- CO₂ on Venus - Plate tectonics - BIFs and GOE Axel Brandenburg (Office hours: Mondays 2:30 – 3:30 in X590 and Wednesdays 11-12 in D230) ### Habitable zone ## Other factors determining Earth's temperature - Greenhouse gases, e.g., CO₂ - -Others? Yes: CH₄ and H₂O - Sources & sinks of CO₂ - -Weathering - -Volcanoes ### The CO₂ thermostat CO₂ high, warm, more rain atmospheric CO₂ reduced ### The CO₂ thermostat CO₂ low, cool, less rain CO₂ high, warm, more rain atmospheric CO₂ builds up atmospheric CO₂ reduced #### Sinks of CO₂ - Acid rain: $H_2O+CO_2=H_2CO_3$ - Contact with rock: weathering - $CaSiO_3 + H_2CO_3 \rightarrow CaCO_3 + SiO_2$ - Silicate rock → carbonate rock - carbonate rock = limestone ## Chalk: isle of Whight - CO₂ from the air locked up in chalk! - Recycled via volcanoes #### Earth - Venus - Mars - On Earth: 170,000 times more CO₂ in carbonate rocks than in atmosphere - Similarly for Mars - What about Venus? ### Why so much CO₂ on Venus? - Venus: 200,000 times more CO₂ than Earth - -Remember: Earth 170,000 times more CO₂ in carbonate rocks - Venus: no return to carbonate rocks - Why? # Why no CO₂ return into rocks on Venus? • • • ### Why no CO₂ return on Venus? - No water, no rain, no feedback - Yet, volcanic activity #### **Idunn Mons** - → infrared - → topography enlarged 0.25 Myr old #### Why did Venus lose its water? - Same reason as for Mars - UV light: $H_2O \rightarrow H_2 + \frac{1}{2}O_2$ - → photolysis - H₂ lost through thermal escape - Why? #### Thermal escape? - Escape velocity? - -Apollo 8 (Borman, Lowell, Anders) - $1/2 m v_e^2 = GMm/R$ - $-v_e = (2GM/R)^{1/2} = 11.2 \text{ km/s}$ - $-1/2 m v_{\rm H}^2 = k_{\rm B} T$ - H₂ is so light #### Why not on Earth? - Water vapor condenses to rain before too much gets lost - Venus: unable to protect itself - Too hot: H₂O also greenhouse gas - -Hotter \rightarrow more vapor \rightarrow hotter still - Runaway greenhouse effect #### Runaway greenhouse effect # Earth has far less atmospheric CO₂ than Venus because - A. Earth was born with less gas - B. CO₂ was lost in giant impact - C. CO₂ is locked up in carbonate rocks # Earth has far less atmospheric CO₂ than Venus because - A. Earth was born with less gas - B. CO₂ was lost in giant impact - C. CO₂ is locked up in carbonate rocks # If Earth had more greenhouse gases in its atmosphere, it would - A. Heat up - B. Cool off - C. Accelerate plate tectonics # If Earth had more greenhouse gases in its atmosphere, it would - A. Heat up - B. Cool off - C. Accelerate plate tectonics #### Earth's structure #### Die Entstehung der Kontinente 1). Von Dr. Alfred Wegener (Marburg i. H.). Mit 3 Textfiguren. (Vortrag gehalten auf der Hauptversammlung zu Frankfurt a. M. am 6. I. 1912.) #### Plate tectonics - Upwellings (heat) - Subduction - shear #### Also deep in the pacific & atlantic #### Rock locations #### Next week - Banded iron formation (=rust) - Evidence for early life on Earth - Oceans 4.4 Gyr ago - pp. 56 64 in RGS - -After that - Significance of ¹³C isotope - Cambrian explosion of life