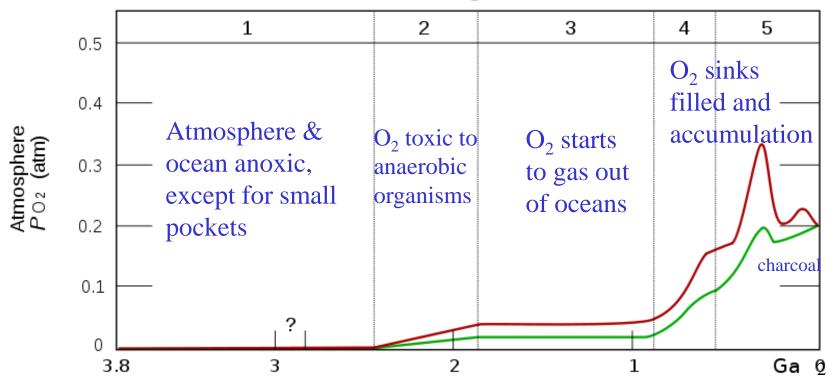
ASTR/GEOL-2040: Search for life in the Universe: Lecture 14

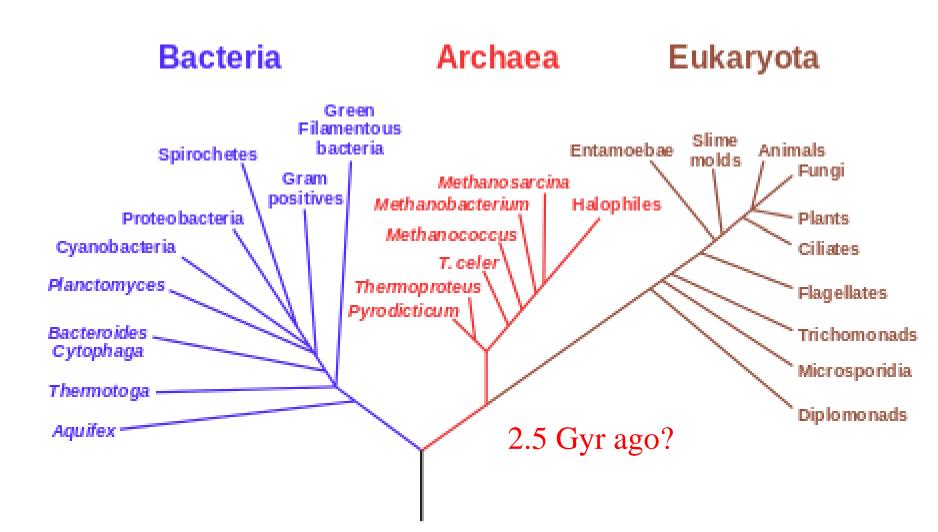
- HW4 due on Friday!
- Great oxidation
- Snowball Earth
 - Faculty Teaching Excellence program

Axel Brandenburg


(Office hours: Mondays 2:30 – 3:30 in X590 and

Wednesdays 11-12 in D230)

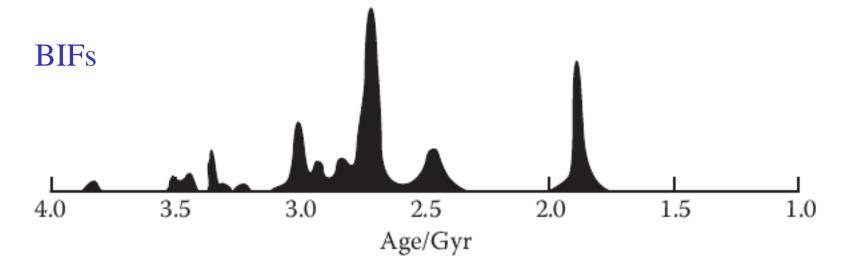
The great oxidation event (GOE)


- Oxygen catastrophe
- Mass extinctions

Stages

Rooted Tree

Phylogenetic Tree of Life



An anoxic environment

- Oceans dissolve iron
 - -Comes from hydrothermal vents
 - −In the form of ferrous iron (FeO)
- Early cyanobacteria (phytoplankton)
 - -Gradual oxidation
 - -Rust (hematite or Fe_2O_3) \rightarrow insoluble
 - -Banded Iron Formation (BIF)

First BIFs 3.8 – 2.7 Gyr ago

- Earliest one: already 3.8 Gyr ago!
- Long lag time to 2.5 Gyr when O₂ levels rose. Why?

Why atmospheric O₂ much later?

- A. No animal life available yet?
- B. All used up by microbes
- C. All used up by BIFs
- D. Atmosphere still too warm
- E. Not yet enough nutrients for phytoplankton

Why atmospheric O₂ much later?

A. No animal life available yet?

wrong logic

B. All used up by microbes

Possible, but too inefficient

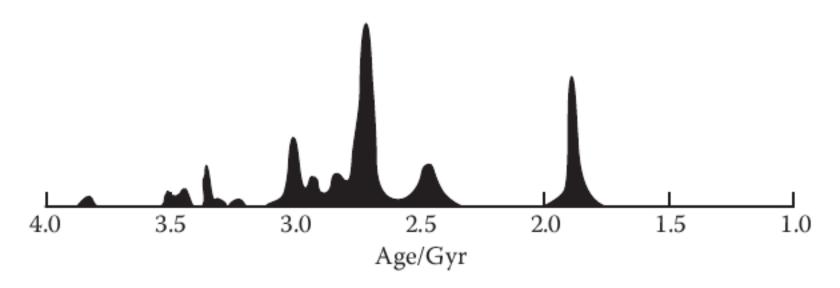
C. All used up by BIFs

Possible, but big enough?

D. Atmosphere still too warm

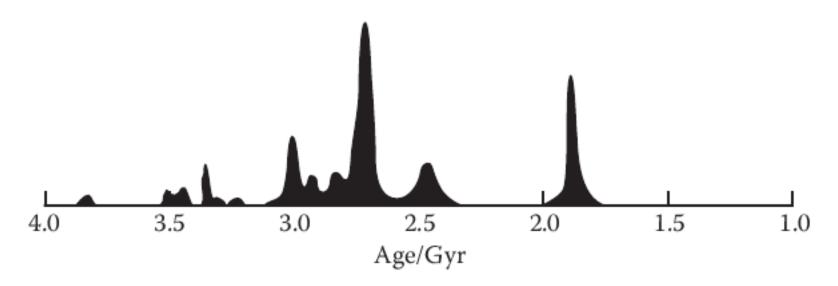
not possible

E. Not yet enough nutrients for phytoplankton


Fe rich oeans
→ nutrient-rich

Why atmospheric O₂ much later?

- A. No animal life available yet?
- B. All used up by microbes
- C. All used up by BIFs
- D. Atmosphere still too warm
- E. Not yet enough nutrients for phytoplankton


New feedback cycle

- Cyanobacteria + \rightarrow O₂ + \rightarrow less Fe
- Cyanobacteria $-\rightarrow O_2 + \rightarrow$ more Fe

Another feedback cycle

- Cyanobacteria $+ \rightarrow CO_2 \rightarrow$ cooler
- Cyanobacteria $-\rightarrow CO_2 + \rightarrow$ warmer

Snowball Earth events

- Geological record → global events
 - -Dramatic climate changes
- 2.45 Gyr ago (extreme event)
- 0.75 0.58 Gyr ago (up to 4)
 - -Global glaciation (snowball Earth)
 - -Mass extinction (CO₂ sinks cease)
 - -Oceans become Fe-rich

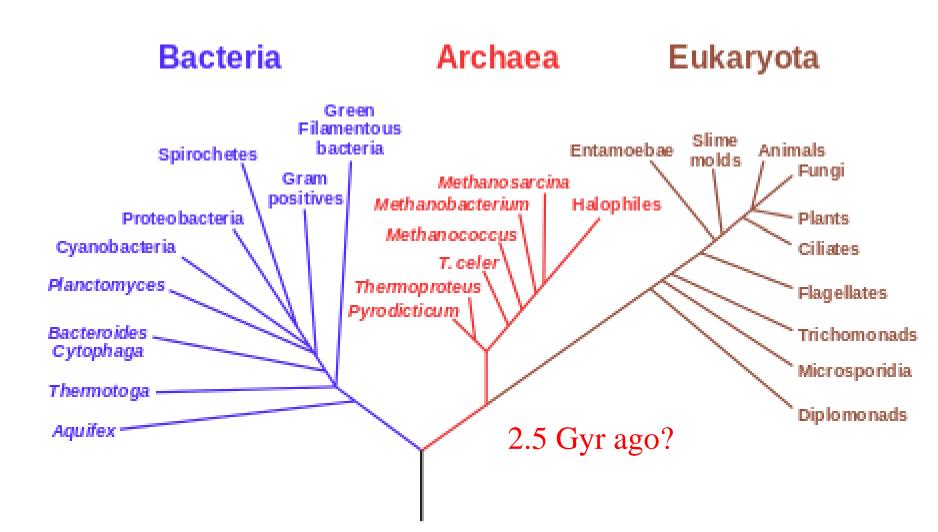
Effects of snowball Earth on CO₂ sinks

- Photosynthetic life
- Acid rain: $H_2O+CO_2 = H_2CO_3$
- $CaSiO_3 + H_2CO_3 \rightarrow CaCO_3 + SiO_2$
- Snowball Earth would halt this process

Escaping Snowball Earth

- Volcanoes
- More O₂ production
 - -BIFs
 - Explains Fe-rich betw glacial deposits
- Similar events earlier in history!

Snowball Earth & evolution


- Eukaria & Archea only after 2.5 Gyr
- Multicellular diverse life after 0.6 Gyr
- Coincidence?
- Greenhouse $\leftarrow \rightarrow$ Icehouse
- Evolutionary pressure
- Oxygen spikes could have sparked early animal evolution

Oxygen catastrophe

- Oxygen spikes
 - -BIFs
 - Oceans Fe poor
- Phytoplanktons starve
 - Global disaster for most life
- Antioxidant enzymes (Vitamin E & C)
 - Reengineer life in iron-poor environments
 - Archea have such enzymes

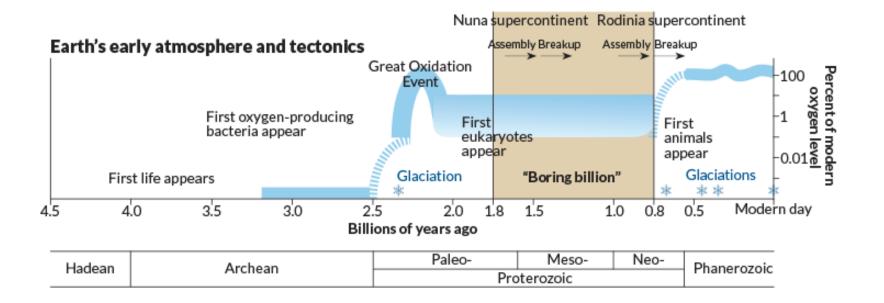
Rooted Tree

Phylogenetic Tree of Life

Ice ages are different

- Temperature drops by a few degrees
 - -More snowfall, down to low latitudes
 - -Last one 10,000 yr ago
 - -Duration: 35 Myr
- One contributor: cyclic changes in Earth rotation (tilt 22°-25°) & orbit
 - -Milankovich cycles

Snowball Earth refers to


- A. One in a series of deep ice ages that occurred >0.5 Gyr ago
- B. The idea that Earth would be frozen without greenhouse effect
- C. Any of the ice ages that occurred in the past few million years

Snowball Earth refers to

- A. One in a series of deep ice ages that occurred >0.5 Gyr ago
- B. The idea that Earth would be frozen without greenhouse effect
- C. Any of the ice ages that occurred in the past few million years

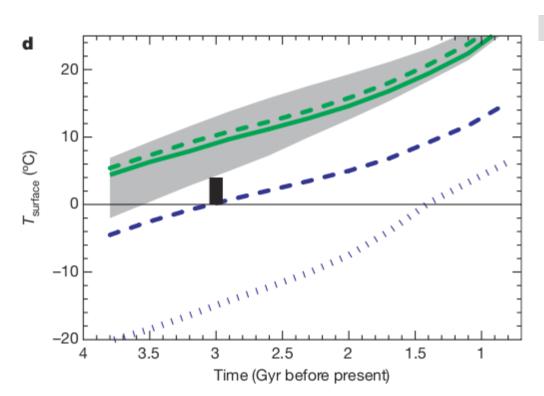
The boring billion: 1.8 – 0.8 Gyr

- After: atmos. O₂, glaciation, GOE, prokaryotic life, UV-blocking ozone
- O₂ remained at 1% PAL (present atmospheric level)

More evidence for early life Accumulation of organics

- Photosynthesizing cyanobacteria
- Grow on top of each other
- Layered structure

Early Faint Sun Paradox


The Early Faint Sun Paradox: Organic Shielding of Ultraviolet-Labile Greenhouse Gases

Carl Sagan and Christopher Chyba

www.sciencemag.org • SCIENCE • VOL. 276 • 23 MAY 1997

No climate paradox under the faint early Sun

Minik T. Rosing^{1,2,4}, Dennis K. Bird^{1,4}, Norman H. Sleep⁵ & Christian J. Bjerrum^{1,3}

Vol 464 | 1 April 2010 | doi:10.1038 / nature 08955

- Early Sun 30% fainter
 - Yet liquid water!?
 - Greenhouse gases?
- Geol record: no!
 - Less continents
 - Less albedo

Next week

- Evidence for early life on Earth
- Oceans 4.4 Gyr ago
- Different rock types
- pp. 65 71 in RGS
 - -After that
 - Significance of ¹³C isotope
 - Cambrian explosion of life