

One-off additional office hours this Tuesday: Sep 5 8 – 10 in X490

Axel Brandenburg

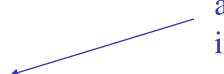
(Office hours: Mondays 2:30 – 3:30 in X590 and Wednesdays 11-12 in D230)

Darwinian evolution

- More individuals produced than survive
- Struggle for existence (limited resources)
- Individuals show variation (often subtle)
- Individuals produce similar offspring

Works also/especially at the molecular level: RNA can replicate itself → RNA world

Natural selection is


- A. the occasional mutations that occur in DNA;
- B. the mechanism by which advantageous traits are preferentially passed on from parents to offspring;
- C. the idea that organisms can develop new characteristics during their lives and then pass these on to their offspring.

Natural selection is

- A. the occasional mutations that occur in DNA;
- B. the mechanism by which advantageous traits are preferentially passed on from parents to offspring;
- C. the idea that organisms can develop new characteristics during their lives and then pass these on to their offspring.

Lamarck is usually remembered for his belief in the inheritance of acquired characteristics, and the use and disuse model by which organisms developed their characteristics. Lamarck incorporated this belief into his theory of evolution, along with other more common beliefs of the time, such as spontaneous generation. The inheritance of acquired characteristics (also called

Again: What is life?

automatically implies input of matter & energy

- Replicate &
- Evolve through natural selection

Still unclear how life got started Chemical vs biological evolution Where exactly is the threshold?

Any definition may be challenged as we have new observations

2nd law of thermodynamics

- When left alone, a system undergoes conversions that lead to increasing disorder
- Consider life in sealed box: use up all molecules and energy ...

BS p.157

Which of the following is not a key property of life?

- A. The maintenance of order in living cells
- B. The ability to evolve over time
- C. The ability to violate the second law of thermodynamics?

Which of the following is not a key property of life?

- A. The maintenance of order in living cells
- B. The ability to evolve over time
- C. The ability to violate the second law of thermodynamics?

The other law of thermodynamic

- 1st law of TD: energy is conserved
 - can be transferred between different reservoirs (thermal, kinetic, chemical)
- 2nd law of TD: each time energy is transferred, disorder of Universe incr.
 - → Life creates order & messes up surroundings

Building blocks of life

- Rothery, Gilmour, Sephton (RGS) pp. 4-12
- Longstaff (Lon) pp. 175-183
- Bennett & Shostak (BS) pp. 167-169
- pp. 176-183

Most abundant elements

Table 1.1 The ten most abundant elements in the Universe, Earth and life (expressed as atoms of the element per 100 000 total atoms).

Order	Universe		Whole Earth		Earth's crust		Earth's ocean		Humans	
1	H	92714	O	48 880	0	60425	Н	66 200	Н	60 563
2	He	7 185	Fe	18870	Si	20475	0	33 100	O	25 670
3	O	50	Si	14000	Al	6251	Cl	340	C	10680
4	Ne	20	Mg	12 500	Н	2882	Na	290	N	2440
5	N	15	S	11400	Na	2155	Mg	34	Ca	230
6	C	8	Ni	1 400	Ca	1878	S	17	P	130
7	Si	2.3	Al	1300	Fe	1858	Ca	6	S	130
8	Mg	2.1	Na	640	Mg	1784	K	6	Na	75
9	Fe	1.4	Ca	460	K	1374	С	1.4	K	37
10	S	0.9	P	140	Ti	191	Si	-	Cl	33

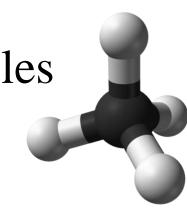
- H and He in the Universe
- Nobel elements He, Ne, Ar, ... highly unreactive (inert)
- Rest in Universe O, N, C, Si
- Human body H, O, C, N

Molecules in human body

Molecule	mass	sum
Water	65%	65%
Protein	20%	85%
Lipids	12%	97%
Other inorg (eg carbohydrates)	1.5%	98.5%
RNA	1.0%	99.5%
Other org	0.4%	99.9%
DNA	0.1%	100%

The building blocks of life

- Proteins ("meat")
- Lipids ("fats", cell boundaries)
- Carbohydrates ("sugars")
- RNA & DNA


Why water?

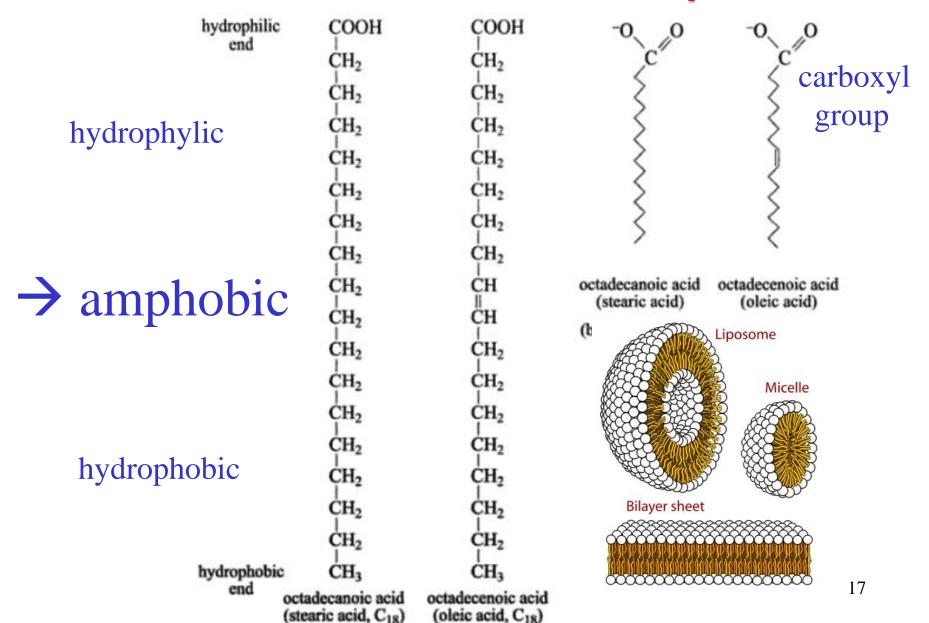
- To dissolve & transport organic molecules, → available for reactions
- Is liquid over wide T range
- Alternatives; lower *T*, reactions *slow*

solvent	formula	freezing	boiling	range
water	$_{\mathrm{H_2O}}$	0°C	100°C	100°C
ammonia	NH_3	$-78^{\circ}\mathrm{C}$	$-33^{\circ}\mathrm{C}$	$45^{\circ}\mathrm{C}$
methanol	$\mathrm{CH_{3}OH}$	$-98^{\circ}\mathrm{C}$	$65^{\circ}\mathrm{C}$	$163^{\circ}\mathrm{C}$
methane	CH_4	$-182^{\circ}\mathrm{C}$	$-164^{\circ}\mathrm{C}$	$18^{\circ}\mathrm{C}$
ethane	$\mathrm{CH_{3}CH_{3}}$	-183°C	$-89^{\circ}\mathrm{C}$	$94^{\circ}\mathrm{C}$

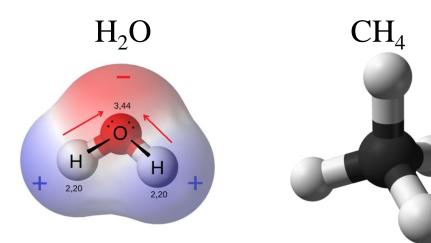
Other reasons

- Ice floats & insulates deeper layers
- Water is a highly polar molecule
 - → hydrogen bonds (very stable)
- Dissolves other polar molecules
 - Like dissolves like
- Does not dissolve apolar molecules
 - → critical for existence of cells

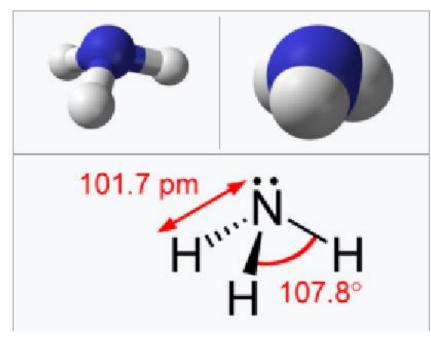
Water & fat


- Water does not dissolve apolar molecules
 - → critical for existence of cells

Properties of lipids


- Water-insoluble
 - Act as cell membranes
- Energy substrates
 - Fats (used by migrating birds)
- Fatty acids
 - Double bond = unsaturated

Cells are made of lipids



Ammonia NH₃

- Only weakly polar
- Cells could dissolve

Ammonia

Why carbon

- Versatile, because it can bond with a large range of different atoms
- Carbon compounds can readily dissolve in water

Why not silicon?

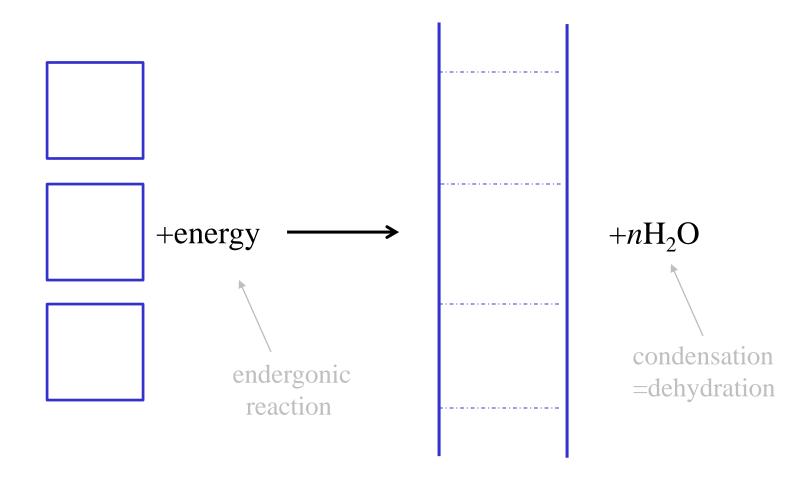
- Si is larger, so bonds are weaker
- Si does not form double or triple bonds as easily
- SiO₂ is solid, not mobile like CO₂
- In Earth's crust, Si is 1000x more abundant than C, but C won

Common carbon compounds

- carbohydrates
- hydrocarbons

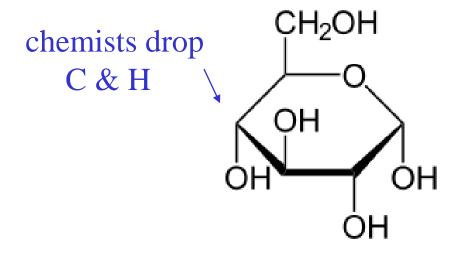
Common carbon compounds

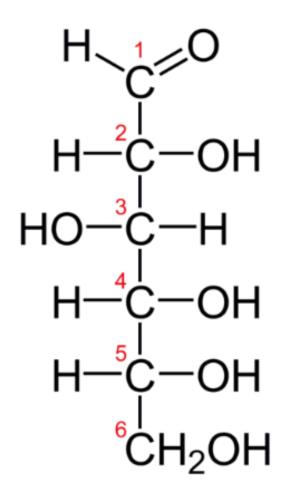
 Hydrocarbons: made up entirely of hydrogen & carbon CH₃-CH₂-CH₂-CH₂-CH₂-CH₃


• Carbohydrates: made up of hydrogen, carbon, & oxygen

 $\begin{array}{c} C_m(H_2O)_n \\ \\ H\text{-}C\text{-}OH \\ \\ H\text{-}C\text{-}OH \\ \\ I \\ \\ H\text{-}C\text{-}OH \end{array}$

These endings have names


- -COOH carboxyl group
- OH hydroxyl group
- -CH₃ methyl group
- $-NH_2$ amino group (=amine group)


building macromolecules

$$(CH_2O)_n = "life"$$

Glucose=hexose
=monosaccharide
= C₆H₁₂O₆

What we talked about

- Why carbon, & not silicon-based
- Why water?
- -pp. 3-8, Sects. 1.1 & 1.2