PARALLEL CODE : DOMAIN DECOMPOSITION

- If the code were fully finite-difference:
 - all operations are local
 - 1D, 2D or 3D domain decomposition possible
 - pass ghost points
- However, this code is HYBRID PSEUDO-SPECTRAL/FINITE-DIFFERENCE
 - Spectral representation is a global not local operation

OPTIONS:

- Parallel FFT (consult Dubey, Cattaneo, University of Chicago)
 - Communication what is needed between processors
- Transpose-based FFT
 - do all FFTs in processor
 - transpose data when necessary

PROS AND CONS:

- Parallel FFT
 - Pro: Flexible - 1D, 2D or 3D domain decomposition
 - Pro: Efficient - minimum communication
 - Con: Very tough to program (serious programmer, ~ 2 years)
- Transpose-based FFT
 - Con: Domain decomposition limited: must include at least one full dimension. **Max no of processors can use is NZ - severe restriction.**
 - Con: Theoretically less efficient
 - Pro: In practice, about the same efficiency!
 - Con: Have to work hard on transpose to get that efficiency
 - Pro: Much easier to program – use standard/vendor FFTs; only need to write transpose (idiot like me ~ few weeks)