ASTR/GEOL-2040: Search for life in the Universe: Lecture 12

• Temperature on a planet

AMINO ACIDS

• Earth's thermostat

Axel Brandenburg

(Office hours: Mondays 2:30 – 3:30 in X590 and

Wednesdays 11-12 in D230 → today only to 11:30)

ACETYLENE

The hotter, the more it loses

$$F = \sigma_{\rm SB} T^4$$

$$\sigma_{\rm SB} = 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{K}^{-4}$$

- 100 K
- 1000 K
- 10,000 K

- \rightarrow 5.67 W m⁻²
- \rightarrow 5.67x10⁴ W m⁻²
- \rightarrow 5.67x10⁸ W m⁻²

Lecture 8: solar energy

Table 1.4	Present-day	sources of e	energy	averaged	over the Earth.
-----------	-------------	--------------	--------	----------	-----------------

Source	Power/W m ⁻²	J/m2yv
total solar radiation	360	1.1-1010
geothermal heat flow	8.1×10^{-2}	2.6-106
electrical discharges (lightning)	5.4×10^{-8}	1.7
cosmic rays	2×10^{-11}	6.370
shock waves (atmospheric entry)	1.5×10^{-8}	0.47

- We get 360 W/m² (daily average)
- What happens with most of it?

What happens with that energy

- We get 360 W/m²
- Supply all our solar panels
- Photosynthesis \rightarrow build trees etc
- Drive hurricanes
- What else?

What else?

- We get 360 W/m²
- Needed to keep Earth warm
- How warm?

$$F = \sigma_{\rm SB} T^4$$

$$\sigma_{\rm SB} = 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{K}^{-4}$$

• 100 K

 \rightarrow 5.67 W m⁻²

• ??

 \rightarrow 5.67x10¹ W m⁻²

• ??

 \rightarrow 5.67x10² W m⁻²

• 77

 \rightarrow 5.67x10³ W m⁻²

• 1000 K

$$F = \sigma_{\rm SB} T^4$$

$$\sigma_{\rm SB} = 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{K}^{-4}$$

• 100 K

 \rightarrow 5.67 W m⁻²

• ??

 \rightarrow 5.67x10¹ W m⁻²

• ??

 \rightarrow 5.67x10² W m⁻²

• ??

 \rightarrow 5.67x10³ W m⁻²

• 1000 K

$$F = \sigma_{\rm SB} T^4$$

$$\sigma_{\rm SB} = 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{K}^{-4}$$

• 100 K

 \rightarrow 5.67 W m⁻²

• ??

 \rightarrow 5.67x10¹ W m⁻²

• 300 K

 \rightarrow 5.67x10² W m⁻²

• ??

 \rightarrow 5.67x10³ W m⁻²

• 1000 K

$$F = \sigma_{\rm SB} T^4$$

$$\sigma_{\rm SB} = 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{K}^{-4}$$

• 100 K

 \rightarrow 5.67 W m⁻²

• 180 K

 \rightarrow 5.67x10¹ W m⁻²

• 316 K

 \rightarrow 5.67x10² W m⁻²

• 560 K

 \rightarrow 5.67x10³ W m⁻²

• 1000 K

$$F = \sigma_{SB} T^4$$

$$\sigma_{SB} = 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{K}^{-4}$$

- 100 K
- \rightarrow 5.67 W m⁻²
- 180 K

 \rightarrow 56.7 W m⁻²

• 316 K

 \rightarrow 567 W m⁻²

• 560 K

 \rightarrow 5,670 W m⁻²

• 1000 K

 \rightarrow 56,700 W m⁻²

$$F = \sigma_{\rm SB} T^4$$

$$\sigma_{SB} = 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{K}^{-4}$$

• 180 K

 \rightarrow 56.7 W m⁻²

• 273 K

 \rightarrow 315 W m⁻²

• 293 K

 \rightarrow 418 W m⁻²

• 316 K

→567 W m⁻²

Conclusion

- We get 360 W/m²
- How warm?
- \rightarrow slightly above freezing
- Forgot about cloud cover
- \rightarrow 30% reflected
- \rightarrow get only 70%
- \rightarrow only 255 K (p.49 of RGS)
- Why is it usually much warmer?

Why not 255 K on Earth?

- •
- •
- •

Two "black" bodies

- Hotter → brighter
- Hotter \rightarrow color changes
 - Yellow \rightarrow white \rightarrow blue
 - Cooler → deeper red

Solar flux at the Earth?

$$4\pi r^2 F_r = \text{const} = L$$

$$L = 4\pi R_{\rm Sun}^2 \sigma_{\rm SB} T_{\rm Sun}^4 = 4\pi r^2 F_r$$

Fraction intercepted by the Earth?

 $\pi r^2 F_r = \text{total energy/sec}$

In & outgoing energy/sec

- A. Earth must receive more than it loses
- B. Earth must receive as much as it loses
- C. Earth must receive less than it loses

In & outgoing energy/sec

- A. Earth must receive more than it loses
- B. Earth must receive as much as it loses
- C. Earth must receive less than it loses

Eliminate F

$$\pi R_{\rm E}^2 F_r = 4\pi R_{\rm E}^2 \sigma_{\rm SB} T_{\rm E}^4$$

$$4\pi R_{\rm S}^2 \sigma_{\rm SB} T_{\rm S}^4 = 4\pi r^2 F_r$$

Google for "Effective Temperature"

$$T_{\text{Earth}} = T_{\text{Sun}} \left(\frac{R_{\text{Sun}}}{2d} \right)^{1/2} (1 - A)^{1/4} \le 279 \text{ K}$$

where

- $T_{Earth} \rightarrow Earth's temperature$
- $T_{Sun} \rightarrow Sun$'s surface temperature
- $R_{Sun} \rightarrow Radius of the Sun$
- d → distance between Sun and Earth
- A \rightarrow Albedo (=how much is reflected)

temperature:

$$T=\sqrt[4]{rac{L(1-a)}{16\pi\sigma D^2}}$$

Note that the planet's radius has cancelled out of the final expression.

The effective temperature for Jupiter from this calculation is 112 K and 51 Pegasi b (Bellerophon) is 1,258 K. [citation needed] A better estimate of effective temperature for some planets, such as Jupiter, would need to include the internal heating as a power input. The actual temperature depends on albedo and atmosphere effects. The actual temperature from spectroscopic analysis for HD 209458 b (Osiris) is 1,130 K, but the effective temperature is 1,359 K. [citation needed] The internal heating within Jupiter raises the effective temperature to about 152 K. [citation needed]

Surface temperature of a planet [edit]

The surface temperature of a planet can be estimated by modifying the effective-temperature calculation to account for emissivity and temperature variation.

The area of the planet that absorbs the power from the star is A_{abs} which is some fraction of the total surface area $A_{total} = 4\pi r^2$, where r is the radius of the planet. This area intercepts

Google for "Effective Temperature"

$$T_{\rm E} = T_{\rm S} \left(\frac{R_{\rm Sun}}{2d}\right)^{1/2} (1-A)^{1/4} \le 279 \text{ K}$$

What would happen if the Earth were bigger

- A. The Earth gains more heat
- B. The Earth gains less heat
- C. The Earth temp remains unchanged

temperature:

$$T=\sqrt[4]{rac{L(1-a)}{16\pi\sigma D^2}}$$

Note that the planet's radius has cancelled out of the final expression.

The effective temperature for Jupiter from this calculation is 112 K and 51 Pegasi b (Bellerophon) is 1,258 K. [citation needed] A better estimate of effective temperature for some planets, such as Jupiter, would need to include the internal heating as a power input. The actual temperature depends on albedo and atmosphere effects. The actual temperature from spectroscopic analysis for HD 209458 b (Osiris) is 1,130 K, but the effective temperature is 1,359 K. [citation needed] The internal heating within Jupiter raises the effective temperature to about 152 K. [citation needed]

Surface temperature of a planet [edit]

The surface temperature of a planet can be estimated by modifying the effective-temperature calculation to account for emissivity and temperature variation.

The area of the planet that absorbs the power from the star is A_{abs} which is some fraction of the total surface area $A_{total} = 4\pi r^2$, where r is the radius of the planet. This area intercepts

Google for "Effective Temperature"

$$T_{\text{Earth}} = T_{\text{Sun}} \left(\frac{R_{\text{Sun}}}{2d} \right)^{1/2} (1 - A)^{1/4} \le 280 \text{ K}$$

What would happen if the Earth were bigger

- A. The Earth gains more heat
- B. The Earth gains less heat
- C. The Earth temp remains unchanged

What does it mean?

$$T_{
m Earth} = T_{
m Sun} \left(rac{R_{
m Sun}}{2d}
ight)^{1/2}$$
 $F \propto 1/d^2$
 $F = \sigma_{
m SB} T^4$

What if distance d were 4 times larger

- $1/d^2$ becomes 16 times smaller
- F decreases by 1/16
- T_{Earth} decreases by 1/2

The CO₂ thermostat

CO₂ low, cool, less rain

CO₂ high, warm, more rain

atmospheric CO₂ builds up

atmospheric CO₂ reduced

On Earth, CO₂ is recycled

• Sources of CO₂

—

—

• Sinks of CO₂

— . . .

— . . .

On Earth, CO₂ is recycled

- Sources of CO₂
 - -Animal life on Earth
 - -Oxidation of exhumed CH₂O
 - -Other C oxidation (e.g. fire)
 - Outgassing (volcanoes)
 - $-CaCO_3 \rightarrow CaO + CO_2$ or rather
 - Silicate minerals + CaCO₃ → new silicate minerals+CO₂

Sinks of CO₂

- Photosynthetic life (of course)
- Acid rain: $H_2O+CO_2=H_2CO_3$
 - Contact with rock: weathering
- $CaSiO_3 + H_2CO_3 \rightarrow CaCO_3 + SiO_2$
 - Calcium carbonate
 - solid deposit (sea bed)
 - carbonate rock (limestone)
 - Details in RGS p.51

Sinks of CO₂

- Acid rain: $H_2O+CO_2 = H_2CO_3$
 - Contact with rock: weathering
- $CaSiO_3 + H_2CO_3 \rightarrow CaCO_3 + SiO_2$
 - Calcium carbonate (solid deposit)
 - Details in RGS p.51
- On Earth: 170,000 times more CO₂ in carbonate rocks than in atmosphere

The CO₂ thermostat

- Recycling rate sensitive to temperature
- $CO_2 \rightarrow$ warmer (greenhouse)
 - More evaporation, more rainfall
- Pulling more CO₂ out of atmosphere
 - Weaker greenhouse effect
- Negative feedback

Feedbacks

- Negative feedback
 - Stable
- Positive feedback
 - Unstable, runaway
- Examples?
 - loudspeaker

CO₂ thermostat: other way around

- Less $CO_2 \rightarrow cooler$
 - less evaporation, less rainfall
- Less removal of CO₂ out of atmosphere
 - greenhouse effect becomes stronger
 - and it gets warmer again
- Again: negative feedback

The CO₂ thermostat

CO₂ high, warm, more rain

atmospheric CO₂ reduced

The CO₂ thermostat

CO₂ low, cool, less rain

CO₂ high, warm, more rain

atmospheric CO₂ builds up

atmospheric CO₂ reduced

Next time

- Carbon cycle
- Plate tectonics
- Great Oxidation Event (GOE)
- pp. 50 53