

- CO₂ on Venus
- Plate tectonics
- BIFs and GOE

Axel Brandenburg

(Office hours: Mondays 2:30 – 3:30 in X590 and

Wednesdays 11-12 in D230)

Habitable zone

Other factors determining Earth's temperature

- Greenhouse gases, e.g., CO₂
 - -Others? Yes: CH₄ and H₂O
- Sources & sinks of CO₂
 - -Weathering
 - -Volcanoes

The CO₂ thermostat

CO₂ high, warm, more rain

atmospheric CO₂ reduced

The CO₂ thermostat

CO₂ low, cool, less rain

CO₂ high, warm, more rain

atmospheric CO₂ builds up

atmospheric CO₂ reduced

Sinks of CO₂

- Acid rain: $H_2O+CO_2=H_2CO_3$
 - Contact with rock: weathering
- $CaSiO_3 + H_2CO_3 \rightarrow CaCO_3 + SiO_2$
 - Silicate rock → carbonate rock
 - carbonate rock = limestone

Chalk: isle of Whight

- CO₂ from the air locked up in chalk!
- Recycled via volcanoes

Earth - Venus - Mars

- On Earth: 170,000 times more CO₂ in carbonate rocks than in atmosphere
- Similarly for Mars
- What about Venus?

Why so much CO₂ on Venus?

- Venus: 200,000 times more CO₂ than Earth
 - -Remember: Earth 170,000 times more CO₂ in carbonate rocks
- Venus: no return to carbonate rocks
- Why?

Why no CO₂ return into rocks on Venus?

•

•

•

Why no CO₂ return on Venus?

- No water, no rain, no feedback
- Yet, volcanic activity

Idunn Mons

- → infrared
- → topography enlarged

0.25 Myr old

Why did Venus lose its water?

- Same reason as for Mars
- UV light: $H_2O \rightarrow H_2 + \frac{1}{2}O_2$
 - → photolysis
- H₂ lost through thermal escape
- Why?

Thermal escape?

- Escape velocity?
 - -Apollo 8 (Borman, Lowell, Anders)

- $1/2 m v_e^2 = GMm/R$
 - $-v_e = (2GM/R)^{1/2} = 11.2 \text{ km/s}$
 - $-1/2 m v_{\rm H}^2 = k_{\rm B} T$
- H₂ is so light

Why not on Earth?

- Water vapor condenses to rain before too much gets lost
- Venus: unable to protect itself
- Too hot: H₂O also greenhouse gas
 - -Hotter \rightarrow more vapor \rightarrow hotter still
- Runaway greenhouse effect

Runaway greenhouse effect

Earth has far less atmospheric CO₂ than Venus because

- A. Earth was born with less gas
- B. CO₂ was lost in giant impact
- C. CO₂ is locked up in carbonate rocks

Earth has far less atmospheric CO₂ than Venus because

- A. Earth was born with less gas
- B. CO₂ was lost in giant impact
- C. CO₂ is locked up in carbonate rocks

If Earth had more greenhouse gases in its atmosphere, it would

- A. Heat up
- B. Cool off
- C. Accelerate plate tectonics

If Earth had more greenhouse gases in its atmosphere, it would

- A. Heat up
- B. Cool off
- C. Accelerate plate tectonics

Earth's structure

Die Entstehung der Kontinente 1).

Von Dr. Alfred Wegener (Marburg i. H.).

Mit 3 Textfiguren.

(Vortrag gehalten auf der Hauptversammlung zu Frankfurt a. M. am 6. I. 1912.)

Plate tectonics

- Upwellings (heat)
- Subduction
- shear

Also deep in the pacific & atlantic

Rock locations

Next week

- Banded iron formation (=rust)
- Evidence for early life on Earth
- Oceans 4.4 Gyr ago
- pp. 56 64 in RGS
 - -After that
 - Significance of ¹³C isotope
 - Cambrian explosion of life

