, where the rather subtle effects on the ther-
modynamic stratification can be validated against the wealth of observed p-modes.
Among these dynamical phenomena we find, apart from the obvious convection,
also overshooting from convection zones into the surrounding stable layers (¢f. Sect.
7.3), rotation and in particular differential rotation, semi convection, rotationally
induced mixing and tidal distortion in binary and multiple systems. Still without
touching the complications arising when introducing magnetic fields.

Based on the work of Christensen-Dalsgaard & Frandsen (1983), Kjeldsen &
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Bedding (1995) have estimated the amplitudes of solar like oscillations in other stars,
extrapolating from the solar case. Their work suggests that e Cen A and Procyon,
among others, might oscillate with (soon) observable amplitudes. Also Christensen-
Dalsgaard & Frandsen (1983) and Houdek et al. (1994) argue that more evolved

stars, i.e. subgiants, will oscillate with larger amplitudes than main-sequence stars.

5.1.1 The Sun

The Sun has been a natural starting point for our exploration of stars, ever since
it was realized that our Sun was just another star, which is one of the reasons that
this star has been included in my work. Another reason is of course its proximity,
which has allowed a quality and diversity of observations not possible for any other
star. All these observations put tight constraints on theoretical models and are
invaluable in validating (or discarding) the convection simulations presented here.
The Sun is the only star for which the surface granulation (Sect. 7.2) can be seen
directly and followed in time. Also the global intensity variation over the solar disk
can be measured, and the very high dispersion spectra obtainable from the Sun
allow very precise determinations of spectral line profiles (¢f. Sect. 7.2.1). These
spectra can tell a lot about the atmospheric stratification, chemical mixture and the
velocity field — but only through analysis and comparison with theoretical spectra
based on solar atmosphere calculations. Though the modern analysis and models
are very sophisticated, there is still room for some controversies. The solar iron
abundance, for example, which is a rather fundamental quantity is still uncertain
and observations seem self-contradictory (¢f. Sect. 9.3).

The solar effective temperature, 5777+ 2.5 K, is derived from the solar irradiance
observations giving, Lz = (3.846 4 0.006) - 10** ergs™" (Willson & Hudson 1988),
and using the solar radius (at optical depth 7 = 1), Ry = 6.96 - 10'°cm and the
astronomical unit, 1 A. U.=1.49598-10"% cm (Stix 1989).

For the solar mass, I used the commonly used value, M = 1.989-10%* g, in agree-
ment with solar system dynamics (Stix 1989) GMg = 1.32712438 - 10*® dyn cm?g ™!
and the CODATA value of the gravitational constant, G = (6.67259 + 0.00085) -
107® dyn cm?g~? (Cohen & Taylor 1987), but gives G = 6.67232 - 10~® dyn cm? g2
These values are exactly the same as used by Christensen-Dalsgaard & Dappen
(1992) for the 1D-models I compare with in Sect. 6.2.

5.1.2 The o Cen system
a Cen A and B (HD 128620 and HD 128621) are the two brightest members of a

triple star system, where the C component, not studied here, is a small M5V dwarf
about ten magnitudes fainter than a Cen A and B. a Cen C is the well-known
Proxima Cen — the closest star to the solar system, a mere 1.3 parsecs away. The
A and B components form a fairly tight binary system, with mean separation of
around 24 AU, and a period of 100 years, whereas the C component is very loosely
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bound, if bound at all (Anosova et al. 1994).

As fundamental parameters for the two stars I have chosen luminosities in ac-
cordance with Noels et al. (1991), who find log(Lacena/Le) = 0.1853 4+ 0.015 and
log(Lacens/Le) = —0.3065 4 0.015. The effective temperatures are chosen to agree
with those obtained by Chmielewski et al. (1992), based on differential atmosphere
analysis of hydrogen H, line wings, between atmospheres in the model grid of
Gustafsson et al. (1975). Using this method they find Tef ncena = 5800 + 20K
and Ter acens = 5325 + 50 K. Their analysis also results in a metallicity of [Fe/H]=
0.22 £ 0.02 and [Fe/H]= 0.26 + 0.04 for aCen A and o« Cen B respectively. The
masses determined from astrometrical data are M,cena/Mg = 1.085 £+ 0.01 and
Macens/ Mg = 0.90 + 0.01 (Demarque et al. 1986).

Due to the many tight observational constraints on this binary, its assumed co-
evolution and chemical homogeneity, it is a very good challenge to stellar modelling.
This challenge has been taken up by several teams with varying success. Conven-
tional stellar models using the MLT formulation of convection and its parameter «,
set by calibrations to the Sun, leads to too small a radius for a Cen A (Demarque
et al. 1986). Fernandes & Neuforge (1995) who questions the universality of the
MLT, finds that « is likely to differ with 0.2-0.3 between the two, with ag being
closest to the solar value. Lydon et al. (1993a) abandons the MLT picture alto-
gether, and use various correlation functions derived from numerical simulations to
describe the convection zone (See Sect. 7.5 for a discussion of their method).

5.1.3 1 Boo

n Boo (HD 121370) is the most luminous G-type subgiant in the sky, which is rather
promising for detections of solar-like oscillations, as mentioned in Sect. 5.1. This is
in fact also the star with the most convincing detection of solar-like oscillations to
date (Kjeldsen et al. 1995). By observing the temperature oscillations, through the
effect on the hydrogen Balmer lines, they were able to detect and identify 13 modes.

Christensen-Dalsgaard et al. (1995) subsequently constructed evolutionary se-
quences of stars in the expected mass range, and calculated oscillation frequencies for
these. The model that fits the observational constraints on both frequencies, effective
temperature and luminosity, has M, goo/Ma = 1.63, Tetr ;800 = 6070 K and L,goo/ L
= 9.6 (see also Tab. 5.1), in accordance with observations: Teuf 800 = 6070150 K
(Bell & Gustafsson 1989), and combining this with a parallax of 85.842.3 mas (mil-
liarcsecond) (Harrington et al. 1993) and an angular diameter of 2.2440.02mas
(Blackwell & Lynas-Gray 1994), gives a luminosity, L,goo/Le = 9.5 £ 0.7.

The evolution calculations indicate that n Boo is in the hydrogen shell burning
phase, although this is slightly dependent on the adopted value of the mixing-length
parameter, a. A hydrogen shell source can have rather profound implications for
the observed frequencies, as the expected sharp edge of the helium core can alter
the behaviour of the p-modes to make them appear similar to trapped internal
gravity waves (g-modes, not to be confused with the gravitational waves of general
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relativity). The observed frequencies do in fact show signs of this effect, as discussed

by Christensen-Dalsgaard et al. (1995).

5.1.4 Procyon

Procyon (e CMi, HD 61421) is the most luminous member of a binary system, only
about 3.5 parsecs from the solar system. The B component is a 0.62 Mg white
dwarf, about ten magnitudes fainter than Procyon A (Provencal et al. 1997). They
encircle each other with a period of 40.4 years, a close 16 AU apart.

The mass of Procyon is chosen in accordance with the astrometric observations,
Mprocyon/Ma = 1.751 £ 0.051 (Irwin et al. 1992). The effective temperature 6500 +
100K and luminosity [log Lprocyon/Le] = 0.85 4+ 0.06 have been derived using a
variety of observations, including angular diameter and absolute integrated flux
measurements (Steffen 1985).

Due to its brightness and proximity, Procyon has also found widespread use as
a flux standard, and motivated the “Photometric atlas of the spectrum of Procyon”
(Griffin & Griffin 1979). But despite the many and diverse observations, repeated
efforts to model this star has failed. One of the more recent attempts to model
Procyon (Guenther & Demarque 1993) brings it barely inside the observational
error bars. It is my belief that proper 3D RHD atmosphere models of this star will
contribute significantly to resolving this problem. The convection in the atmosphere
of Procyons is far more vigorous than in the solar atmosphere, and it should therefore
not be a surprise that 1D atmospheres cannot reproduce observations.

The effect of convection is twofold. First it alters the emerging fluxes, mainly
because of the large temperature fluctuations that affect the ionization equilibria
and therefore the occupation of the absorbing states. The spectra are thus not ther-
modynamically consistent with a 1D model — the horizontally averaged occupation
number of a state does not follow from the horizontally averaged temperature (see
Sect. 6.1). This is a very likely cause for the confusion on abundances, and makes
it hard to deduce a T.g from spectroscopy.

Second, the very substantial turbulent pressure, amounting to more than 20% of
the total pressure in the photosphere (see Tab. 5.1), greatly affects the hydrostatic
equilibrium and expands the atmosphere. This furthermore changes the temperature
gradient, V = dInT'/dIn P, which alters the effect of the mixing-length parameter a.
My estimate of the depth of the convection zone, dcz, is 30% larger than that of
the model of Guenther & Demarque (1993) having the deepest convection zone and
involves twice as much mass. This can of course have some implications over the
lifetime of the star, especially considering the late evolutionary stage of Procyon.

The next interesting step to take is of course to derive more precise fundamental
parameters for Procyon, based on the new HIPPARCOS parallaxes (Emanuele et al.
1996; Lindegren et al. 1997). There have been several attempts to observe p-modes
in Procyon (Isaak & Jones 1988; Gelly et al. 1988; Brown et al. 1991), but no definite

positive detection to date.
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Mean models

For the sake of analysis and comparison with 1D models, I have computed various
averages of a large number of quantities of the simulations. The averaging procedures
are explained in App. D and E, and results in horizontally as well as optical depth
averaged quantities, as listed in App. C.

6.1 The effect of non-linear fluctuations

In 3D models, a rather serious and yet unappreciated complication is introduced
through the fluctuations of thermodynamic quantities: As the EOS (¢f. Sect. 3.2)
in general is not linear, in particular not in the photosphere where ionization of
hydrogen sets in, we have that (EOS) # EOS({p), (¢)), where “EOS” just denotes
any thermodynamic quantity. How serious the ‘#’-sign is, is illustrated with EOS=T
in Fig. 6.1. The effect on the horizontal average is rather dramatic (black solid versus
gray solid lines), but even when the averaging is separated in the upflows (dashed)
and the downflows (dotted), the pronounced discrepancy persists.

This means that the mean density/mean energy stratification is unlikely to result
in a pressure corresponding to hydrostatic equilibrium. It is likewise unlikely that
the averaged thermodynamical quantities are thermodynamically consistent, i.e.
related through the expressions in Sect. 3.5. The opacity (see Sect. 3.3), being even
more nonlinear, will naturally result in a larger discrepancy, severely complicating
our analysis of the transition region in the photosphere.

6.2 Matching with 1-D envelopes

The simulations only cover a very thin layer near the surface of the stars, but I would
like infer properties of the bulk of the CZ from the simulations. In order to do so, |
have developed a program for matching 1D envelope models (Christensen-Dalsgaard
& Dappen 1992; Christensen-Dalsgaard 1993) with the averaged simulations. Con-
vection in the envelope models is described by the standard MLT formalism (cf.
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Mean model for 7,,= 6479 and g,,=1.08e+04
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Fig. 6.1: This figure shows the effect of a non-linear EOS, on the temporal and
horizontal averaged temperatures of the Procyon simulation. The black lines are
averages of the actual temperature, and the gray lines are the temperature evaluated

via the EOS, as T'((0), (¢)). Dotted lines are for the downflow, dashed for the upflow,

and solid lines are for the total horizontal average.

Sect. 6.2.1). To make the 1D and 3D models as compatible as possible, I have
introduced a turbulent pressure in the 1D models

PtllI‘b,lD - /BU(?OIIVQ7 (6'1)

where veony is the MLT convective velocity, given by Eq. (6.8). 3 is a form factor,
which I assume constant with depth (but differs between stars). The purpose of this
Piurb1p 18 to supply the envelope model with a turbulent pressure below the fitting
point, which resembles the turbulent pressure that would result from an extension
of the simulation to large depths. From Figs. 6.2-6.7 we see that Eq. (6.1) is a
reasonable extrapolation of the turbulent pressure of the simulations.

The matching is performed as follows:

e The coefficients of the expression

3 . B
T =T (Z) [cl + T4 coe”®T +cqe” 7| (6.2)

L
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are fitted to the temporal and 7Tg.e-averaged temperature, above Tress = 2.2
(the fit does not work below this, and all energy is transported by convec-
tion here, anyway). This fit is then used for a T-7 relation in the envelope
calculations (see also App. E).

e A fitting (total) pressure, Pg, is chosen deep in the simulation to minimize
the effects of non-linear fluctuations (see Sect. 6.1), but also far enough from
the bottom to avoid boundary effects (as can be seen in Vg, Fig. 3.2).

e [ then solve

Tsn(Pa) = Tin(Pae) and 030 ( Pat) = 010(Pre) (6.3)

using a Newton-Raphson scheme in «, the mixing-length parameter, and g3,

from Eq. (6.1) (see also App. D).

The mass and luminosity of the envelope is constant during the fitting procedure, and
corresponds to gsurf and Teg of the simulation, whereas gqurf and Teg for the envelope
differs from those of the simulation due to the elevation effect. This amounts to no
more than a few Kelvins, though.

6.2.1 The MLT formulation

The normal way to incorporate the effects of convection in stellar model, whether it
is atmosphere, envelope or evolutionary models, is by use of the mixing-length theory
(MLT). The philosophy behind this theory is described in Sect. 7.4. There are a lot
of variations over the ML'T theme, and many researchers have tried to make it less ad
hoc by taking account of various effects not considered in the original formulation.
An excellent overview of these variatiants can be found in Gough (1976).

The envelope program I use (Christensen-Dalsgaard & Déappen 1992) relies on
the MLT version by Bohm-Vitense (1958) which was first incorporated in stellar
evolution calculations by Henyey et al. (1965).

The radiative flux is expressed as

4acT*V
Frad = ——, 6.4
7 3RHp (6.4)
where V is the horizontal average stratification and the total flux is
4acT*V,
p= i Yrad (6.5)

3cHp

where V.4 1s the temperature gradient necessary for transporting the whole flux by
radiation. The convective flux is assumed equal to the enthalpy flux, Fpy, thereby
neglecting a possible kinetic energy flux, Fiin,

Frony >~ Fg = %CPQQUO[T(V -V, (6.6)
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where V' is the temperature gradient of the convective eddies and
Vaa < V' <V < Viag (6.7)

in a convection zone. The neglect of Fiin, Eq. (7.2) is based on the assumption of a
filling factor fu, = %, where f,, 1s the fraction of a horizontal cross section occupied
by upflows. Also neglecting density fluctuations and demanding a zero net mass
flux results in Fi;, = 0.

The mean speed corresponding to the convective flux is

2

v = gHpd—(V — V'), (6.8)
14

where v is a factor that describes the braking by turbulence. With v = 4 there
is no breaking and v increases with increasing turbulent viscosity. Bohm-Vitense
(1958) somewhat arbitrarily suggested v = 8 which is also adopted in this work. &
is the logarithmic density gradient at constant pressure; § = —(dInp/dInT)p. The
convective efficiency factor is defined by

V-V

M 6.9
V' = Vad (6.9)

’7:

and is determined by the horizontal radiative flux between a rising bubble and its
surroundings

2
cpp
= 6.10
77 S4T30 ( )
where 6 is an interpolation between the optical thick and optical thin cases
H
0 R (6.11)

1 +y(aHpr)?

The parameter y is determined by the horizontal temperature profiles of a rising
blob in the opaque case. Christensen-Dalsgaard (1993) uses y =1/ 3 in accordance
with the original suggestion by Bohm-Vitense (1958). The total flux is just taken
to be the sum of the radiative and convective fluxes

F = Frad + Fconv- (612)

Combining Eqs. (6.4)-(6.12) and eliminating F', v and V' yields a cubic equation in
the convective efficiency

¢’73 + ’72 + Y= B(Vrad - Vad) (613)

where ¢ =3/ 4y.

The effect of varying the two parameters v and y was assessed by Henyey et al.
(1965), but they are barely mentioned nowadays and the MLT is commonly consid-
ered a one-parameter theory.
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6.2.2 The Sun

Fig. 6.2 presents the results of matching the solar simulation with a 1D envelope
model. The match is successful, and the two cases seem to approach each other
asymptotically at depth (which is assumed with this matching scheme). At a depth
of 1.5Mm the two cases begin to diverge, and in the photosphere, the elevation
by turbulent pressure, A, as described by Eq. (7.10), is easily recognized. It is
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Fig. 6.2: Comparison of the horizontally averaged simulation (solid lines) and the
matched 1D envelope model (dotted lines) for the solar case.
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reassuring to see, how well the actual 3D turbulent pressure is approximated by the

MLT expression, Eq. (6.1).
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6.2.3 aCenA

The result of matching envelope models to the a Cen A simulation, Fig. 6.3, are
rather similar to the solar case, Fig. 6.2. Notice how the large drop in e.g. I'; and
Vad just below the photosphere, due to ionization of hydrogen, is broadened relative
to the 1D case, because of the turbulent pressure expansion of the atmosphere. As
is also the case for the solar match, although less pronounced, this broadening is
accompanied by an narrowing and slight increase, of the superadiabatic peak.
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Fig. 6.3: Comparison of the horizontally averaged simulation (solid lines) and the
matched 1D envelope model (dotted lines) for a Cen A.
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6.2.4 «aCenB

a Cen B is the star with the most sedate convection and, as expected, turns out to
be the star best described by a 1D envelope model. Most of the turbulent pressure
can even be described by MLT, except for the overshoot region of course. This lack
of overshoot means that less than half of the actual turbulent pressure levitation, A,
is present in the 1D model (¢f. Fig. 7.10). The envelope model of course also lacks
the inhomogeneities, which accounts for about 30% of the atmospheric expansion.
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Fig. 6.4: Comparison of the horizontally averaged simulation (solid lines) and the
matched 1D envelope model (dotted lines) for a Cen B.
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6.2.5 nBoo

The matching program met some problems here, as the fluctuations in the bottom
of the box got rather large, but the outcome (Fig. 6.5) does look quite reasonable
anyway. The most interesting effect here is the pronounced distortion of the stratifi-
cation (T, I'1, V,q in particular) with respect to the 1D model, due to the collective
effect of turbulent pressure and inhomogeneity levitation of the atmosphere. Only
half of the 1.27 Mm atmospheric expansion comes from A.

M,=1.63 T.,=6031.64 g..=5.67e+03 a=1.7817

_55

LogP

LogT

0.40

o.3o—§ o

] 0

¥ o.2o—§ 2 g

o.1o—§ =3
0.00

Fig. 6.5: Comparison of the horizontally averaged simulation (solid lines) and the
matched 1D envelope model (dotted lines) for n Boo.
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6.2.6 Procyon

CHAPTER 6. MEAN MODELS

Also Procyon gave problems with large temperature fluctuations at the bottom of

the box, but again the results look reasonable. Procyon is the star displaying the
most vigorous convection, which can most easily be inferred from the large turbulent
to total pressure ratio, of 21.0% in the photosphere (see Tab. 5.1). Notice that
MLT model of this match has a somewhat narrower superadiabatic peak than the

simulation.
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Fig. 6.6: Comparison of the horizontally averaged simulation (solid lines) and the
matched 1D envelope model (dotted lines) for Procyon.
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6.2.7 Star B

Fig. 6.7 displays a rather good match of the Star B case. Notice that the small V,
in the lower part of the simulation (lower left panel), is always larger for the MLT
case, which is also the case for the matching of the other stars. The plot of the
soundspeed, ¢, nicely illustrates where convection will affect the p-modes through
stratification effects, and how the resonance cavity is expanded by the turbulent
pressure.
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Fig. 6.7: Comparison of the horizontally averaged simulation (solid lines) and the
matched 1D envelope model (dotted lines) for Star B.






Chapter 7

Morphology of convection as
observed in the simulations

7.1

Below the surface

A lot of features of the convection observed in the simulations are common to all

the stars I simulate, and worth a chapter of their own.

The convection is dominated by the efficient cooling at the surface, which
creates the downdrafts so typically for these simulations. The downdrafts and
the abrupt cooling at the surface, can be seen in Fig. 7.2.

The slowly up-welling warm plasma expands as it rises, thereby smoothing out
the inhomogeneities, resulting in a rather smooth and laminar upflow.

The downdrafts on the other hand are compressed as they evolve, and therefore
enhance fluctuations. The downdrafts are much less ordered than the up-flows,
and contain a much broader spectrum of fluctuations in hydrodynamical as
well as thermodynamical quantities.

Many of the downdrafts persist to the bottom of the simulation boxes (see

Fig. 7.2).

Overturning of plasma, from the up-flows into a downward motion, occurs at
all depths, not only at the photospheric boundary layer (¢f. Fig. 7.2). This is a
straightforward consequence of the large density gradient in the atmospheres,
combined with conservation of mass — what comes up must come down. This
means that far from all of the up-flowing plasma ever makes it to the cooling
surface. This fact is the main obstacle for convection to get efficient.

Entrainment, surrounding plasma being sucked into the downdrafts, is very
important for the stability of the downdrafts.
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CHAPTER 7. MORPHOLOGY OF CONVECTION...
The interface between up-flows and downdrafts generates a lot of vorticity, and
this is the place to look for fully developed turbulence as can be seen from the
picture on the front cover. This picture depicts the large-amplitude vorticity
in the high-resolution solar simulation (¢f. Sect. 8), and the high vorticity
does a nice job in outlining the boundary between upflow and downdraft.
o As the downdrafts get narrower towards the bottom of the simulations, the
turbulence eventually fills up the downdrafts.
Sun a Cen A o Cen B n Boo Procyon star B
T 5807 5768 5362 6003 6479 6184
Log(Guur) 4.438 4.295 4.557 3.753 4.035 4.035
{2 i wwwwwwwww [ L [ R [ R [ R j
1.0 - -
0.8 -
s 0.6 -
% ] "
o ] i
o 04 -
0.2 -
0.0~ -
-0.2 - -
-3 3

10g Ptot/Ptot( Teff)

Fig. 7.1: This figure shows the various fluxes as function of logarithmic pressure
scaled with the photospheric pressure, for the six stars as indicated above the plot.
The enlarged part of the convective flux, Foony = Fi 4+ Fiin, 1llustrates the over-
shooting as described in Sect. 7.3.

e The convective flux consists of the enthalpy flux

Fir = (0 + Poun)e = (= + Pefo)our — {ou,)) (1)
and the kinetic energy flux
Frin = %<Quru2>L = %<u2(9ur — (ouy))) (7.2)

where [ denotes Lagrangian averages, performed in order to filter out the
effect of temporary net mass fluxes, which just causes flux to lap back and
forth without really getting anywhere. All the fluxes are depicted in Fig. 7.1.
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Velocity—field superimposed on T—plot

Fig. 7.2: The velocity field of a snapshot from the solar simulation, plotted atop of
an image of the temperature. Yellow is warm, and red and black is cooler according
to the colour scale to the left. Notice the warm upflows and the cool downdrafts
extending down to the bottom of the simulation box. The photosphere is easily

recognized as the dark edge.

Mach—number, M Mach—number, M

Fig. 7.3: Mach numbers, M, for the a Cen A (left) and the n Boo (right) simula-
tions. The a Cen A simulation barely reaches sonic flow speeds, whereas the n Boo
simulation displays super sonic flows (red-yellow) at the boundaries between upflows

and downdrafts.



80 CHAPTER 7. MORPHOLOGY OF CONVECTION...

0.25 T 0.25 ] v T
] o Cen B [ ] Sun : [
0207 7.= 5366 C 02070 7.~ 5807 C
logg=4.6 [ 1 logg=4.4 » [
0.15 - 0.15 ' -
0.10 - 0.10~ | ' -
3.9 Mm r ] ' 5.9 Mm r
0.05 — — 0.05 — —
0.00 T T T T 0.00 T T T
0.00 0.05 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25
0.25 ] : T 0.25 ]
] o Cen A : [ ] 7 Boo
0RO 7= 5779 C 0207 7.= 6003 r
] logg=4.3 [ ] logg=3.8
0.15 ' - 0.15 -
0.10 = 0.10 =
] I : 4 [ ]
] | ' 8.4 Mm r ]
0.05 — — 0.05 — —
0.00 T T T 0.00 T T T T T
0.00 0.05 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25
0.25 v 0.25
| star, | Procyon
0207 7= 6184 C 0207 7= 6498 r
logg=4.0 logg=4.0
0.15 — 0.15 — —
[I.lOi ; W j [).10*7 —
] 20.3 Mm r ]
0.05 —| M — 0.05 —| —
0.00 | , f , I L 0.00 | ,
0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05

Fig. 7.4: This figure shows the distribution of surface intensities for each of the six
stars, as well as images of snapshots of the surface intensity. The z-axis is the
white light intensity in units of 2 x 10 erg cm™2, and the y-axis is the normalized
frequency of occurrence of a given intensity. The vertical dotted line in each plot,
marks the intensity where [ = 1/20T:H. The horizontal extent of the simulations is
indicated below the snapshots. The red curves through the intensity distributions
are just double-Gauss fits to highlight the symmetry of the low intensity peak and
the asymmetry of the high intensity peak.
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e The kinetic energy flux is negative everywhere due to an anti-correlation be-
tween filling factor (Fig. 7.11) and density contrast (Fig. 7.8) and amounts to
about a tenth of the total flux in the convection zone.

e For the stars with convection more vigorous than the Sun, supersonic flows
are normal in the photosphere, and even for the Sun the flow gets slightly
supersonic now and then.

e The highest Mach numbers, M = |u| /¢, are found in the photosphere in the
downdrafts, as can be seen from Fig. 7.3.

7.2 Granulation

The granular pattern in the surface intensity is a well known feature of the Sun
(Scharmer 1989; Berger et al. 1995), but we have no direct observations of granu-
lation on the surface of other stars except for some tentative observations with the
Hubble Space Telescope of very large scale granulation on the red giant, Betelgeuse

(Gilliland & Dupree 1996).

7.2.1 Spectral line asymmetries

It is however, possible to see the effect of granulation on the shapes of spectral
lines (Bruning & Saar 1989). The variation of the vertical and horizontal velocity
field with optical depth, and, very importantly, the correlation of this velocity field
with temperature (Atroshcenko et al. 1989), distorts the otherwise symmetric line
profiles. This distortion is quantified by the bisector — the bended line of symmetry
of a spectral line (See Fig. 7.5). Because of the complexity of the phenomena, it is
not possible in an unambiguous way to deduce the atmospheric structure from these
asymmetries, and a more fruitful approach is to let observations and theory meet at
the bisector, by calculating disk integrated bisectors based on numerical simulations
of convection (Dravins & Nordlund 1990a; Dravins & Nordlund 1990b). This is a
good, sensitive and very important test of the validity of the simulations that can be
applied to all stars of sufficient brightness to allow for high dispersion spectroscopy
— including the Sun. So far such tests have been encouraging, and a comparison
between Fig. 7.5 and Bruls (1993, Fig. 8) shows a good agreement and leaves little
room for further subgrid turbulence of importance.

I have not had the time to do more work on bisectors for the present thesis, but
it will be the subject of forthcoming papers.

7.2.2 Granular patterns

So for the time being, our knowledge of the behaviour of granulation with changing
stellar parameters comes from theoretical work — mainly from numerical simula-
tions. Nordlund & Dravins (1990) have made atmospheric simulations of Procyon,
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Fig. 7.5: An example of a bisector from one of my early solar simulations. This plot
is for the 676.80nm Nil line from the 3.6576 eV, 2°P? excited state. This line is
chosen for its importance in various Doppler instruments for helioseismology and
was also investigated by Bruls (1993). The dotted line is a Gaussian fit to the line.
The bisector is plotted on the velocity scale and the line on the wavelength scale,
which means that the bisector is exaggerated by a factor of three relative to the line
profile.

a Cen A and « Cen B, as well as for 3 Hyi, a G2 IV dwarf of one solar mass, but lower
surface gravity, representing the future Sun (Dravins et al. 1993). These simulations
were carried out with an earlier version of the code I use for this work. Apart from
the changes I have made to the atomic physics, the change in the expression of the
standard opacity (from Eq. (4.17) to (4.18)) and the change to hyper diffusion (cf.
Sect. 2.2) this previous version suffered from being anelastic. There were therefore
no sound waves, shocks or supersonic flows present in these simulations. The neglect
of compressibility will naturally have the largest effect on the stars with the most
vigorous convection, e.g. Procyon in this case. The simulation domain was also
restricted by the computer power at that time, to contain 32 x 32 x 32 grid points,
as opposed to the 50 x 50 x 82. The increase in vertical resolution is particularly
important, in order to resolve the very steep photospheric gradients, and computing
the radiative transfer relies heavily on a good vertical resolution.

The distributions of surface intensities are depicted in Fig. 7.4. The plots in this
figure are arranged in order of increasing convective vehemence from the upper left
to the lower right corner, and this is also reflected in the behaviour of the intensities.
The more violent the convection, the larger the intensity contrast between the bright
upflows and the darker intergranular downflow. The simulations can furthermore



7.2. GRANULATION 83

Fig. 7.6: Binary masking by intensity can reveal where the contributions to the
intensity distribution come from. a) shows the full intensity picture of a snapshot
from the Procyon simulation. In b) I have masked out everything but the brightest in
the granules and d) shows the intergranular lanes. In ¢) I highlight the intermediate
intensities, to show that not only do they stem from the edges of the granules but
also from the breaking up of granules.

be paired in equi-violent pairs on the other diagonal: (aCen A, Sun) and (Star B,
n Boo).

It is interesting to see that the intergranular lanes exhibits a nicely Gaussian
intensity distribution, whereas the warmer upflows show a skewed distribution with
clear preference for the brightest. This is in accordance with the general behaviour
of the convection in the simulations, that the plasma in the upflow is rather undis-
turbed, i.e. rises almost adiabatically and in unison, and then cools of very abruptly
at almost the same height.

The intensity distribution in the upflows turn out to have a very sharp cutoff at
I = 1/20T:H shown by the vertical dotted line in Fig. 7.4. This cutoff seems rather
insensitive to the stellar parameters, whereas the mean of intensity distribution is

7L [ oy, (73)

where () = I(u)/1(0) is the limbdarkening function. The integral is 0.393 for
the sun, but seems to change more with stellar parameters than the position of the
cutoff, which is a rather interesting result although it is not understood yet. The
reason that the z-axis in Fig. 7.4 is ¥,/ is a missing factor of two in the simulation
code, which I was unaware of at the time of making the plot. Fortunately this
missing factor do not have any effect on the simulations.

The broad distribution of say, the temperature or velocity in the downdrafts is
due to the size of the granules in the following way: Plasma emerging in the middle
of a large granule and overturning at the surface, has to travel farther to reach the
intergranular lanes than plasma rising at the edge of a granule, and hence is subject
to cooling for a longer time.

The intermediate part of the intensity distribution, between the bright granules
and the darker lanes, has of course a contribution from the edges of the granules
but the largest contribution comes from the breaking up of granules, as can be
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seen in Fig. 7.6. Fig. 7.6 shows three large granules in the process of breaking up
with the top one being farthest in the process. This granule has a nicely centered
developing cool spot — a phenomena which is also known from observations of the
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Fig. 7.7: This is a composite plot of the spectra of horizontal fluctuations in the sur-
face intensities. The curves are the time-averaged power from Fourier transforming
each of the snapshots that went into calculation of the distribution functions de-
picted in Fig. 7.4. The abscissa is the horizontal size of a feature, and the maximum
in the distribution is the typical granular size.

Sun, as exploding granules. The development of most “exploding granules” is rather
sedate though, and the term was coined when the resolution of observations of solar
granulations was poor and only the largest and most violent occurrences could be
seen. The dark spot appears as the granule gets too large for all the up-welling gas
in the granule to reach the intergranular lanes. It is simply a topological problem
caused by the r? dependence of an area and the r dependence of circumference.
The gas in the middle of the granule will therefore get trapped at the surface for
so long that it cools and gets sufficiently over-dense to sink back again and form
a new downdraft. The vertical trapping is supplied by the density stratification,
which only admits a small portion of the up-welling plasma to greater heights. A
discussion of the phenomena together with comparisons between solar observations
and simulations can be found in Rast (1995). The splitting of granules in Fig. 7.6
of the Procyon simulation occurs over the order of 30 minutes. Several recently split
granules can be recognized as well.



7.3. CONVECTIVE OVERSHOOTING 85

The emerging intensity naturally reflects the horizontal temperature structure,
but the largest temperature fluctuations, occuring at the transition from convective
to radiative transport of the energy, is hidden at intermediate optical depths for cool
stars as exemplified by the a Cen B simulation. For the other stars the convection is
brought out in the daylight so to speak, and the largest fluctuations occurs at optical
thin heights. This indicates that the optical depth at the top of the convection zone
determines how vigorous the convection will be at the surface, as measured by the
intensity contrast or the turbulent- to totalpressure ratio. There are at least two
reasons for this. The escape of radiation makes the convective transport of energy
less effecient which means that the velocities have to go up in order to maintain
the flux. Second, the escape of radiation tends to enhance the temperature contrast
in horizontal layers, although the same contrast with optical depth only increase
slightly, ¢.e. the iso-7 surfaces are much more ondulated for stars with vigorous
convection.

Just looking at the granular patterns in Fig. 7.4, it is hard to tell the stars apart
from the shapes of the granules. Apart from the variation in intensity contrast
and of course the size, the six snapshots could just as well be six instances of one
simulation. Maybe a thorough statistical analysis can reveal some differences in the
shapes, but for now the pattern looks rather universal.

The spectra of sizes of horizontal features, as depicted in Fig. 7.7 displays some
rather broad maxima, corresponding to the typical granular size for each of the
simulations. These typical sizes, as derived from analytical fits to the spectra, are
indicated in the figure for each of the stars. In relation to such spectra it is very
common to infer the presence of turbulence and compare with Kolmogorov spectra
(e.g. Landau & Lifshitz 1987) of fully developed turbulence, but the impression from
Fig. 7.4 can hardly be said to suggest fully developed turbulence so I will refrain
from that and refer to Nordlund et al. (1997) for a discussion of turbulence in the
solar photosphere. The main conclusion from this article is that the shape of the
spectra is most likely caused by the edges of the granules and not by turbulence. A
few of the points supporting this idea have been mentioned in Sect. 7.1.

7.3 Convective overshooting

The up-flowing plasma contains so much kinetic energy that it does not stop at the
top of the convection zone, but penetrates far into the convectively stable layers.
Nesis & Mattig (1989) have deduced the RMS velocity field in the overshoot re-
gion from observations of spectral line profiles across the solar disk. Their analysis
was restricted to describe the velocities in terms of a family of four-parameter func-
tions with height. They find velocities smaller than ours by factors of about 3, and
their horizontal velocities, probably restricted by the functional form, follows the
vertical, in gross conflict with our results. There is not much to guide the analysis
of this kind of observations if more than orders of magnitude estimates are wanted.
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This merely to stress that this region in stellar atmospheres is extremely messy.
As mentioned in relation to Fig. 7.5, I find it far more fruitful to let observations and
theory meet as close to the observations as possible now we have the simulations.

In the abcense of chemical gradients, the top of the convection zone is defined by
the Schwarzschild criterion (e.g. Kippenhahn & Weigert 1990), according to which
a layer is stable against convection if

V = V=V, <0. (7.4)

As the superadiabatic gradient can also be expressed by means of the entropy, S,

as
Ve= ——— 7.5
cpOlnP’ (7.5)
Eq. (7.4) implies that the top of the CZ occurs at an entropy extremum — a
minimum. If a layer is stable, a fluctuation will oscillate around its origin [referred
to as g-modes for gravity modes. e.g. Christensen-Dalsgaard (1994)], whereas if the
layer is unstable, the fluctuation will grow and be accelerated away from its origin.

e The correlation between velocity and density changes sign at the boundary of
the CZ, thereby changing the effect of buoyancy. In Fig. 7.8, panel a, this can
be seen from the density curves. Following the dashed upflow curve, we notice
that that upflow approaches the surface while increasing its density deficiency
(relative to the full horizontal average, shown with solid curves), but in the
photosphere the upflows suddenly get over-dense and are accelerated back
towards the CZ and vica verca.

e Because buoyancy now works against a rising motion, pressure forces will tend
to redistribute the energy into the horizontal directions, resulting in large
horizontal velocities persisting to greater heights than the vertical velocities

(see Fig. 7.8, panel b)).

e - Or put in another way: The sudden increase in the density gradient in
the photosphere (See Fig. 7.8, panel a)), forces an increase in the horizontal
velocities in order to divert the vertical flow into the downdrafts, to maintain
a zero net mass flux. Using the equation of mass conservation, Eq. (2.4) on
an upflow and assuming steady state and neglecting the horizontal variation
in density we get

Jun  dnp  Ju,

9s ~ "9z 92
where the density gradient is the dominating term in the upflow. s is distance
in the horizontal direction. Despite the decreasing vertical velocities with
height in the overshoot region, the increasing logarithmic density gradient
makes the horizontal velocities grow until the gradient levels off allowing the
horizontal velocities to decrease again.

(7.6)
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e As a consequence of the above point, we also see very large pressure fluctua-
tions, (panel ¢) of Fig. 7.8) which follows the horizontal velocities nicely (panel
b)). The horizontal part of the momentum equation, Eq. (2.2), is

P
% = —w, - Vi — Vil (7.7)

where the two terms on the right-hand side are depicted in panel d) of Fig.
7.8. This figure shows that the time derivative is rather small (though not
vanishing) explaining the correspondence between pressure fluctuations and
horizontal velocities.

o Correlation between velocity and temperature changes sign and gets very weak.

o Correlation between velocity and pressure grows. High pressure in the up-
flows, as shown in Fig. 7.8 panel c).

e The enthalpy flux turns slightly negative above the convection zone. Both
energy and density correlation with vertical velocity change sign, but the speed
and filling factor of the downward motions grows and results in a negative
enthalpy flux.

e The kinetic energy flux remains negative, but decreases fast with height and
is always smaller than the enthalpy flux.

e The total convective flux, Fg + Fyn is therefore small and negative in the
overshoot region (cf. Fig. 7.1).

o The enlarged part of Fig. 7.1, showing the overshooting convective flux, dis-
plays a rather counter-intuitive behaviour. The more vigorous the convection
the smaller the flux.

e The main feature of overshooting is the non-zero velocity field above the CZ.
This velocity field gives rise to a turbulent pressure, supplying more than half
of the total turbulent levitation of the atmosphere as shown in Fig. 7.10.

It has been attempted to model the overshoot region in 1D plane parallel atmosphere
models, with a positive convective flux (Kurucz 1993; Kurucz 1992¢) which is rather
unphysical as also discussed by Castelli et al. (1997). As can be seen from Eq. (6.6)
and (6.9) the enthalpy flux is proportional to Vi. The factor of proportionality
contains the ad hoc assumptions that MLT is based on, but the proportionality
is physical (Kippenhahn & Weigert 1990, chapter 30.4.1), which means that the
convective flux (kinetic + enthalpy) has to get negative outside convection zones.
The convective flux in the overshoot region is not the most important phenomena
of this region. After all it only amounts to less than one percent of the total flux.
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The velocity field and the inhomogeneities are far more important. | have already
shown how the velocity field is responsible for the horizontal pressure fluctuations,
but the vertical velocities also contribute to the momentum balance with a turbulent
pressure as shown in Sect. 2.1. Taking the time average of Eq. (2.10), the buoyancy
term will vanish (if there is no net mass flux in or out of the simulation domain)
and we can write down the equation of hydrostatic equilibrium

0

(P + {Pe)) = —go). (73)

Turning around the expression and integrating

. Z2 aPtot dz

we just find the height interval we are integrating over, but it is also the distance
the pressure has lifted the mass. If there were no pressure all the mass would be at
z1 due to the gravity.

This leads me to define the atmospheric levitation by turbulent pressure

#2 Pur d
A= / OPturt d2 (7.10)

0z glo)

which summarizes the turbulent pressure contribution to hydrostatic support into
a height. Keeping the o, T, P,-stratification fixed, turning off the turbulent pres-
sure would cause a decrease, A, in the atmospheric extent. The turbulent pressure
does however alter this stratification so the actual difference in atmospheric height,
between including and neglecting P, will not be A.

7.4 Comparison with the mixing-length
formalism

In the mixing-length formalism the convective flux is transported by blobs of warm
rising or cool sinking plasma. Such convective eddies' are assumed to be rather
spherical or at least to have about the same dimensions in the radial as in the
horizontal directions. There are various choices for the size of an eddy. The most
common choice is a size, [, proportional to the local pressure scale height, [ = aHp,
where « is a scale-factor of order unity (Bohm-Vitense 1958). Another popular
choice is that of density scale height, [ = aH,, and most recently, it has been
suggested to use [ = az, where z is the distance to the top of the convection zone
(Canuto & Mazzitelli 1991; Canuto & Mazzitelli 1992). It is furthermore assumed
that the blobs only travel a distance comparable to their own size before they dissolve

!That is eddy not Eddy. See (Adams 1989b, pp.323) for a thorough confusion on this subject.
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and thermalize with their surroundings. This is obviously in conflict with simulations
presented here, displaying correlation lengths far longer than a pressure scale height.
In fact the downdrafts in the simulations persist to the bottom of the simulations
although they often merge with others. This is a correlation over more than 10
pressure scale heights.

The upflow, just being what is in between the downdrafts, is even more correlated
with height as it rises (almost) adiabatically before it cools of very abruptly at the
surface.

A mixing-length proportional to the pressure (or rather the density) scale height
is, however, justified. From the filling factors in Fig. 7.11 we see that the upflow
always has approximately the same fraction of a horizontal area at its disposal
(at least below the photospheric transition region). When the dense plasma flows
upward from z; to zg, a fraction (91 — p2)/01 has to leave the vertical flow (overturn)
in order to maintain the density stratification. The fraction that has to leave, or
the dilution of the upflow, per height, is consequently dlng/dz — the inverse of the
density scale height, H,. So the mixing-length is in fact not the distance over which
a convective eddy dissolves, but rather the distance over which the flow is diluted
by overturning — a dilution length.

The superadiabatic gradients resulting from this assumption about the mixing-
length, has a much larger spread in the peak values, as compared to the simulations,
as can be clearly seen from Figs. 6.2 - 6.7. The V| from the simulations are compared
in Fig. 7.9, and here we see how the area of Vg, i.e. the overall effeciency of the
convection as also the depth of the convection zone, mostly arise from a variation in
the width of the superadiabatic peak. We also notice how this width is grouped by
vehemence of the convection, exactly as the intensity contrasts in Fig. 7.4. The top
of the convection zone is marked by V4 = 0 and is ordered in the same way, although
less pronounced, as on the optical depth scale, with the more vigorous convection
zones extending higher than the more sedate. Also the Vg from the simulations
is smaller and seems to decrease faster with depth in the interior of the convection
zone, as compared to the mixing-length models presented in Figs. 6.2 - 6.7. Whether
this is just due to the differences in height and width of the V peak or if it is caused
by more fundamental flaws in the mixing-length formulation is still unclear.

The neglect of kinetic flux might be the more dubious approximation, depending
on the behaviour deep in the convection zone below the simulations. From Fig. 7.1
and 7.11 one could speculate that Fy;, below the surface, stays almost a constant
fraction of the total flux. The convective efficiency factor,

V-V

= 7.11
V' — Vo (7.11)

v
of MLLT is a measure of the “heat excess” of the eddie with respect to its surroundings
relative to its superadiabaticity (recall that V,q < V' < V). As the enthalpy flux
is proportional to (V — V') the v found from solving Eq. (6.13) neglecting Fii, will
be too low. Including Fy,, Fg will be larger than the total flux and the actual
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efficiency will be larger than that found from Eq. (6.13).

The fup # % necessary to produce a non-vanishing Fi;, introduces an asymmetry
between the rising and sinking eddies and this will of course alter the enthalpy flux
as well. How to include this asymmetry, in a self-consistent and realistic way, is
unfortunately rather unclear.

[ am convinced that such asymmetric models of convection, i.e. two-stream mod-
els, will be the next step towards realistic modelling of convection in stellar structure
and evolution calculations. Such models have to contain a lot of assumptions about
geometries and correlations, but with the simulations to lean upon, much more so-
phisticated and realistic assumptions can be made with a hopefully higher degree
of generality and a closer connection to the micro physics. An inclusion of radiative
effects in the photosphere, for example, would make a convection theory rather more
trustworthy. Various versions of two-stream models have been investigated by e.g.

Nordlund (1974; 1976) and Rieutord & Zahn (1995).

7.5 Comparison with the theory of Lydon, Fox
and Sofia

This theory by Lydon et al. (1992) is in many ways a vast improvement over MLT
formulations. It is based on simplified expressions for various correlations, derived
from 3D numerical simulations. Based on these correlations, they derive expressions
for the convective flux, as functions of the local state of the plasma. It is therefore
a local theory, not taking into account the history of the plasma flows, just as the
standard MLT. One of the improvements over MLT is the inclusion of the kinetic
energy flux in the expression of the total convective flux

Fconv — FH + Fkin7 (712)

together with the realization that Fi;, < 0.

This being said, there are also several shortcomings of their formulation. The
most serious problem is the extent of their simulations. They only extend to the top
of the convection zone, thereby omitting all the dynamics and the important cooling
in the photosphere and overshoot region. Their evaluation of the radiative transfer
in the diffusion approximation, is thereby justified. Most of the various simplified
expressions for the correlations also break down near the surface, due to the very
effects (inhomogeneities, radiative cooling, etc.) that determine the effeciency of
the convection. The top and bottom boundaries of the simulations are furthermore
impenetrable and stress-free (Chan & Sofia 1989), which means that they will reflect
all flows, thereby having a large effect on the simulation.

As I find that a detailed and realistic treatment of the transition region in the
photosphere is very important for the resulting efficiency of the convection, I consider
the results of their approach to be rather dubious, despite their success in modelling

both the Sun (Lydon et al. 1993b) and the o Cen system (Lydon et al. 1993a).
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Fig. 7.8: A selection of hydrodynamical quantities for the star with the most sedate
convection, o Cen B, and the star with the most vigorous convection Procyon. In
panel a) the monotonically increasing curves shows the density, associated with the

left axis. The other curves and the right axis shows the adiabatic exponent, I'y.
In the upper panels, a)-c), dotted lines shows horizontal averages over downflows,
dashed lines over upflows and solid lines are total horizontal averages. Panel ¢) shows
the gas pressure excess in the upflow and deficit in the downflow. The plots in panel
d), illustrating the momentum equation (2.2), are made from single snapshots and
are not separated in up- and downflows. M is the Mach number, |u|/c,, where ¢,

is the adiabatic sound speed, Eq. (2.20).
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Fig. 7.9: The superadiabatic gradient for the six stars. Notice the different heights
of the top of the convection zone (where the curves crosses the dotted zero-line)
relative to the photosphere. The weakest convection occurs in a Cen B where the
top of the CZ is buried just below the photosphere, whereas the stars with stronger
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Fig. 7.10:The normalized atmospheric levitation, A, as calculated from Eq. (7.10).
The total expansion of each of the atmospheres, is given to the left of the curves.
Notice that at least half of the levitation occurs above the convection zone. The top
of the convection zones can be inferred from Fig. 7.9.
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Chapter 8

High-precision solar simulation

This simulation has been performed on a 100 x 100 x 82 grid, with the solar com-
position, X=73.69%, Y=24.50% and Z=1.81%, as listed in Tab. 3.1, and a sur-
face gravitation, geur= 2.740-10* cm s™2 (see Sect. 5.1.1). The effective temperature
Teg = 5776.6 K, has been carefully adjusted to give the observed value of 5777 K
(see Sect. 5.1.1).

The motivation for such a high precision simulation are many. First of all it is
instrumental for our understanding of the behaviour of p-modes in the upper layers
of the Sun. A horizontally and temporal averaged version of the simulation (as
described in Sect. 6) is matched to a standard 1D-envelope (¢f. Sect. 6.2) and the
ensuing combination is then used as input for the evaluation of p-mode frequencies.
This has been done with great success (Rosenthal et al. 1998), helping to explain
the discrepancy between observations and standard solar models.

8.1 The surface flux

As part of the nursing of the simulations, I routinely calculate detailed emergent
fluxes, to make sure that the binned radiative transfer (¢f. Sect. 4.2) reproduces
the detailed version within a per cent. The radiative transfer is just evaluated for a
single vertical slice, rather than for the whole simulation box to save CPU time.

Fig. 8.1 presents the results of such a calculation. The upper panel shows the full
ODF spectrum, consisting of 100 A wide giant lines, compared with the observations
compiled and combined by Colina et al. (1996). The observations are smoothed
with a 10 A wide Gaussian, making it hard to compare directly with the rapidly
fluctuating ODF spectrum. The two spectra do indeed look very dissimilar.

In panel b) T have therefore plotted the accumulated fluxes (trapezoidal integra-
tion), which are much easier and relevant to compare. The bumpy structure of the
ODF spectra is due to the regular size and shape of the giant lines, and does not
affect the good agreement.

In panel ¢) I have plotted the difference between the two accumulated fluxes in
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Fig. 8.1: A presentation of the emergent flux from the high-res solar simulation,
and comparison with observations. Panel a) shows the full ODF spectrum together
with the observed solar flux (Colina et al. 1996) (grey curve). I have also plotted
the Planck curve for comparison. Panel b) is a plot of the accumulated fluxes
for the simulation and the observations. Panel ¢) is a plot of the difference of
the accumulated flux (simulation—observation) relative to the nominel flux. Panel
d) depicts the line-blocking derived from the ODF spectrum and compares with
observations (Michard 1950) (gray curve).
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the sense (simulation—observation), in order to reveal the differences. This is just
for a single snapshot and the picture changes noticeable with time, but the trend of
too much UV flux and too little visible and IR flux is persistent.

In panel d) T have plotted the line blocking, defined as

A+AN
/ Fyd)'

A+AN ¢ ?
/ FEont gy
AX

ex=1-—

where F{°" is the continuum flux and A) is the resolution of the line-blocking
coeflicient. From this definition we see that ¢ is the fraction of flux blocked out
by the lines. The most serious problem in evaluating blocking coefficients, is the
determination of the continuum flux in the UV part of the spectrum. As mentioned
in Sect. 3.3.3 the UV is crowded with lines and it is impossible directly to observe a
continuum. Derivation of line-blocking from observations in the UV therefore rests
on assumptions and models, and should not be considered as directly observable
quantities. The continuum fluxes for the simulation are just calculated as a linear
interpolation between the low-opacity triangulation point of all the giant lines. This
procedure can underestimate the line-blocking, by underestimating the continuum
flux.

The observed line-blocking (Michard 1950) (gray curve in Fig. 8.1) follows the
curve for the simulation, although the observed blocking is systematically a few
percent lower. This can very well be a confirmation of my suspicion that the bf-
absorption from metals is larger than previously assumed, so that a larger part of
the missing UV opacity is due to bf-absorption rather than line absorption (see Sect.
3.3.3). The missing UV opacity problem (Kurucz 1992b) is not necessarily solved
when the modelled fluxes agree with observations. Also the distribution between
continuum and lines, as described by the line-blocking, has to agree.

The surface temperature of the simulation changes from minute to minute, so to
make a fair comparison, I scale the simulation fluxes with the Planck functions of
the actual and the nominel 7.g.

The observations only extend up to 25000 A, which means they miss a fair
amount of IR flux. I simply pad the simulation above 25000 A, to compensate
for this, and then scale the whole patch to obtain the nominel flux corresponding to
Ter = 5777K (see Sect. 5.1.1). The observations seems to give a too low total flux,
even with the padded IR flux. As the observations are merged from a number of
different atlasses obtained with different techniques, I do not find this discrepancy
alarming.

8.2 The 1D envelope match

The matching to a 1D envelope model, is performed as described in Sect. 6.2, and a
summary of the results can be seen in Fig. 8.2. The single most spectacular result
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of this envelope match, is the derived depth of the convection zone:
doz = 28.61 £+ 0.02%, (8.2)

which is in good agreement with inversion of helioseismic observations, 28.7 & 0.1%
(Basu & Antia 1997) in accordance with similar results of Christensen-Dalsgaard
et al. (1991). The uncertainty I state for my result (8.2), is based on RMS deviations
of d¢z, when basing the envelope match on different subsets of the total timeserie.
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Fig. 8.2: Comparison of the horizontally averaged high precision solar simulation

and the matched 1D envelope model. The solid line shows the averaged simulation
and the dotted line is the matched envelope model.
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If this result is not a highly unlikely coincidence (mind Murphy), this indicates
several things. It indicates that the simulation gives a good representation of the
solar atmospheric mean stratification, which implies both that the atomic physics is
in good agreement with the real world, and that the hydrodynamics, as simulated
with this rather modest grid resolution, captures the important effects. It also
demonstrates that the matching procedure is sound, and that 3D RHD simulations
can be used as upper boundary conditions for 1D stellar structure calculations.

The levitation of the atmosphere caused by the turbulent pressure, as calculated
from Eq. (7.10) is A = 69.4km. On the other hand, the difference in height between
the 1D (with some turbulent pressure) and the 3D case, as inferred from the density
plot in Fig. 8.2, is almost 100 km. This (substantial) extra levitation must be due to
the effects of inhomogeneities and non-linear fluctuations (see Sect. 6.1). Comparing
the Py plot in Fig. 8.2 with the levitations in Fig. 7.10, we notice that the 1D
turbulent pressure can only supply about 20% of the full, 3D turbulent pressure
levitation.

The superadiabatic gradient is somewhat larger in the simulations than in the
MLT envelope (lower left panel of Fig. 8.2), which is in accordance with observations.
Attempts to model the hydrogen Balmer line shapes, for example, suggest a large
Vs, which can only be produced by MLT if @ = 0.5 (Fuhrmann et al. 1993). Such
a low value is, however, incompatible with solar evolution calculations. Fuhrmann
et al. (1993) also made the same analysis for Procyon and got the same result. My
envelope match of Procyon on the other hand, suggests a slightly smaller Vg (see
Fig. 6.6). As Procyon experiences a far more violent convection, as does the Sun, |
am convinced that turbulent pressure levitation, large inhomogeneities and super-
sonic flows render MLT rather inadequate for describing phenomena as temperature
sensitive as Balmer-line formation.






Chapter 9

Future prospects

This section is a small summary of projects that would be relevant to spend some
time on in the future. One of the first and easiest things to do better is of course to
increase the spatial resolution of the simulations, having the main effect of increasing
the turbulent to total pressure ratio, but also altering the transport properties of
the simulation somewhat.

And then it would also be nice to conclude the picture by including magnetic
fields and maybe even rotation and sphericity.

9.1 Atomic physics

Much of this work has been concerned with updates of the EOS and opacity routines,
but this has resulted in some inconsistency between the actual EOS and the EOS
used for the computation of continuous opacities (see Sect. 3.1) — and the line
opacity is based on yet a third EOS. This certainly needs some tidying up.

The release of the OP data makes it desirable to include these in a future version
of the table program, which would also be consistent with the use of the MHD-
EOS, having the same theoretical basis (see chapter 3). In Sect. 3.3.3 I also suggest
the use of total opacity distribution functions, including both line and continuous
absorption, or the equivalent total opacity sampling, which I would also like to carry
out some day.

9.2 Other stars

Those were some of the improvements that can be done to the convection simula-
tions, but there are also a lot of things that can be done to the analysis and further
usage of these simulations. In this project 1 have only investigated the (Tef, Gsurt)
plane. It would also be interesting to investigate the behaviour as function of Y
and 7, the abundances of helium and heavier elements. In that respect it is inter-
esting to look at all the aspects I have addressed in this thesis. The change in the

101



102 CHAPTER 9. FUTURE PROSPECTS

mixing-length parameter a with chemical composition, is needed to model in detail
isochrones for globular clusters, which is one of the best tests of our stellar evolution
models. We also need high-metallicity simulations to be able to investigate the «
Cen system correctly.

Low-metallicity stars are interesting because they consist mainly of primordial
matter, that is matter that has not been processed in other stars, but comes more
or less directly from the Big Bang. In connection to that, it would be very valuable
to have line profiles of for example Li and Be transitions in low-Z stars. The exact
profile, perturbed differently by turbulence at different depths, is very important for
abundance determinations.

And then I have only investigated a very small region it Teg and ggy s 1n the solar
neighbourhood. I would like to go beyond 1 Boo towards the giant area, and I also
think it would be interesting to see what a very thin convection zone, so thin that
it can be contained in the simulation box, looks like.

9.3 Confronting observations

There are also a lot of diagnostic work that has to be done, especially for the high
precision solar simulation (Sect. 8). By diagnostic work, I here mean the computa-
tion of directly observable quantities, to assess the validity of the simulations, and
in particular, to find out if the spatial resolution is sufficient.

The wings of the Balmer lines are one of these strong diagnostic tools, for the
present with some discrepancy between theory and observations (Fuhrmann et al.
1993). For the solar case I also find it important to reconcile the observed limb
darkening (Pierce & Slaughter 1977; Pierce et al. 1977) with that of models (Black-
well et al. 1995). Using the simulations as a basis for a determination of the solar
iron abundance, might also reduce the current discrepancy between models and
observations (Blackwell et al. 1995; Holweger et al. 1995).



Chapter 10

Conclusion

The thesis presented here has primarily resulted in a number of realistic simulations
of stellar photospheres, ready for further analysis. The low-resolution simulations
are intended as starters for high-resolution simulations of each of the six stars,
with individual metallicities. These simulations can then be used as basis for a
detailed analysis of observational phenomena, and as atmospheric structure models
for oscillation calculations.

The six low-resolution simulations have already in this thesis proven invaluable in
guiding the construction of a self-contained, self-consistent and physically reasonable
convection formalism, for use in stellar structure and evolution calculations. I have
touched many issues related to this project in chapter 7, e.g. the importance of the
horizontal flows, the stratification in density, the significance of overshooting, and
so on, but only on a phenomenological level. I did, however, show that many of the
normal assumptions about convection are wrong.

In App. D I present a calibration of the mixing-length parameter, o, which
suggests that it has to vary with atmospheric parameters, Tog and gguf, in order to
match the simulations.

In App. E I take a closer look on the use of T-7 relations as boundary condition
for 1D stellar models, and stress the importance of using consistent combinations of
atmospheric opacities and 7T'-7 relations.

The kind of simulations presented here are instrumental for deriving simpler
formulations of convection, for use in stellar structure and evolution codes, as well
as for atmospheric models. Such a formalism should be made to reproduce the
observations of the simulations, as well as the broad range of observations of the sun
(helioseismological as optical), and can only then be used with confidence for other
stars.
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Appendix A

Opacity updates
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Fig. A.1: The solid line shows the currently used bf absorption (left axis) by the H~
ion (Broad & Reinhardt 1976). The thin resonance is left out in the calculations,
but I have included it in this plot to show a less commonly known feature of the
H~ opacity. The dashed line is the former bf absorption (Doughty et al. 1966).
The dotted lines are ff absorption (right axis) (Bell & Berrington 1987) for © =
5040/T =0.5, 0.8, 1.2, 1.6, 2.0 from bottom to top. The dot-dashed lines are the
old values (Doughty & Fraser 1966).

This appendix is a graphical presentation of the changes I have made to the con-
tinuous opacities. These new opacities are used both in the convection simulations
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and in the 1D envelope models.

All the plots presented here have the same x-scale, to make it easier to compare
between them. The vertical lines are also common to all the plots, where the dot-
ted lines show the extent of the previously used wavelength interval, and the solid

H, ff—absorption
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Fig. A.2: Comparison of the H; absorption. The solid lines are the present val-
ues (Bell 1980) and the dashed lines show the old values (John 1978), for © =
5040/T =0.5, 0.8, 1.0, 1.2, 1.6, 2.0, 2.8, 3.6 from bottom to top. Stimulated emis-

sion is included.

vertical line is the present extent, with the upper bound being the boundary of the
plot.

The bf absorption from the H™ ion (Fig. A.1) is generally slightly larger in the
new version. The new absorption below 1200A is due to the inclusion of excited
target states, e.g. the final atomic hydrogen state is an excited state. The spike
at 1130.5A is the resonance with the first excited state in the hydrogen atom, and
there are in fact several such resonances with the higher excited states at lower
wavelengths, but they give much smaller spikes and are smoothed out in this plot.
Because of the rather coarse wavelength resolution (30A near the resonance) used
for the continuous opacity calculations and the linear interpolation to the 12 times
finer ODF wavelength mesh, and because one of the wavelength points actually is
situated at the centre of the resonance, the opacity would be largely overestimated
if including this very thin resonance. It has therefore been left out, and only the
absorption edge remains. The ff absorption is consistently lower in the new version,
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especially towards shorter wavelengths and lower temperatures.
The changes in the ff-absorption by the H; molecular ion (Fig. A.2), mostly
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Fig. A.3:In this plot the solid line is the combination of bf and ff absorption by
the Hf molecular ion, including stimulated emission (Stancil 1994). The dotted line
shows the bf part of this absorption. For comparison is plotted the previously used
interpolation of Mihalas (1965) based on the semiclassical results of Bates (1952)
(dashed lines). The curves are for © = 5040/7" =0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.2 from
bottom to top.

affect the low-temperature/short-wavelength region, enhancing the H; absorption
by almost a factor of three. At longer wavelengths though, the update tends to
decrease the absorption slightly (see Bell (1980) for a discussion on the various
approximations in the two cases).

The update of the HI absorption has some effect at intermediate wavelengths
and low temperatures, where the absorption is lowered by as much as 15%, and
at high temperatures and short wavelengths where the absorption is increased by
up to 35 % (see Fig. A.3). The update consists in treating the bf absorption fully
quantum mechanical and including 423 bound rotational-vibrational states (Stancil
1994), as opposed to the semi-classical continuum of states used by Bates (1952).
Expanding the wavelength interval downward, also brings us out in a region that
would get undersampled with the old data.

I have not been able to find any newer calculations of absorption by the H4+H
quasi-molecule, so in Fig. A.4 [ just present what has always been used. My largest
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H+H absorption
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Fig. A.4: The absorption by the H+H quasi-molecule is unchanged but has been
included here for comparison with the other sources of absorption. The curves are
for © = 5040/T = 0.1 — 2.0 with steps of 0.1, from top to bottom.

concern with this opacity source is the extrapolations involved. The original data
(Doyle 1968) only cover A = 15406 667 A and 0 =0.5-2.0; the highest temperatures
and shortest wavelengths, having the largest absorption are not covered.

The inclusion of continuous molecular opacities (see Fig. A.5) has hardly any
effect for solar Rosseland mean opacities, as the abundances of these molecules are
quite low (see Fig. A.9). But there is a small effect anyway, and it increases going
to cooler stars. From Fig. A.9 we also see that the number densities of molecules
decrease more slowly with temperature for lower Teg and higher geus. Where (T') =
Teg for the respective stars, we observe more than a factor of ten in difference
between n Boo and « Cen B.

And now to the metallic opacities. The next three figures (Fig. A.6 - A.8) present
the absorption from metallic absorbers, 3-4 per plot for the same three temperatures
as in Fig. 3.6-3.8. The wavelength axis is organized in the same way, with the three
vertical lines, as in the previous figures in this appendix. Apart from these I have
also plotted the Rosseland weighting function for the three temperatures (dashed
curves on a commmon, but arbitrary scale), to give a feeling for the effect on the
Rosseland opacity.

Fig. A.6 displays the absorption by neutral Al, Mg and Si and Mg in particular
deserves a comment. The ground state absorption to the blue of 1621.5A has a rather
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OH, CH and H,0-absorption

Log(ay/[107°cm®]) per molecule

4.0 4.5 5.0
Logh/[A]

Fig. A.5: The continuous absorption by moleculesis new to the program. Absorption
by water vapour is shown by the thick solid line stopping at A ~ QOOOA(Cf. Matl,
p. 47). The thin solid and the dot-dashed lines are the absorption by OH and
CH-molecules respectively, for temperatures 1000, 5000 and 9000 K (Kurucz et al.
1987). For peaks the upper-most curve is for the lowest temperature and vice versa
for troughs.

peculiar behaviour which is the result of detailed quantum mechanical calculations
(Mendoza & Zeippen 1987). In this article the authors state a fitting formula which
is just about the most precise fitting formula I have ever seen for such a complicated
function. Their calculations does in fact result in further resonances, much narrower
and in between the resonances shown here, but by leaving out the appropriate
terms in the fitting formula, these resonances can be discarded (because of my low
wavelength resolution), without affecting the rest noticeable.

Also the absorption from the second excited state has a somewhat peculiar be-
haviour. The resonance at 3009A is actually used in a truncated version for my
calculations, again because of the wavelength resolution (100A). The resonance is
scaled down by a factor of 5.26 to give approximately the same Rosseland mean on
the adopted wavelength mesh and with linear interpolation to the 12 times finer ODF
wavelength mesh, as compared to the Rosseland mean of the resonance calculated
on a mesh that fully resolves the peak.

The continuous part of this absorption (2059—37571&) can be fitted nicely to a
function of the form; 1 — exp(x) for < 0, which gives rise to the funny hump on
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Fig. A.6: Bound-free opacity from atomic Al, Mg and Si per atom. The thick solid
line is the All opacity from Matl p. 32-33, the thin solid line is Mgl from Matl
p. 29-30 using the ground state absorption by Mendoza & Zeippen (1987) and the
dot-dashed line is the Sil opacity from Mat1l p. 33-34 supplied with tabulated values
(Peach 1967) for A > 5839A. All the opacities are shown for three temperatures;
3470, 5820 and 20 310K, from bottom to top and I have also plotted the Rosseland
weighting function for those temperatures, right to left.

the first excited state absorption at high temperatures. The rest of the absorption
in this figure is just expressed as power series in A with exponents ranging between
1.7 and 9.1.

Fig. A.7 displays the absorption by neutral He and Na and the Mg*-ion. It
is striking that the absorption by the second most abundant element, He, is so
much weaker than any of the other opacity sources considered here. And this is of
course the reason that the He abundance cannot be determined spectroscopically.
Comparing with Fig. A.6, we also see that neutral Mg has a considerable larger
absorption than its ion. All the absorption in this figure is expressed as power series
in A, with exponents ranging from 1 to 4, except for the ground state absorption by
Na, which is fitted by a sum of three Gaussians. The Na absorption is clearly the
largest in this plot, but it is efficiently counteracted by its low abundance (see Fig.
AL9).

Fig. A.8 is admittedly a bit crowded, showing both the N, Ca, Ca® and Fe
absorption. The Fe absorption is by far the most complex, including 26 states. In
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Fig. A.7: Bound-free opacity from atomic He, Na and the Mg* ion per particle. The
thin solid line shows the Hel opacity from Matl p. 20-22, The thick solid line is
the MglI opacity from Matl p. 31 and the dot-dashed line is the Nal opacity from
Matl p. 28. Temperatures and Rosseland weighting functions (dashed lines) as for
Fig. A.6.

Mat1 the Fel ground state absorption (Hansen et al. 1977, experimental) is presented
for wavelengths between 1150A and up to the ionization threshold of 1569A. This,
I have fitted to a sum of 7 Gaussians, clearly smoothing out a lot of the complicated
structure. According to new theoretical work by Sawey & Berrington (1992) there
is also substantial absorption at shorter wavelengths (their Fig. 3a), which I have
fitted (loosely) to a Lorentzian plus a logistic curve to approach the constant level
at short wavelengths. This Lorentzian is the peak at 1050A in Fig. A.8.
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Fig. A.8: Bound-free opacity from atomic Fe, Ca, N and the Ca* ion per particle.
The thin solid lines are for the Fel opacity (Matl p.40-41) and (Sawey & Berrington
1992) bluewards of 1 150A. both the NI opacity (Mat1 p. 25-26) and the Cal opacity
from Matl p. 38-39 are plotted with dot-dashed, and the thick solid line is the Call
ion opacity (Matl p. 39-40). Temperatures and Rosseland weighting functions
(dashed lines) as for Fig. A.6.
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Fig. A.9: The number densities of Hy-, Hf-, OH-, CH-, and H,0O-molecules, as func-
tion of mean temperature in a typical snapshot of the Sun. In this plot T also show
the abundances used for the heavier elements, to make it easier to judge the impor-
tance of the various opacity contributions. On the left abscissa I have the number of
the respective particles per gram of stellar matter, and on the right axis the number
densities are normalized to the numbers of hydrogen atoms.






Appendix B

Scattering by atomic hydrogen

The interaction of light with an electron in a bound state of a classical harmonic
oscillator with eigenfrequency wg, can be expressed as

ORay = oTw'Re[P(w)]? (B.1)
aine = oW’ Im[P(w)]?, (B.2)
where oRay is the Rayleigh scattering (3.34) and ajipe is the line absorption, due to
a complex polarizability P(w)
1
P(w) = (B.3)

- )
w§ — w? — 20y qw?

where the energies or cyclic frequencies, w should be expressed in units of Rydbergs,
for the above formulas to work, and 7 is the classical damping constant due to radi-
ation damping vq = a’w?/6 where a is the fine-structure constant. The Thompson
scattering ot given by (3.34), is the cross-section for scattering by free electrons and
also the limit of the atomic scattering cross-section, when w > wy.

For w < wy we have oray o< (w/wp)* which is the part of the scattering actu-
ally called Rayleigh scattering. The wy displays the fact that the bound electron
resonates with the other allowed bound states in the atom. The semiclassical, or
pseudo quantum mechanical, generalization is performed by introducing oscillator

strengths
Vi

. bl
w? — 20y;w?

P(w) = (B.4)

2

w? —
and using v; = fiya- The index ¢ enumerates the allowed bound states in the atom,
and to get the total polarizability from resonating with all states, (B.4) should be
summed over all states. The oscillator strengths f; are defined as conversion factors
between the classical results and the real world (experiments or quantum-mechanical
calculations). Tables can be found in, say, Allen (1973), p. 70.

This pseudo-quantum-mechanical treatment in fact works surprisingly well, in
comparisons with more sophisticated calculations (see Fig. B.2). Though the agree-

ment gets worse near resonances, the behaviour is still correct, and the long and
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Rayleigh scattering

Log(o/[10*cm?®]) per H
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Fig. B.1: The effect of changing the damping constant, on the absorption and scat-
tering cross-sections for atomic hydrogen around the first two Lyman lines, La
(1216A) and LG (1026A). The solid lines are the scattering part and the dashed
lines are the absorption part. The upper solid line and the lower dashed line corre-
sponds to using v; for the damping constant, whereas the lower solid and the upper
dashed correspond to using 5 - 10°v;. The thick solid curve is the sum of the latter
scattering and absorption and also the form I adopt for the Rayleigh scattering by
atomic hydrogen.

short wavelength limits are also correct. I would suggest Cox & Guili (1968; chapter
2.10d) for a more thorough discussion.
We can now write (B.1) as

dywt (Wi — w
ORay — UTW4Efi - (0

= [(w? — w?)? + (27w2)?2 (B.5)
afne = opw? (W = w?)? = (2yw?)?
line T ZZ: i [(W? —w?)? + (2%@2)2]2' (B.6)

Again, (B.5) is the scattering due to the real part of the polarizability and (B.6) is
the absorption stemming from the imaginary part.

The adopted damping constant, 7; is not all that physical, as collisional broad-
ening is not included. This would add a very complicated term in ¢ and T and
easily increase the damping constant (or equivalently, the line width) by orders of
magnitude.
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Rayleigh scattering
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Fig. B.2: Comparison of the present and previous Rayleigh scattering contributions
from H, Hy; and He. For H; and He, the presently used Rayleigh scattering is shown
with solid lines and is evaluated using Eq. (3.35). The dashed lines show the
old expressions for H and Hj scattering by Gustafsson (1973). The crosses for He
represents the calculations by Langhoff et al. (1974) and for Hy, the experimental
results of Victor & Dalgarno (1969). For scattering by hydrogen I now use Eq. (B.5)
(solid line), which is compared with the detailed quantum mechanical calculations
of Gavrila (1967) (small crosses). Notice that the atomic and molecular scattering
by hydrogen cross each other at about 2000A.

Fortunately, the line width only alters the shape of (B.5) in the immediate vicin-
ity of the line centre. Increasing the line width both broadens the resonance and
shifts the weight from scattering to absorption in the line centre. The broader line
has a smaller combined (scattering + absorption) amplitude in the line centre so
the scattering part is in fact depressed in the line centre, making the scattering part
a complicated and rapidly varying function of wavelength (¢f. Fig. B.1 or B.2).

As the wavelength resolution in the continuous opacity calculation is limited (20-
40 A in the resonance region), it is not advisable to use such an rapidly changing
function, so instead I use the sum oRay + agine and a large damping constant; 5-10*~;
(see Fig. B.1), to suppress the very thin lines. There is no physical reasons for
doing so, but it turns out to give features which can be resolved with the adopted
wavelength grid. Without this enlarged damping constant, the lines rising a factor
of 1000 above the “continuum” picked out with this prescription would contribute
far too much to a mean opacity.






Appendix C

An IDL! interface to the averaged
models

Convention for storing
Horizontally and Time Averaged Models of
Hydrodynamical simulations of stars

The mean models of stellar atmospheres, derived from hydrodynamical simula-
tions carried out with the program by Ake Nordlund and Robert F. Stein (e.g.
(Stein & Nordlund 1989; Nordlund & Stein 1990), have been stored to binary files,
’12means.dat’ (the 1’ standing for Lagrangian horizontal averages) or ’t2means.dat’
(where "t stands for optical depth, 7-scale) in the following way:

The first line is in ASCII-format and contains nz, nvar, g, which is the num-
ber of z-points (I normally use nz=82), the number of stored variables (currently
nvar=105) and g is the surface gravity. From UNIX it can be read by for example

head -1 12means.dat,
82 105 27395.9.

The surface gravity, as well as the effective temperature, can also be accessed from

IDL

IDL> print, teff(), gsurf()
B5775.75 27395.9.

The teff () function calculates the Teg from the time averaged total flux.

After this ASCII header the z-scale is stored in binary format; nx*4 bytes, and
then come all the data which are stored in a nz*xnvar#*4 byte block. I would recom-
mend to use my IDL-program, mtdata, for accessing the data. It assumes the file is
called *12means.dat’ and uses the logical file unit number (LUN) 4. So being in a
directory with a ’12means.dat’-file, you just type

IDL> Frad = mtdata(’FRAD’)
IDL> help, Frad

IDL® is a registered trademark of Research Systems Inc., Boulder, Colorado, USA.
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FRAD FLOAT = Array(82)

and you have the radiative flux at hand. The possible variable names are listed

below. All of these, except the last two ({Fraa) and z), can be extended with an

'up’ (lowercase!) or *dn’ to get the average in the up- or down-flow only, e.g.
IDL> vort_dn = mtdata(’Wdn’)

to get the vorticity in the down-flow. A quantity at a specific timestep, say number
10, can be retrieved with the command

IDL> Frad = mdata(10,’FRAD’)

IDL> help, Frad

FRAD FLOAT = Array(82),
And the whole timeseries can be retrieved by using

IDL> Frad = mdatat(’FRAD’)
IDL> help, Frad
FRAD FLOAT = Array(82,112)

if there are 112 timesteps in the file. There are 30 seconds between each timestep.
When changing from one ’12means.dat’-file to another, just

IDL> close, 4
and change directory to where the other file is. The surface gravity can be found
inside IDL by typing

IDL> nz = 0 & nvar = 0 & g = 0.0

IDL> point LUN, 4, 0

IDL> readf, 4, nz, nvar, g

after the file has been opened with a previous mtdata call. With the Frad from
above, the effective temperature can be found with

IDL> Teff = (Frad(0)/5.67051e-5)".25
as ' = 0T, and the z-scale is yours by typing
IDL> z = mtdata(-1)

All the horizontal averages are Lagrangian, i.e. performed on the same column
density scale. First the column density

h(z) = /OZi o(z;)dz;

is calculated for the first timestep, lets call it hg. The index 7 on the z’s are just
to remind us that z is a discrete array. For all the subsequent timesteps ¢, a new
interpolated z;-scale is calculated to have the same h-points by

Zimew(t) = hy ' (ho(2i))

All the variables are then, at each timestep, interpolated to these z-scales before
summing up in the averaging. This Lagrangian averaging is performed to avoid
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problems due to the excited p-modes: the averaging in this way does not smear out
features and it is possible to obtain a fairly good average over a time shorter than
one period. The files, though, have been averaged over the order of 10-20 periods.

The optical depth averages are evaluated on an equidistant log,, 7-scale, with nz
points and ranging from —3 to 2. For each time step, | evaluate the iso-7 surfaces,
interpolate the various variables onto these surfaces using cubic splines, and then
average the variables on these iso-7 surfaces. These averages are also calculated
for the up- and down-flows separately. The 7-averages comes in two versions: a
Rosseland 7gess average and a 5000 A monochromatic Tsooo-average. The latter have
filenames ’t2means.dat.5000°’.

The different pressures are written out explicitly to avoid confusion and P, =
Py + Piurb. Also remember that 2 = R — r, meaning that z is pointed inward in the
star. FENT is the Lagrangian part of the enthalpy flux, that is, a possible net mass
flux has been removed. The same applies to FKIN, the kinetic energy flux. When
calculating derivatives, I, among other things, use that

TdS =dU + P,dV = de — &dlng = (i) = &.
0 dlng J ¢ 0

The programs and data files are available upon requests (as long as the request
is accompanied by a free cold draught beer :-)
Suggestions and questions are very welcome.

Good luck!

Regner Trampedach, March 18, 2000
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RHO = (o) = ¢
E = (e)=¢
T = (T
MT = T =1T(g¢)
PG = <Pg>
MPG = P, = Py(p,¢)
CS = <Cs>:< F1&>
0
MCS = ¢ = Flig
9

CP = (cp)= <

MCP = c¢p, = cp,(0,2) =

- (3]
0
de

MCV = ey = cv(p,6) = (
0

B B 0lnP, & Oln P,
ows = ()= ((F) + 5 (%57) )

MGAM1 = [y =T(p,2) = (alnpg> (8,) + Py (alnPg) (3.2)
£ e

de

TAU = (7)= </ kdz) for horizontal mean

bottom

MTAU = 7 =r17(p,&)= / k(0,¢)dz for horizontal mean

Z — 2/[Mm]  for 7—averages
T
MDAD = Vaq= Vaa(2,2) = F?’F: 1, Iy—1= % (algfg) (0,)
S = (Vi) = g — (Vs
MDS = V,=V.(3,8) = ;ITH;; — Vad
(85/0z)

DSS = (Vy) =

(cp,0InF,/0z)



MDSS

MS
UR
UR2

PT
FENT
FKIN

UH2
PGAM
FRAD

T T

_ 1 08

Ve = aalnpg

(5)

S(e,¢)

Uradial) = —(Uz)

ufadial> = juﬁ

|S) = (IV x df)

Pour) = {(0u?)

FH> = <(59 + Pg)ur>L = <(5 + Pg/@)(gur - <Qur>)>
Fyin) = 3(ouru®)y, = §(u’

i = 5{u(our — (eur)))
uhorisontal> = <ur + uy>
3

Frad>

z/[Mm] for horisontal mean

=
v

log 7 for T—averages.

133






Appendix D

Calibrating the mixing-length
with 3D RHD simulations

To be submitted to Astronomy & Astrophysics
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Appendix E

On using 7T-7 relations as outer
boundary condition for stellar
models

To be submitted to Astronomy & Astrophysics
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