ASTR/GEOL-2040: Search for life in the Universe: Lecture 12 • Temperature on a planet AMINO ACIDS • Earth's thermostat Axel Brandenburg (Office hours: Mondays 2:30 – 3:30 in X590 and Wednesdays 11-12 in D230 → today only to 11:30) ACETYLENE # The hotter, the more it loses $$F = \sigma_{\rm SB} T^4$$ $$\sigma_{\rm SB} = 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{K}^{-4}$$ - 100 K - 1000 K - 10,000 K - \rightarrow 5.67 W m⁻² - \rightarrow 5.67x10⁴ W m⁻² - \rightarrow 5.67x10⁸ W m⁻² # Lecture 8: solar energy | Table 1.4 | Present-day | sources of e | energy | averaged | over the Earth. | |-----------|-------------|--------------|--------|----------|-----------------| |-----------|-------------|--------------|--------|----------|-----------------| | Source | Power/W m ⁻² | J/m2yv | |-----------------------------------|-------------------------|----------| | total solar radiation | 360 | 1.1-1010 | | geothermal heat flow | 8.1×10^{-2} | 2.6-106 | | electrical discharges (lightning) | 5.4×10^{-8} | 1.7 | | cosmic rays | 2×10^{-11} | 6.370 | | shock waves (atmospheric entry) | 1.5×10^{-8} | 0.47 | - We get 360 W/m² (daily average) - What happens with most of it? # What happens with that energy - We get 360 W/m² - Supply all our solar panels - Photosynthesis \rightarrow build trees etc - Drive hurricanes - What else? ### What else? - We get 360 W/m² - Needed to keep Earth warm - How warm? $$F = \sigma_{\rm SB} T^4$$ $$\sigma_{\rm SB} = 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{K}^{-4}$$ • 100 K \rightarrow 5.67 W m⁻² • ?? \rightarrow 5.67x10¹ W m⁻² • ?? \rightarrow 5.67x10² W m⁻² • 77 \rightarrow 5.67x10³ W m⁻² • 1000 K $$F = \sigma_{\rm SB} T^4$$ $$\sigma_{\rm SB} = 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{K}^{-4}$$ • 100 K \rightarrow 5.67 W m⁻² • ?? \rightarrow 5.67x10¹ W m⁻² • ?? \rightarrow 5.67x10² W m⁻² • ?? \rightarrow 5.67x10³ W m⁻² • 1000 K $$F = \sigma_{\rm SB} T^4$$ $$\sigma_{\rm SB} = 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{K}^{-4}$$ • 100 K \rightarrow 5.67 W m⁻² • ?? \rightarrow 5.67x10¹ W m⁻² • 300 K \rightarrow 5.67x10² W m⁻² • ?? \rightarrow 5.67x10³ W m⁻² • 1000 K $$F = \sigma_{\rm SB} T^4$$ $$\sigma_{\rm SB} = 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{K}^{-4}$$ • 100 K \rightarrow 5.67 W m⁻² • 180 K \rightarrow 5.67x10¹ W m⁻² • 316 K \rightarrow 5.67x10² W m⁻² • 560 K \rightarrow 5.67x10³ W m⁻² • 1000 K $$F = \sigma_{SB} T^4$$ $$\sigma_{SB} = 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{K}^{-4}$$ - 100 K - \rightarrow 5.67 W m⁻² - 180 K \rightarrow 56.7 W m⁻² • 316 K \rightarrow 567 W m⁻² • 560 K \rightarrow 5,670 W m⁻² • 1000 K \rightarrow 56,700 W m⁻² $$F = \sigma_{\rm SB} T^4$$ $$\sigma_{SB} = 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{K}^{-4}$$ • 180 K \rightarrow 56.7 W m⁻² • 273 K \rightarrow 315 W m⁻² • 293 K \rightarrow 418 W m⁻² • 316 K →567 W m⁻² ### Conclusion - We get 360 W/m² - How warm? - \rightarrow slightly above freezing - Forgot about cloud cover - \rightarrow 30% reflected - \rightarrow get only 70% - \rightarrow only 255 K (p.49 of RGS) - Why is it usually much warmer? # Why not 255 K on Earth? - • - • - • ### Two "black" bodies - Hotter → brighter - Hotter \rightarrow color changes - Yellow \rightarrow white \rightarrow blue - Cooler → deeper red # Solar flux at the Earth? $$4\pi r^2 F_r = \text{const} = L$$ $$L = 4\pi R_{\rm Sun}^2 \sigma_{\rm SB} T_{\rm Sun}^4 = 4\pi r^2 F_r$$ # Fraction intercepted by the Earth? $\pi r^2 F_r = \text{total energy/sec}$ # In & outgoing energy/sec - A. Earth must receive more than it loses - B. Earth must receive as much as it loses - C. Earth must receive less than it loses # In & outgoing energy/sec - A. Earth must receive more than it loses - B. Earth must receive as much as it loses - C. Earth must receive less than it loses ### Eliminate F $$\pi R_{\rm E}^2 F_r = 4\pi R_{\rm E}^2 \sigma_{\rm SB} T_{\rm E}^4$$ $$4\pi R_{\rm S}^2 \sigma_{\rm SB} T_{\rm S}^4 = 4\pi r^2 F_r$$ # Google for "Effective Temperature" $$T_{\text{Earth}} = T_{\text{Sun}} \left(\frac{R_{\text{Sun}}}{2d} \right)^{1/2} (1 - A)^{1/4} \le 279 \text{ K}$$ #### where - $T_{Earth} \rightarrow Earth's temperature$ - $T_{Sun} \rightarrow Sun$'s surface temperature - $R_{Sun} \rightarrow Radius of the Sun$ - d → distance between Sun and Earth - A \rightarrow Albedo (=how much is reflected) temperature: $$T=\sqrt[4]{ rac{L(1-a)}{16\pi\sigma D^2}}$$ Note that the planet's radius has cancelled out of the final expression. The effective temperature for Jupiter from this calculation is 112 K and 51 Pegasi b (Bellerophon) is 1,258 K. [citation needed] A better estimate of effective temperature for some planets, such as Jupiter, would need to include the internal heating as a power input. The actual temperature depends on albedo and atmosphere effects. The actual temperature from spectroscopic analysis for HD 209458 b (Osiris) is 1,130 K, but the effective temperature is 1,359 K. [citation needed] The internal heating within Jupiter raises the effective temperature to about 152 K. [citation needed] #### Surface temperature of a planet [edit] The surface temperature of a planet can be estimated by modifying the effective-temperature calculation to account for emissivity and temperature variation. The area of the planet that absorbs the power from the star is A_{abs} which is some fraction of the total surface area $A_{total} = 4\pi r^2$, where r is the radius of the planet. This area intercepts # Google for "Effective Temperature" $$T_{\rm E} = T_{\rm S} \left(\frac{R_{\rm Sun}}{2d}\right)^{1/2} (1-A)^{1/4} \le 279 \text{ K}$$ ### What would happen if the Earth were bigger - A. The Earth gains more heat - B. The Earth gains less heat - C. The Earth temp remains unchanged temperature: $$T=\sqrt[4]{ rac{L(1-a)}{16\pi\sigma D^2}}$$ Note that the planet's radius has cancelled out of the final expression. The effective temperature for Jupiter from this calculation is 112 K and 51 Pegasi b (Bellerophon) is 1,258 K. [citation needed] A better estimate of effective temperature for some planets, such as Jupiter, would need to include the internal heating as a power input. The actual temperature depends on albedo and atmosphere effects. The actual temperature from spectroscopic analysis for HD 209458 b (Osiris) is 1,130 K, but the effective temperature is 1,359 K. [citation needed] The internal heating within Jupiter raises the effective temperature to about 152 K. [citation needed] #### Surface temperature of a planet [edit] The surface temperature of a planet can be estimated by modifying the effective-temperature calculation to account for emissivity and temperature variation. The area of the planet that absorbs the power from the star is A_{abs} which is some fraction of the total surface area $A_{total} = 4\pi r^2$, where r is the radius of the planet. This area intercepts # Google for "Effective Temperature" $$T_{\text{Earth}} = T_{\text{Sun}} \left(\frac{R_{\text{Sun}}}{2d} \right)^{1/2} (1 - A)^{1/4} \le 280 \text{ K}$$ ### What would happen if the Earth were bigger - A. The Earth gains more heat - B. The Earth gains less heat - C. The Earth temp remains unchanged ### What does it mean? $$T_{ m Earth} = T_{ m Sun} \left(rac{R_{ m Sun}}{2d} ight)^{1/2}$$ $F \propto 1/d^2$ $F = \sigma_{ m SB} T^4$ ### What if distance d were 4 times larger - $1/d^2$ becomes 16 times smaller - F decreases by 1/16 - T_{Earth} decreases by 1/2 # The CO₂ thermostat CO₂ low, cool, less rain CO₂ high, warm, more rain atmospheric CO₂ builds up atmospheric CO₂ reduced # On Earth, CO₂ is recycled • Sources of CO₂ **—** **—** • Sinks of CO₂ **—** . . . **—** . . . # On Earth, CO₂ is recycled - Sources of CO₂ - -Animal life on Earth - -Oxidation of exhumed CH₂O - -Other C oxidation (e.g. fire) - Outgassing (volcanoes) - $-CaCO_3 \rightarrow CaO + CO_2$ or rather - Silicate minerals + CaCO₃ → new silicate minerals+CO₂ # Sinks of CO₂ - Photosynthetic life (of course) - Acid rain: $H_2O+CO_2=H_2CO_3$ - Contact with rock: weathering - $CaSiO_3 + H_2CO_3 \rightarrow CaCO_3 + SiO_2$ - Calcium carbonate - solid deposit (sea bed) - carbonate rock (limestone) - Details in RGS p.51 # Sinks of CO₂ - Acid rain: $H_2O+CO_2 = H_2CO_3$ - Contact with rock: weathering - $CaSiO_3 + H_2CO_3 \rightarrow CaCO_3 + SiO_2$ - Calcium carbonate (solid deposit) - Details in RGS p.51 - On Earth: 170,000 times more CO₂ in carbonate rocks than in atmosphere # The CO₂ thermostat - Recycling rate sensitive to temperature - $CO_2 \rightarrow$ warmer (greenhouse) - More evaporation, more rainfall - Pulling more CO₂ out of atmosphere - Weaker greenhouse effect - Negative feedback ### Feedbacks - Negative feedback - Stable - Positive feedback - Unstable, runaway - Examples? - loudspeaker # CO₂ thermostat: other way around - Less $CO_2 \rightarrow cooler$ - less evaporation, less rainfall - Less removal of CO₂ out of atmosphere - greenhouse effect becomes stronger - and it gets warmer again - Again: negative feedback # The CO₂ thermostat CO₂ high, warm, more rain atmospheric CO₂ reduced # The CO₂ thermostat CO₂ low, cool, less rain CO₂ high, warm, more rain atmospheric CO₂ builds up atmospheric CO₂ reduced ### Next time - Carbon cycle - Plate tectonics - Great Oxidation Event (GOE) - pp. 50 53